The Influence of Drinking Water Intake on Pollutant Levels in the Human Body: Evidence from NHANES Data
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Quantification of Water Intake
2.3. Detection of Pollutant Levels in the Human Body
2.4. Statistical Analysis Methods
3. Results and Discussion
3.1. Human Biomonitoring of Pollutants
3.2. Pollutants in Drinking Water
3.3. Urine Pollutant Analysis
3.4. Potential Benefits of Drinking More Water
3.5. Blood Pollutant Analysis
4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valtin, H. “Drink at least eight glasses of water a day.” Really? Is there scientific evidence for “8 × 8”? Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2002, 283, R993–R1004. [Google Scholar] [CrossRef] [PubMed]
- Jéquier, E.; Constant, F. Water as an essential nutrient: The physiological basis of hydration. Eur. J. Clin. Nutr. 2010, 64, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Robayo-Amortegui, H.; Quintero-Altare, A.; Florez-Navas, C.; Serna-Palacios, I.; Súarez-Saavedra, A.; Buitrago-Bernal, R.; Casallas-Barrera, J.O. Fluid dynamics of life: Exploring the physiology and importance of water in the critical illness. Front. Med. 2024, 11, 1368502. [Google Scholar] [CrossRef]
- Hakam, N.; Guzman Fuentes, J.L.; Nabavizadeh, B.; Sudhakar, A.; Li, K.D.; Nicholas, C.; Lui, J.; Tahir, P.; Jones, C.P.; Bent, S.; et al. Outcomes in Randomized Clinical Trials Testing Changes in Daily Water Intake: A Systematic Review. JAMA Netw. Open 2024, 7, e2447621. [Google Scholar] [CrossRef] [PubMed]
- Vij, V.A.K.; Joshi, A.S. Effect of excessive water intake on body weight, body mass index, body fat, and appetite of overweight female participants. J. Nat. Sci. Biol. Med. 2014, 5, 340–344. [Google Scholar] [CrossRef]
- Edmonds, C.J.; Burford, D. Should children drink more water?: The effects of drinking water on cognition in children. Appetite 2009, 52, 776–779. [Google Scholar] [CrossRef]
- Liska, D.; Mah, E.; Brisbois, T.; Barrios, P.L.; Baker, L.B.; Spriet, L.L. Narrative Review of Hydration and Selected Health Outcomes in the General Population. Nutrients 2019, 11, 70. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Y.; Liu, Q.S.; Zhou, Q.; Jiang, G. Chemical contaminants in blood and their implications in chronic diseases. J. Hazard. Mater. 2024, 466, 133511. [Google Scholar] [CrossRef]
- Levin, R.; Villanueva, C.M.; Beene, D.; Cradock, A.L.; Donat-Vargas, C.; Lewis, J.; Martinez-Morata, I.; Minovi, D.; Nigra, A.E.; Olson, E.D.; et al. US drinking water quality: Exposure risk profiles for seven legacy and emerging contaminants. J. Expo. Sci. Environ. Epidemiol. 2024, 34, 3–22. [Google Scholar] [CrossRef]
- Wu, J. Challenges for Safe and Healthy Drinking Water in China. Curr. Environ. Health Rep. 2020, 7, 292–302. [Google Scholar] [CrossRef]
- Rani, J.; Sharma, U.K.; Sharma, D.N. Role of adequate water intake in purification of body. Environ. Conserv. J. 2018, 19, 183–186. [Google Scholar] [CrossRef]
- Nakamura, Y.; Watanabe, H.; Tanaka, A.; Yasui, M.; Nishihira, J.; Murayama, N. Effect of Increased Daily Water Intake and Hydration on Health in Japanese Adults. Nutrients 2020, 12, 1191. [Google Scholar] [CrossRef]
- Perrier, E.; Demazières, A.; Girard, N.; Pross, N.; Osbild, D.; Metzger, D.; Guelinckx, I.; Klein, A. Circadian variation and responsiveness of hydration biomarkers to changes in daily water intake. Eur. J. Appl. Physiol. 2013, 113, 2143–2151. [Google Scholar] [CrossRef] [PubMed]
- Barr, D.B.; Wilder, L.C.; Caudill, S.P.; Gonzalez, A.J.; Needham, L.L.; Pirkle, J.L. Urinary Creatinine Concentrations in the U.S. Population: Implications for Urinary Biologic Monitoring Measurements. Environ. Health Perspect. 2005, 113, 192–200. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.M.; Upson, K.; Cook, N.R.; Weinberg, C.R. Environmental Chemicals in Urine and Blood: Improving Methods for Creatinine and Lipid Adjustment. Environ. Health Perspect. 2016, 124, 220–227. [Google Scholar] [CrossRef]
- Yusa, V.; Ye, X.; Calafat, A.M. Methods for the determination of biomarkers of exposure to emerging pollutants in human specimens. TrAC Trends Anal. Chem. 2012, 38, 129–142. [Google Scholar] [CrossRef]
- Angerer, J.; Ewers, U.; Wilhelm, M. Human biomonitoring: State of the art. Int. J. Hyg. Environ. Health 2007, 210, 201–228. [Google Scholar] [CrossRef]
- Bartell, S.M.; Calafat, A.M.; Lyu, C.; Kato, K.; Ryan, P.B.; Steenland, K. Rate of Decline in Serum PFOA Concentrations After Granular Activated Carbon Filtration at Two Public Water Systems in Ohio and West Virginia. Environ. Health Perspect. 2010, 118, 222–228. [Google Scholar] [CrossRef]
- Olsen, G.W.; Burris, J.M.; Ehresman, D.J.; Froehlich, J.W.; Seacat, A.M.; Butenhoff, J.L.; Zobel, L.R. Half-Life of Serum Elimination of Perfluorooctanesulfonate, Perfluorohexanesulfonate, and Perfluorooctanoate in Retired Fluorochemical Production Workers. Environ. Health Perspect. 2007, 115, 1298–1305. [Google Scholar] [CrossRef]
- Jian, J.-M.; Chen, D.; Han, F.-J.; Guo, Y.; Zeng, L.; Lu, X.; Wang, F. A short review on human exposure to and tissue distribution of per- and polyfluoroalkyl substances (PFASs). Sci. Total Environ. 2018, 636, 1058–1069. [Google Scholar] [CrossRef]
- Sochacka-Tatara, E.; Majewska, R.; Perera, F.P.; Camann, D.; Spengler, J.; Wheelock, K.; Sowa, A.; Jacek, R.; Mróz, E.; Pac, A. Urinary polycyclic aromatic hydrocarbon metabolites among 3-year-old children from Krakow, Poland. Environ. Res. 2018, 164, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Styszko, K.; Pamuła, J.; Pac, A.; Sochacka-Tatara, E. Biomarkers for polycyclic aromatic hydrocarbons in human excreta: Recent advances in analytical techniques—A review. Environ. Geochem. Health 2023, 45, 7099–7113. [Google Scholar] [CrossRef] [PubMed]
- Marie, C.; Vendittelli, F.; Sauvant-Rochat, M.-P. Obstetrical outcomes and biomarkers to assess exposure to phthalates: A review. Environ. Int. 2015, 83, 116–136. [Google Scholar] [CrossRef]
- Wittassek, M.; Koch, H.M.; Angerer, J.; Brüning, T. Assessing exposure to phthalates—The human biomonitoring approach. Mol. Nutr. Food Res. 2011, 55, 7–31. [Google Scholar] [CrossRef]
- Shen, Q.; Liu, Y.; Li, G.; An, T. A review of disrupted biological response associated with volatile organic compound exposure: Insight into identification of biomarkers. Sci. Total Environ. 2024, 948, 174924. [Google Scholar] [CrossRef]
- Martinez-Morata, I.; Sobel, M.; Tellez-Plaza, M.; Navas-Acien, A.; Howe, C.G.; Sanchez, T.R. A State-of-the-Science Review on Metal Biomarkers. Curr. Environ. Health Rep. 2023, 10, 215–249. [Google Scholar] [CrossRef] [PubMed]
- Guelfo, J.L.; Adamson, D.T. Evaluation of a national data set for insights into sources, composition, and concentrations of per- and polyfluoroalkyl substances (PFASs) in U.S. drinking water. Environ. Pollut. 2018, 236, 505–513. [Google Scholar] [CrossRef]
- Schwanz, T.G.; Llorca, M.; Farré, M.; Barceló, D. Perfluoroalkyl substances assessment in drinking waters from Brazil, France and Spain. Sci. Total Environ. 2016, 539, 143–152. [Google Scholar] [CrossRef]
- Boiteux, V.; Dauchy, X.; Rosin, C.; Munoz, J.-F. National Screening Study on 10 Perfluorinated Compounds in Raw and Treated Tap Water in France. Arch. Environ. Contam. Toxicol. 2012, 63, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Huang, Z.; Li, Y.; Li, J.; Wu, N.; He, J.; Zhang, Z.; Liu, Y.; Niu, Z. Pollution of polycyclic aromatic hydrocarbons (PAHs) in drinking water of China: Composition, distribution and influencing factors. Ecotoxicol. Environ. Saf. 2019, 177, 108–116. [Google Scholar] [CrossRef]
- Aygun, S.F.; Bagcevan, B. Determination of polycyclic aromatic hydrocarbons (PAHs) in drinking water of Samsun and it’s surrounding areas, Turkey. J. Environ. Health Sci. Eng. 2019, 17, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shi, J.; Bo, T.; Li, H.; Crittenden, J.C. Occurrence and risk assessment of selected phthalates in drinking water from waterworks in China. Environ. Sci. Pollut. Res. 2015, 22, 10690–10698. [Google Scholar] [CrossRef] [PubMed]
- Abtahi, M.; Dobaradaran, S.; Torabbeigi, M.; Jorfi, S.; Gholamnia, R.; Koolivand, A.; Darabi, H.; Kavousi, A.; Saeedi, R. Health risk of phthalates in water environment: Occurrence in water resources, bottled water, and tap water, and burden of disease from exposure through drinking water in tehran, Iran. Environ. Res. 2019, 173, 469–479. [Google Scholar] [CrossRef]
- Luo, Q.; Liu, Z.-h.; Yin, H.; Dang, Z.; Wu, P.-x.; Zhu, N.-w.; Lin, Z.; Liu, Y. Migration and potential risk of trace phthalates in bottled water: A global situation. Water Res. 2018, 147, 362–372. [Google Scholar] [CrossRef]
- da Silva Costa, R.; Sainara Maia Fernandes, T.; de Sousa Almeida, E.; Tomé Oliveira, J.; Carvalho Guedes, J.A.; Julião Zocolo, G.; Wagner de Sousa, F.; do Nascimento, R.F. Potential risk of BPA and phthalates in commercial water bottles: A minireview. J. Water Health 2021, 19, 411–435. [Google Scholar] [CrossRef]
- Rowe, B.L.; Toccalino, P.L.; Moran, M.J.; Zogorski, J.S.; Price, C.V. Occurrence and Potential Human-Health Relevance of Volatile Organic Compounds in Drinking Water from Domestic Wells in the United States. Environ. Health Perspect. 2007, 115, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- El-Nahhal, I.; El-Nahhal, Y. Pesticide residues in drinking water, their potential risk to human health and removal options. J. Environ. Manag. 2021, 299, 113611. [Google Scholar] [CrossRef]
- Kirstein, I.V.; Gomiero, A.; Vollertsen, J. Microplastic pollution in drinking water. Curr. Opin. Toxicol. 2021, 28, 70–75. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mazumder, M.A.J.; Al-Attas, O.; Husain, T. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci. Total Environ. 2016, 569, 476–488. [Google Scholar] [CrossRef]
- Fernandez-Luqueno, F.; Lopez-Valdez, F.; Gamero-Melo, P.; Luna-Suarez, S.; Aguilera-Gonzalez, E.N.; Martínez, A.I.; García-Guillermo, M.; Hernandez-Martinez, G.; Herrera-Mendoza, R.; Álvarez-Garza, M.A. Heavy metal pollution in drinking water-a global risk for human health: A review. Afr. J. Environ. Sci. Technol. 2013, 7, 567–584. [Google Scholar]
- Buendia Jimenez, I.; Richardot, P.; Picard, P.; Lepicard, E.M.; De Meo, M.; Talaska, G. Effect of Increased Water Intake on Urinary DNA Adduct Levels and Mutagenicity in Smokers: A Randomized Study. Dis. Markers 2015, 2015, 478150. [Google Scholar] [CrossRef]
- Braver, D.J.; Modan, M.; Chêtrit, A.; Lusky, A.; Braf, Z. Drinking, Micturition Habits, and Urine Concentration as Potential Risk Factors in Urinary Bladder Cancer. JNCI J. Natl. Cancer Inst. 1987, 78, 437–440. [Google Scholar]
- Michaud, D.S.; Spiegelman, D.; Clinton, S.K.; Rimm, E.B.; Curhan, G.C.; Willett, W.C.; Giovannucci, E.L. Fluid Intake and the Risk of Bladder Cancer in Men. N. Engl. J. Med. 1999, 340, 1390–1397. [Google Scholar] [CrossRef]
- Khalaf, E.M.; Taherian, M.; Almalki, S.G.; Asban, P.; Kareem, A.K.; Alhachami, F.R.; Almulla, A.F.; Romero-Parra, R.M.; Jawhar, Z.H.; Kiani, F.; et al. Relationship between exposure to heavy metals on the increased health risk and carcinogenicity of urinary tract (kidney and bladder). Rev. Environ. Health 2024, 39, 539–549. [Google Scholar] [CrossRef]
- Cumberbatch, M.G.K.; Cox, A.; Teare, D.; Catto, J.W.F. Contemporary Occupational Carcinogen Exposure and Bladder Cancer: A Systematic Review and Meta-analysis. JAMA Oncol. 2015, 1, 1282–1290. [Google Scholar] [CrossRef]
- Letašiová, S.; Medveďová, A.; Šovčíková, A.; Dušinská, M.; Volkovová, K.; Mosoiu, C.; Bartonová, A. Bladder cancer, a review of the environmental risk factors. Environ. Health 2012, 11, S11. [Google Scholar] [CrossRef]
- Popkin, B.M.; D’Anci, K.E.; Rosenberg, I.H. Water, hydration, and health. Nutr. Rev. 2010, 68, 439–458. [Google Scholar] [CrossRef]
- Odetola, L.; Sills, S.; Morrison, S. A pilot study on the feasibility of testing residential tap water in North Carolina: Implications for environmental justice and health. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 972–978. [Google Scholar] [CrossRef]
- Claus Henn, B.; Ogneva-Himmelberger, Y.; Denehy, A.; Randall, M.; Cordon, N.; Basu, B.; Caccavale, B.; Covino, S.; Hanumantha, R.; Longo, K.; et al. Integrated Assessment of Shallow-Aquifer Vulnerability to Multiple Contaminants and Drinking-Water Exposure Pathways in Holliston, Massachusetts. Water 2018, 10, 23. [Google Scholar] [CrossRef]
- Harada, M. Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Crit. Rev. Toxicol. 1995, 25, 1–24. [Google Scholar] [CrossRef]
- Basu, N.; Abass, K.; Dietz, R.; Krümmel, E.; Rautio, A.; Weihe, P. The impact of mercury contamination on human health in the Arctic: A state of the science review. Sci. Total Environ. 2022, 831, 154793. [Google Scholar] [CrossRef]
- Wu, Y.-S.; Osman, A.I.; Hosny, M.; Elgarahy, A.M.; Eltaweil, A.S.; Rooney, D.W.; Chen, Z.; Rahim, N.S.; Sekar, M.; Gopinath, S.C.B.; et al. The Toxicity of Mercury and Its Chemical Compounds: Molecular Mechanisms and Environmental and Human Health Implications: A Comprehensive Review. ACS Omega 2024, 9, 5100–5126. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Toluene; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2017. [Google Scholar]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Xylene; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2007. [Google Scholar]
- Rosato, I.; Bonato, T.; Fletcher, T.; Batzella, E.; Canova, C. Estimation of per- and polyfluoroalkyl substances (PFAS) half-lives in human studies: A systematic review and meta-analysis. Environ. Res. 2024, 242, 117743. [Google Scholar] [CrossRef]
- Domingo, J.L.; Nadal, M. Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: A review of the recent scientific literature. Environ. Res. 2019, 177, 108648. [Google Scholar] [CrossRef]
- Lu, Y.; Guan, R.; Zhu, N.; Hao, J.; Peng, H.; He, A.; Zhao, C.; Wang, Y.; Jiang, G. A critical review on the bioaccumulation, transportation, and elimination of per- and polyfluoroalkyl substances in human beings. Crit. Rev. Environ. Sci. Technol. 2024, 54, 95–116. [Google Scholar] [CrossRef]
- Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An overview of the uses of per-and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef]
- Xu, X.; Qian, Q.; Shi, Y.; Huang, W.; Yuan, C.; Ma, L.Q.; Harris, W.G.; Dai, J.; Hou, D.; Cao, X. Cola beverage reduces risk of lead poisoning from accidental ingestion of contaminated soil particles in rat and swine models. Nat. Commun. 2025, 16, 755. [Google Scholar] [CrossRef]
Pollutants | Unadjusted Creatinine | Adjusted Creatinine | |
---|---|---|---|
Metals in blood | |||
Lead | Not | / | |
Cadmium | - | / | |
Manganese | Not | / | |
Total mercury | + | / | |
Cobalt | Not | / | |
Methyl mercury | + | / | |
Per- and polyfluoroalkyl substances in serum | |||
Perfluorodecanoic acid | Not | / | |
Perfluorooctanoic acid | Not | / | |
Perfluorooctane sulfonic acid | Not | / | |
Perfluorohexane sulfonic acid | Not | / | |
Perfluorononanoic acid | Not | / | |
Linear-perfluorooctanoic acid | Not | / | |
Linear-perfluorooctane sulfonic acid | Not | / | |
Perfluoromethylheptane sulfonic acid isomers | Not | / | |
Volatileorganiccompounds in blood | |||
M-/p-Xylene | - | / | |
Toluene | - | / | |
Metals in urine | |||
Total arsenic | Not | + | |
Dimethylarsinic acid | - | + | |
Inorganic mercury | - | + | |
Barium | - | Not | |
Cadmium | - | Not | |
Cobalt | - | Not | |
Cesium | - | + | |
Molybdenum | - | + | |
Lead | - | Not | |
Antimony | - | Not | |
Strontium | - | Not | |
Thallium | - | + | |
Tin | - | Not | |
Tungsten | - | Not | |
Uranium | - | + | |
Nickel | - | Not | |
Polycyclic aromatic hydrocarbon metabolites in urine | |||
1-Hydroxynaphthalene | - | - | |
2-Hydroxynaphthalene | - | - | |
3-Hydroxyfluorene | - | - | |
2-Hydroxyfluorene | - | - | |
3-Hydroxyphenanthrene | - | Not | |
1-Hydroxyphenanthrene | - | Not | |
2-Hydroxyphenanthrene | - | Not | |
1-Hydroxypyrene | - | - | |
9-Hydroxyfluorene | - | Not | |
4-Hydroxyphenanthrene | - | Not | |
Phthalates and plasticizer metabolites in urine | |||
Mono(carboxynonyl) phthalate | - | Not | |
Mono(carboxyoctyl) phthalate | - | Not | |
Mono-2-ethyl-5-carboxypentyl phthalate | - | Not | |
Mono-n-butyl phthalate | - | Not | |
Mono-(3-carboxypropyl) phthalate | - | Not | |
Mono-ethyl phthalate | Not | + | |
Mono-(2-ethyl-5-hydroxyhexyl) phthalate | - | Not | |
Mono-(2-ethyl-5-oxohexyl) phthalate | - | Not | |
Mono-benzyl phthalate | - | - | |
Mono-isobutyl phthalate | - | Not | |
Mono-2-hydroxy-iso-butyl phthalate | - | Not | |
Mono-3-hydroxy-n-butyl phthalate | - | Not | |
Mono-2-ethyl-5-carboxypentylterephthalate | Not | Not | |
Mono-2-ethyl-5-hydroxyhexylterephthalate | Not | Not | |
Mono-oxoisononyl phthalate | Not | Not | |
Personal care and consumer product chemicals and metabolites in urine | |||
Benzophenone-3 | + | + | |
Bisphenol A | - | - | |
Triclosan | Not | Not | |
Methyl paraben | Not | Not | |
Propyl paraben | Not | Not | |
2,5-dichlorophenol | - | - | |
2,4-dichlorophenol | - | Not | |
Bisphenol S | - | Not | |
Pesticide and metabolites inurine | |||
DEET and metabolites inurine | |||
3-(Ethlycarbamoyl) benzoic acid | Not | Not | |
Glyphosate in urine | |||
Glyphosate | - | Not | |
Organophosphateinsecticides anddialkylphosphatemetabolites in urine | |||
Dimethylphosphate | Not | Not | |
Diethylphosphate | - | Not | |
Dimethylthiophosphate | Not | + | |
Pyrethroids,herbicides, andorganophosphorusmetabolites in urine | |||
2,4-dicholorphenoxyacetic acid | Not | + | |
3-phenoxybenzoic acid | - | Not | |
Para-Nitrophenol | - | Not | |
3,5,6-trichloropyridinol | - | + | |
Perchlorate,nitrate, andthiocyanate in urine | |||
Perchlorate | - | + | |
Nitrate | - | + | |
Thiocyanate | - | - | |
Volatileorganiccompoundmetabolites in urine | |||
2-Methylhippuric acid | - | - | |
3-Methylhippuric acid and 4-Methylhippuric acid | - | - | |
N-Acetyl-S-(2-carbamoylethyl)-L-cysteine | - | - | |
N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine | - | - | |
2-Aminothiazoline-4-carboxylic acid | - | Not | |
N-Acetyl-S-(benzyl)-L-cysteine | - | Not | |
N-Acetyl-S-(n-propyl)-L-cysteine | Not | + | |
N-Acetyl-S-(2-carboxyethyl)-L-cysteine | - | - | |
N-Acetyl-S-(2-cyanoethyl)-L-cysteine | - | - | |
N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine | - | - | |
N-Acetyl-S-(2-hydroxypropyl)-L-cysteine | - | Not | |
N-Acetyl-S-(3-hydroxypropyl)-L-cysteine | - | - | |
Mandelic acid | - | - | |
N-Acetyl-S-(4-hydroxy-2-butenyl)-L-cysteine | - | - | |
Phenylglyoxylic acid | - | - | |
N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine | - | - | |
N-Acetyl-S-(2-hydroxy-3-methyl-3-buten-1-yl)-L-cysteine and N-Acetyl-S-(2-hydroxy-2-methyl-3-buten-1-yl)-L-cysteine | - | - | |
N-Acetyl-S-(4-hydroxy-2-methyl-2-buten-1-yl)-L-cysteine | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, C.; Qian, Z.; Yang, L.; Chen, S.; Hu, H.; Huo, X. The Influence of Drinking Water Intake on Pollutant Levels in the Human Body: Evidence from NHANES Data. Life 2025, 15, 956. https://doi.org/10.3390/life15060956
Dai C, Qian Z, Yang L, Chen S, Hu H, Huo X. The Influence of Drinking Water Intake on Pollutant Levels in the Human Body: Evidence from NHANES Data. Life. 2025; 15(6):956. https://doi.org/10.3390/life15060956
Chicago/Turabian StyleDai, Chenxu, Ziyi Qian, Linjie Yang, Siyan Chen, Hongfei Hu, and Xia Huo. 2025. "The Influence of Drinking Water Intake on Pollutant Levels in the Human Body: Evidence from NHANES Data" Life 15, no. 6: 956. https://doi.org/10.3390/life15060956
APA StyleDai, C., Qian, Z., Yang, L., Chen, S., Hu, H., & Huo, X. (2025). The Influence of Drinking Water Intake on Pollutant Levels in the Human Body: Evidence from NHANES Data. Life, 15(6), 956. https://doi.org/10.3390/life15060956