Ipsilateral Repeated Bout Effect Across Heterologous Muscle Groups: Eccentric Knee Extensor Conditioning Enhances Elbow Flexor Recovery in Young Women
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Experimental Procedures
2.4. Familiarization
2.5. Maximal Eccentric Exercise
2.6. Outcome Measures
2.6.1. Strength Measurements
Maximal Voluntary Isometric Contraction
Maximal Isokinetic Concentric Strength
2.6.2. Joint and Muscle Morphology Assessments
Range of Motion
Limb Circumference
Muscle Stiffness
2.6.3. Neuromuscular Control
Joint Release Angle
2.7. Data Availability
2.8. Statistical Analysis
3. Results
3.1. Recovery of Strength Outcomes
3.2. Changes in Joint and Muscle Morphology
3.3. Changes in Neuromuscular Control
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheung, K.; Hume, P.; Maxwell, L. Delayed onset muscle soreness: Treatment strategies and performance factors. Sports Med. 2003, 33, 145–164. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, P.M.; Nosaka, K.; Braun, B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med. Sci. Sports Exerc. 1992, 24, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.C.; Nosaka, K.; Sacco, P. Intensity of eccentric exercise, shift of optimum angle, and the magnitude of repeated-bout effect. J. Appl. Physiol. 2007, 102, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Paschalis, V.; Nikolaidis, M.G.; Theodorou, A.A.; Giakas, G.; Jamurtas, A.Z.; Koutedakis, Y. Eccentric exercise affects the upper limbs more than the lower limbs in position sense and reaction angle. J. Sports Sci. 2010, 28, 33–43. [Google Scholar] [CrossRef]
- Chen, T.C.; Lin, K.Y.; Chen, H.L.; Lin, M.J.; Nosaka, K. Comparison in eccentric exercise-induced muscle damage among four limb muscles. Eur. J. Appl. Physiol. 2011, 111, 211–223. [Google Scholar] [CrossRef]
- Hyldahl, R.D.; Chen, T.C.; Nosaka, K. Mechanisms and Mediators of the Skeletal Muscle Repeated Bout Effect. Exerc. Sport Sci. Rev. 2017, 45, 24–33. [Google Scholar] [CrossRef]
- Chen, H.L.; Nosaka, K.; Chen, T.C. Muscle damage protection by low-intensity eccentric contractions remains for 2 weeks but not 3 weeks. Eur. J. Appl. Physiol. 2012, 112, 555–565. [Google Scholar] [CrossRef]
- Chen, T.C.; Chen, H.L.; Lin, M.J.; Yu, H.I.; Nosaka, K. Contralateral Repeated Bout Effect of Eccentric Exercise of the Elbow Flexors. Med. Sci. Sports Exerc. 2016, 48, 2030–2039. [Google Scholar] [CrossRef]
- Ye, X.; Miller, W.M.; Jeon, S.; Song, J.S.; West, T.J. Effect of Arm Eccentric Exercise on Muscle Damage of the Knee Flexors After High-Intensity Eccentric Exercise. Front. Physiol. 2021, 12, 661618. [Google Scholar] [CrossRef]
- Howatson, G.; van Someren, K.A. Evidence of a contralateral repeated bout effect after maximal eccentric contractions. Eur. J. Appl. Physiol. 2007, 101, 207–214. [Google Scholar] [CrossRef]
- Kamandulis, S.; Skurvydas, A.; Brazaitis, M.; Skikas, L.; Duchateau, J. The repeated bout effect of eccentric exercise is not associated with changes in voluntary activation. Eur. J. Appl. Physiol. 2010, 108, 1065–1074. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.; Denadai, B. The repeated bout effect: A comparison between upper and lower limbs. Mot. Rev. Física 2011, 17, 738–747. [Google Scholar] [CrossRef]
- Minahan, C.; Joyce, S.; Bulmer, A.C.; Cronin, N.; Sabapathy, S. The influence of estradiol on muscle damage and leg strength after intense eccentric exercise. Eur. J. Appl. Physiol. 2015, 115, 1493–1500. [Google Scholar] [CrossRef] [PubMed]
- Sung, E.; Han, A.; Hinrichs, T.; Vorgerd, M.; Manchado, C.; Platen, P. Effects of follicular versus luteal phase-based strength training in young women. SpringerPlus 2014, 3, 668. [Google Scholar] [CrossRef] [PubMed]
- McHugh, M.P. Recent advances in the understanding of the repeated bout effect: The protective effect against muscle damage from a single bout of eccentric exercise. Scand. J. Med. Sci. Sports 2003, 13, 88–97. [Google Scholar] [CrossRef]
- Tseng, W.C.; Nosaka, K.; Tseng, K.W.; Chou, T.Y.; Chen, T.C. Contralateral Effects by Unilateral Eccentric versus Concentric Resistance Training. Med. Sci. Sports Exerc. 2020, 52, 474–483. [Google Scholar] [CrossRef]
- Green, L.A.; Gabriel, D.A. The cross education of strength and skill following unilateral strength training in the upper and lower limbs. J. Neurophysiol. 2018, 120, 468–479. [Google Scholar] [CrossRef]
- Muthalib, M.; Lee, H.; Millet, G.Y.; Ferrari, M.; Nosaka, K. The repeated-bout effect: Influence on biceps brachii oxygenation and myoelectrical activity. J. Appl. Physiol. 2011, 110, 1390–1399. [Google Scholar] [CrossRef]
- Maeo, S.; Shan, X.; Otsuka, S.; Kanehisa, H.; Kawakami, Y. Neuromuscular Adaptations to Work-matched Maximal Eccentric versus Concentric Training. Med. Sci. Sports Exerc. 2018, 50, 1629–1640. [Google Scholar] [CrossRef]
- Farthing, J.; Zehr, E. Restoring Symmetry. Exerc. Sport Sci. Rev. 2014, 42, 70–75. [Google Scholar] [CrossRef]
- Chen, T.C.; Chen, H.L.; Tseng, W.-C.; Chou, T.Y.; Parcell, A.; Nosaka, K. Contralateral versus ipsilateral protective effect against muscle damage of the elbow flexors and knee extensors induced by maximal eccentric exercise. Scand. J. Med. Sci. Sports 2023, 33, 2548–2560. [Google Scholar] [CrossRef] [PubMed]
- Proske, U.; Gandevia, S.C. The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 2012, 92, 1651–1697. [Google Scholar] [CrossRef]
- Arockiaraj, J.; Korula, R.J.; Oommen, A.T.; Devasahayam, S.; Wankhar, S.; Velkumar, S.; Poonnoose, P.M. Proprioceptive changes in the contralateral knee joint following anterior cruciate injury. Bone Joint J. 2013, 95-b, 188–191. [Google Scholar] [CrossRef]
- Lee, M.; Gandevia, S.C.; Carroll, T.J. Unilateral strength training increases voluntary activation of the opposite untrained limb. Clin. Neurophysiol. 2009, 120, 802–808. [Google Scholar] [CrossRef]
- Hadjisavvas, S.; Efstathiou, M.; Themistocleous, I.-C.; Daskalaki, K.; Papamichael, E.; Michailidou, C.; Rentzias, P.; Pavlou, K.; Savva, C.; Stefanakis, M. Effect of eccentric exercise-induced fatigue on proprioception, motor control and performance of the upper limb in handball players. Sport Sci. Health 2025, 1–15. [Google Scholar] [CrossRef]
- Manca, A.; Dragone, D.; Dvir, Z.; Deriu, F. Cross-education of muscular strength following unilateral resistance training: A meta-analysis. Eur. J. Appl. Physiol. 2017, 117, 2335–2354. [Google Scholar] [CrossRef]
- Andrushko, J.W.; Lanovaz, J.L.; Björkman, K.M.; Kontulainen, S.A.; Farthing, J.P. Unilateral strength training leads to muscle-specific sparing effects during opposite homologous limb immobilization. J. Appl. Physiol. 2018, 124, 866–876. [Google Scholar] [CrossRef]
- Bell, D.R.; Blackburn, J.T.; Norcross, M.F.; Ondrak, K.S.; Hudson, J.D.; Hackney, A.C.; Padua, D.A. Estrogen and muscle stiffness have a negative relationship in females. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Neubauer, O.; Della Gatta, P.A.; Nosaka, K. Muscle damage and inflammation during recovery from exercise. J Appl. Physiol. 2017, 122, 559–570. [Google Scholar] [CrossRef]
- Gavin, J.P.; Myers, S.D.; Willems, M.E. Effect of eccentric exercise with reduced muscle glycogen on plasma interleukin-6 and neuromuscular responses of musculus quadriceps femoris. J. Appl. Physiol. 2016, 121, 173–184. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Chronic Adaptations to Eccentric Training: A Systematic Review. Sports Med. 2017, 47, 917–941. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, J.I.; Narici, M.V.; Reeves, N.D.; Franchi, M.V. Tendon Adaptations to Eccentric Exercise and the Implications for Older Adults. J. Funct. Morphol. Kinesiol. 2019, 4, 60. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Ye, X.; Miller, W.M.; Song, J.S. Effect of repeated eccentric exercise on muscle damage markers and motor unit control strategies in arm and hand muscle. Sports Med. Health Sci. 2022, 4, 44–53. [Google Scholar] [CrossRef] [PubMed]
Independence Variable | Group | Pre | D0 | D1 | D2 | D3 | D4 | D5 |
---|---|---|---|---|---|---|---|---|
Strength Measurement | ||||||||
MVIC Peak torque (Nm/kg) | C/NU | 31.73 ± 5.08 | 17.09 ± 5.84 † | 17.13 ± 3.43 † | 19.95 ± 4.81 † | 22.9 ± 3.67 † | 24.49 ± 5.02 † | 27.57 ± 3.46 |
NL/NU | 31.54 ± 7.04 | 16.26 ± 4.11 # | 16.75 ± 5.11 # | 19.57 ± 4.41 # | 21.42 ± 4.47 # | 25.30 ± 5.47 # | 27.22 ± 5.53 | |
ISOK Peak torque at 60°/s (Nm/kg) | C/NU | 19.87 ± 3.85 | 11.12 ± 1.46 † | 10.49 ± 2.01 † | 12.85 ± 2.48 † | 14.74 ± 3.15 † | 16.14 ± 3.14 † | 16.74 ± 3.15 † |
NL/NU | 18.29 ± 4.88 | 11.05 ± 4.45 # | 11.51 ± 4.62 # | 12.55 ± 3.85 # | 13.26 ± 4.82 # | 15.38 ± 5.51 # | 16.07 ± 6.46 # | |
ISOK Peak torque at 180°/s (Nm/kg) | C/NU | 14.82 ± 1.39 | 10.24 ± 1.38 † | 10.73 ± 1.45 † | 11.03 ± 1.4 † | 12.45 ± 2.19 † | 13.97 ± 1.16 | 14.68 ± 1.49 |
NL/NU | 12.77 ± 2.13 | 10.09 ± 2.49 # | 9.98 ± 2.25 # | 10.42 ± 2.12 # | 11.34 ± 2.62 # | 12.18 ± 3.01 | 12.24 ± 2.83 | |
Joint and Muscle Morphology Assessments | ||||||||
Range of Motion (°) | C/NU | 133.63 ± 8.23 | 122.63 ± 10.32 † | 124.13 ± 11.73 † | 122.63 ± 11.92 † | 125.88 ± 9.96 † | 128.50 ± 9.52 † | 133.13 ± 8.69 |
NL/NU | 130.13 ± 5.33 | 115.25 ± 9.29 # | 117.50 ± 8.60 # | 120.00 ± 8.04 # | 121.88 ± 7.90 # | 125.00 ± 6.93 # | 129.13 ± 5.38 | |
Circumference (cm) | C/NU | 25.11 ± 2.33 | 25.31 ± 2.28 † | 25.36 ± 2.29 † | 25.36 ± 2.32 † | 25.31 ± 2.34 † | 25.19 ± 2.28 † | 25.15 ± 2.33 |
NL/NU | 26.19 ± 3.06 | 26.41 ± 3.03 # | 26.46 ± 3.00 # | 26.39 ± 2.98 # | 26.29 ± 2.96 # | 26.23 ± 3.01 # | 26.18 ± 3.07 | |
Muscle Stiffness (ARFI, m/s) | C/NU | 0.95 ± 0.03 | 1.01 ± 0.05 † | 1.06 ± 0.07 † | 1.13 ± 0.10 † | 1.15 ± 0.10 † | 1.07 ± 0.06 | 0.96 ± 0.06 |
NL/NU | 0.96 ± 0.03 | 1.05 ± 0.06 # | 1.13 ± 0.05 # | 1.21 ± 0.05 # | 1.14 ± 0.05 | 1.05 ± 0.06 | 1.02 ± 0.13 | |
Neuromuscular Control | ||||||||
JRA at 30° (°) | C/NU | 24.88 ± 1.47 | 20.54 ± 1.83 † | 22.5 ± 1.02 † | 22.46 ± 1.42 † | 23.13 ± 1.67 † | 24.54 ± 1.38 | 24.71 ± 1.50 |
NL/NU | 24.46 ± 0.87 | 21.13 ± 2.43 # | 21.88 ± 1.36 # | 22.00 ± 1.10 # | 22.79 ± 1.02 | 22.92 ± 1.31 | 24.04 ± 1.10 | |
JRA at 45° (°) | C/NU | 39.92 ± 0.97 | 35.92 ± 2.22 † | 37.33 ± 0.87 † | 37.08 ± 1.57 † | 38.29 ± 1.08 | 38.21 ± 0.97 | 38.96 ± 2.34 |
NL/NU | 38.83 ± 0.87 | 35.88 ± 1.80 # | 36.79 ± 1.97 # | 37.75 ± 1.38 | 38.33 ± 2.05 | 38.17 ± 0.56 | 38.88 ± 0.87 | |
JRA at 60° (°) | C/NU | 54.75 ± 0.81 | 51.79 ± 1.28 † | 51.92 ± 1.99 † | 52.54 ± 1.79 † | 53.46 ± 1.13 | 53.75 ± 0.90 | 53.71 ± 2.63 |
NL/NU | 54.04 ± 0.88 | 51.17 ± 1.69 # | 51.83 ± 1.22 # | 52.63 ± 1.06 # | 52.75 ± 1.28 | 53.25 ± 0.56 | 53.79 ± 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, F.-S.; Hsieh, C.-C.; Tang, C.-Y.; Lai, C.-C.; Li, Y.-J.; Tseng, Y.-C.; Fu, S.-K. Ipsilateral Repeated Bout Effect Across Heterologous Muscle Groups: Eccentric Knee Extensor Conditioning Enhances Elbow Flexor Recovery in Young Women. Life 2025, 15, 919. https://doi.org/10.3390/life15060919
Hsu F-S, Hsieh C-C, Tang C-Y, Lai C-C, Li Y-J, Tseng Y-C, Fu S-K. Ipsilateral Repeated Bout Effect Across Heterologous Muscle Groups: Eccentric Knee Extensor Conditioning Enhances Elbow Flexor Recovery in Young Women. Life. 2025; 15(6):919. https://doi.org/10.3390/life15060919
Chicago/Turabian StyleHsu, Fu-Shun, Chung-Chan Hsieh, Chia-Yu Tang, Chang-Chi Lai, Yu-Jui Li, Yun-Chung Tseng, and Szu-Kai Fu. 2025. "Ipsilateral Repeated Bout Effect Across Heterologous Muscle Groups: Eccentric Knee Extensor Conditioning Enhances Elbow Flexor Recovery in Young Women" Life 15, no. 6: 919. https://doi.org/10.3390/life15060919
APA StyleHsu, F.-S., Hsieh, C.-C., Tang, C.-Y., Lai, C.-C., Li, Y.-J., Tseng, Y.-C., & Fu, S.-K. (2025). Ipsilateral Repeated Bout Effect Across Heterologous Muscle Groups: Eccentric Knee Extensor Conditioning Enhances Elbow Flexor Recovery in Young Women. Life, 15(6), 919. https://doi.org/10.3390/life15060919