Cytokine Gene Expression and Treatment Impact on MRI Outcomes in Jordanian Patients with Multiple Sclerosis
Abstract
:1. Introduction
2. Methods
2.1. Sample Collection
2.2. Sample Size Calculation
2.3. Extraction of RNA and Synthesis of Complementary DNA
2.4. Real-Time, Quantitative Polymerase Chain Reaction Procedure (q-PCR)
2.5. Magnetic Resonance Imaging
2.6. Statistical Analysis
3. Results
3.1. mRNA Relative Expression of IL-1β, TNF-α, IL-6, and INF-γ in Control, MSW, and MSO Groups
3.2. Magnetic Resonance Imaging Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palle, P.; Monaghan, K.L.; Milne, S.M.; Wan, E.C. Cytokine signaling in multiple sclerosis and its therapeutic applications. Med. Sci. 2017, 5, 23. [Google Scholar] [CrossRef] [PubMed]
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van Der Mei, I. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS. Mult. Scler. J. 2020, 26, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, T.; Thompson, A.J. Thompson, Atlas of MS 2020: Informing Global Policy Change; SAGE Publications Sage UK: London, UK, 2020; pp. 1807–1808. [Google Scholar]
- Dobson, R.; Giovannoni, G. Multiple sclerosis—A review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef] [PubMed]
- De Silvestri, A.; Capittini, C.; Mallucci, G.; Bergamaschi, R.; Rebuffi, C.; Pasi, A.; Martinetti, M.; Tinelli, C. The involvement of HLA class II alleles in multiple sclerosis: A systematic review with meta-analysis. Dis. Markers 2019, 2019, 1409069. [Google Scholar] [CrossRef]
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef]
- Khdair, S.I.; Al-Khareisha, L.; Abusara, O.H.; Hammad, A.M.; Khudair, A. HLA-class II genes association with multiple sclerosis: An immunogenetic prediction among multiple sclerosis Jordanian patients. PLoS ONE 2025, 20, e0318824. [Google Scholar] [CrossRef]
- Göbel, K.; Ruck, T.; Meuth, S.G. Cytokine signaling in multiple sclerosis: Lost in translation. Mult. Scler. J. 2018, 24, 432–439. [Google Scholar] [CrossRef]
- Li, S.; Wang, B.; Tang, Q.; Liu, J.; Yang, X. Bisphenol A triggers proliferation and migration of laryngeal squamous cell carcinoma via GPER mediated upregulation of IL-6. Cell. Biochem. Funct. 2017, 35, 209–216. [Google Scholar] [CrossRef]
- Alwahsh, M.; Nimer, R.M.; Dahabiyeh, L.A.; Hamadneh, L.; Hasan, A.; Alejel, R.; Hergenröder, R. NMR-based metabolomics identification of potential serum biomarkers of disease progression in patients with multiple sclerosis. Sci. Rep. 2024, 14, 14806. [Google Scholar] [CrossRef]
- Bakshi, R.; Thompson, A.J.; Rocca, M.A.; Pelletier, D.; Dousset, V.; Barkhof, F.; Inglese, M.; Guttmann, C.R.; Horsfield, M.A.; Filippi, M. MRI in multiple sclerosis: Current status and future prospects. Lancet Neurol. 2008, 7, 615–625. [Google Scholar] [CrossRef]
- Nasl-khameneh, A.M.; Mirshafiey, A.; Moghadasi, A.N.; Shiri-Shahsavar, M.R.; Eshraghian, M.R.; Shadanian, M.; Abdolahi, M.; Saboor-Yaraghi, A.A. Comparison of cytokine expression in multiple sclerosis patients and healthy volunteers. Acta Medica Iran 2018, 56, 77–83. [Google Scholar]
- Hasheminia, S.J.; Tolouei, S.; Zarkesh, E.S.H.; Shaygannejad, V.; Shirzad, H.; Torabi, R.; Hashem, Z.C.M. Cytokine gene expression in newly diagnosed multiple sclerosis patients. Iran J. Allergy Asthma Immunol. 2015, 14, 208–216. [Google Scholar] [PubMed]
- Achiron, A.; Gurevich, M.; Magalashvili, D.; Kishner, I.; Dolev, M.; Mandel, M. Understanding Autoimmune Mechanisms in Multiple Sclerosis Using Gene Expression Microarrays: Treatment Effect and Cytokine-related Pathways J. Immunol. Res. 2004, 11, 299–305. [Google Scholar] [CrossRef]
- Hauser, S.L. Multiple Sclerosis: From Bench to Bedside and Back Again; Short course; Weill Institute for Neurosciences University of California: San Francisco, CA, USA, 2017; p. 6. [Google Scholar]
- Imitola, J.; Chitnis, T.; Khoury, S.J. Insights into the molecular pathogenesis of progression in multiple sclerosis: Potential implications for future therapies. Arch. Neurol. 2006, 63, 25–33. [Google Scholar] [CrossRef]
- Tintore, M.; Vidal-Jordana, A.; Sastre-Garriga, J. Treatment of multiple sclerosis—Success from bench to bedside. Nat. Rev. Neurol. 2019, 15, 53–58. [Google Scholar] [CrossRef]
- Chun, J.; Kihara, Y.; Jonnalagadda, D.; Blaho, V.A. Fingolimod: Lessons Learned and New Opportunities for Treating Multiple Sclerosis and Other Disorders. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 149–170. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- El-Salem, K.; Al-Shimmery, E.; Horany, K.; Al-Refai, A.; Al-Hayk, K.; Khader, Y. Multiple sclerosis in Jordan: A clinical and epidemiological study. J. Neurol. 2006, 253, 1210–1216. [Google Scholar] [CrossRef]
- Pourhoseingholi, M.A.; Vahedi, M.; Rahimzadeh, M. Sample size calculation in medical studies. Gastroenterol. Hepatol. Bed Bench 2013, 6, 14. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Kanegae, M.P.; Condino-Neto, A.; Pedroza, L.A.; de Almeida, A.C.; Rehder, J.; da Fonseca, L.M.; Ximenes, V.F. Diapocynin versus apocynin as pretranscriptional inhibitors of NADPH oxidase and cytokine production by peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun. 2010, 393, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Maghzi, A.H.; Minagar, A. IL1-β expression in multiple sclerosis. J. Neurol. Sci. 2014, 343, 1. [Google Scholar] [CrossRef] [PubMed]
- Heidary, M.; Rakhshi, N.; Kakhki, M.P.; Behmanesh, M.; Sanati, M.H.; Sanadgol, N.; Kamaladini, H.; Nikravesh, A. The analysis of correlation between IL-1B gene expression and genotyping in multiple sclerosis patients. J. Neurol. Sci. 2014, 343, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Bassi, M.S.; Iezzi, E.; Drulovic, J.; Pekmezovic, T.; Gilio, L.; Furlan, R.; Finardi, A.; Marfia, G.A.; Sica, F.; Centonze, D.; et al. IL-6 in the cerebrospinal fluid signals disease activity in multiple sclerosis. Front. Cell. Neurosci. 2020, 14, 120. [Google Scholar]
- Stampanoni Bassi, M.; Iezzi, E.; Drulovic, J.; Pekmezovic, T.; Gilio, L.; Furlan, R.; Finardi, A.; Marfia, G.A.; Sica, F.; Centonze, D. Interleukin-6 disrupts synaptic plasticity and impairs tissue damage compensation in multiple sclerosis. Neurorehabilit. Neural Repair 2019, 33, 825–835. [Google Scholar] [CrossRef]
- Bai, Z.; Chen, D.; Wang, L.; Zhao, Y.; Liu, T.; Yu, Y.; Yan, T.; Cheng, Y. Cerebrospinal fluid and blood cytokines as biomarkers for multiple sclerosis: A systematic review and meta-analysis of 226 studies with 13,526 multiple sclerosis patients. Front. Neurosci. 2019, 13, 1026. [Google Scholar] [CrossRef]
- Lees, J.R.; Cross, A.H. Cross, A little stress is good: IFN-γ, demyelination, and multiple sclerosis. J. Clin. Investig. 2007, 117, 297–299. [Google Scholar] [CrossRef]
- Ding, X.; Yan, Y.; Li, X.; Li, K.; Ciric, B.; Yang, J.; Zhang, Y.; Wu, S.; Xu, H.; Chen, W. Silencing IFN-γ binding/signaling in astrocytes versus microglia leads to opposite effects on central nervous system autoimmunity. J. Immunol. 2015, 194, 4251–4264. [Google Scholar] [CrossRef]
- Luessi, F.; Kraus, S.; Trinschek, B.; Lerch, S.; Ploen, R.; Paterka, M.; Roberg, T.; Poisa-Beiro, L.; Klotz, L.; Wiendl, H. FTY720 (fingolimod) treatment tips the balance towards less immunogenic antigen-presenting cells in patients with multiple sclerosis. Mult. Scler. J. 2015, 21, 1811–1822. [Google Scholar] [CrossRef]
- Noack, M.; Miossec, P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun. Rev. 2014, 13, 668–677. [Google Scholar] [CrossRef]
- Thomas, K.; Sehr, T.; Proschmann, U.; Rodriguez-Leal, F.A.; Haase, R.; Ziemssen, T. Fingolimod additionally acts as immunomodulator focused on the innate immune system beyond its prominent effects on lymphocyte recirculation. J. Neuroinflamm. 2017, 14, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Radue, E.-W.; O’connor, P.; Polman, C.H.; Hohlfeld, R.; Calabresi, P.; Selmaj, K.; Mueller-Lenke, N.; Agoropoulou, C. Impact of fingolimod therapy on magnetic resonance imaging outcomes in patients with multiple sclerosis. Arch. Neurol. 2012, 69, 1259–1269. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.A.; Barkhof, F.; Comi, G.; Hartung, H.-P.; Khatri, B.O.; Montalban, X.; Pelletier, J.; Capra, R.; Gallo, P.; Izquierdo, G. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 2010, 362, 402–415. [Google Scholar] [CrossRef] [PubMed]
- Kappos, L.; Antel, J.; Comi, G.; Montalban, X.; O’Connor, P.; Polman, C.H.; Haas, T.; Korn, A.A.; Karlsson, G.; Radue, E.W. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N. Engl. J. Med. 2006, 355, 1124–1140. [Google Scholar] [CrossRef]
- Arnold, D.L.; Banwell, B.; Bar-Or, A.; Ghezzi, A.; Greenberg, B.M.; Waubant, E.; Giovannoni, G.; Wolinsky, J.S.; Gärtner, J.; Rostásy, K. Effect of fingolimod on MRI outcomes in patients with paediatric-onset multiple sclerosis: Results from the phase 3 PARADIGMS study. J. Neurol. Neurosurg. Psychiatry 2020, 91, 483–492. [Google Scholar] [CrossRef]
- Skerjanec, A.; Tedesco, H.; Neumayer, H.H.; Cole, E.; Budde, K.; Hsu, C.H.; Schmouder, R. FTY720, a novel immunomodulator in de novo kidney transplant patients: Pharmacokinetics and exposure-response relationship. J. Clin. Pharmacol. 2005, 45, 1268–1278. [Google Scholar] [CrossRef]
- Kahan, B.D.; Karlix, J.L.; Ferguson, R.M.; Leichtman, A.B.; Mulgaonkar, S.; Gonwa, T.A.; Skerjanec, A.; Schmouder, R.L. Pharmacodynamics, pharmacokinetics, and safety of multiple doses of FTY720 in stable renal transplant patients: A multicenter, randomized, placebo-controlled, phase I study. Transplantation 2003, 76, 1079–1084. [Google Scholar] [CrossRef]
- Mullershausen, F.; Craveiro, L.M.; Shin, Y.; Cortes-Cros, M.; Bassilana, F.; Osinde, M.; Wishart, W.L.; Guerini, D.; Thallmair, M.; Schwab, M.E. Phosphorylated FTY720 promotes astrocyte migration through sphingosine-1-phosphate receptors. J. Neurochem. 2007, 102, 1151–1161. [Google Scholar] [CrossRef]
- Jung, C.-G.; Kim, H.; Miron, V.; Cook, S.; Kennedy, T.; Foster, C.; Antel, J.; Soliven, B. Functional consequences of S1P receptor modulation in rat oligodendroglial lineage cells. Glia 2007, 55, 1656–1667. [Google Scholar] [CrossRef]
- Markowitz, C.E. Interferon-beta: Mechanism of action and dosing issues. Neurology 2007, 68, S8–S11. [Google Scholar] [CrossRef]
- Miller, D.H.; Khan, O.A.; Sheremata, W.A.; Blumhardt, L.D.; Rice, G.P.; Libonati, M.A.; Willmer-Hulme, A.J.; Dalton, C.M.; Miszkiel, K.A.; O’Connor, P.W. A controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 2003, 348, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Villar, L.M.; García-Sánchez, M.I.; Costa-Frossard, L.; Espino, M.; Roldán, E.; Páramo, D.; Lucas, M.; Izquierdo, G.; Alvarez-Cermeno, J.C. Immunological markers of optimal response to natalizumab in multiple sclerosis. Arch. Neurol. 2012, 69, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Mozo, M.I.; Pérez-Pérez, S.; Villar, L.M.; Oliver-Martos, B.; Villarrubia, N.; Matesanz, F.; Costa-Frossard, L.; Pinto-Medel, M.J.; García-Sánchez, M.I.; Ortega-Madueño, I.; et al. Predictive factors and early biomarkers of response in multiple sclerosis patients treated with natalizumab. Sci. Rep. 2020, 10, 14244. [Google Scholar] [CrossRef]
- Meyer-Arndt, L.; Kerkering, J.; Kuehl, T.; Gil Infante, A.; Paul, F.; Rosiewicz, K.S.; Siffrin, V.; Alisch, M. Inflammatory cytokines associated with multiple sclerosis directly induce alterations of neuronal cytoarchitecture in human neurons. J. Neuroimmune Pharmacol. 2023, 18, 145–159. [Google Scholar] [CrossRef]
Gene | Primer | Sequence |
---|---|---|
IL-1β | F | 5′-CCACAGACCTTCCAGGAGAATG-3′ |
R | 5′-GTGCAGTTCAGTGATCGTACAGG-3′ | |
TNF-α | F | 5′-CTC TTC TGC CTG CTG CAC TTT G-3′ |
R | 5′-ATG GGC TAC AGG CTT GTC ACT C-3′ | |
IL-6 | F | 5′-AGA CAG CCA CTC ACC TCT TCA G-3′ |
R | 5′-TTC TGC CAG TGC CTC TTT GCT G-3′ | |
INF-γ | F | 5′-TGT AGC GGA TAA TGG AAC TCT TTT-3′ |
R | 5′-AAT TTG GCT CTG CAT TAT T-3′ | |
β-actin | F | 5′-TAA TGT CAC GCA CGA TTT CCC-3′ |
R | 5′-TCA CCG AGC GCG GCT-3′ |
Parameters | Controls (N = 40) N (%) | MS Patients (N = 75) | Independent Mann–Whitney Test (p Value) | Dose | Duration (Years) | |
---|---|---|---|---|---|---|
Age (years) (mean ± SD) | 43.6 ± 13.58 | 37.77 ± 9.92 | p = 0.03 | |||
Gender | Male | 18 (45%) | 25 (35.6%) | ns | ||
Female | 22 (55%) | 50 (64.4%) | ns | |||
Age at disease onset (years) (mean ± SD) | ¯ | 33.78 ± 10.56 | ns | |||
Smoking Status | Smoker | 28 (70%) | 11 (14.7%) | p < 0.0001 | ||
Non-smoker | 12 (30%) | 64 (85.3%) | ns | |||
Medication | Fingolimod | ¯ | 30 (40%) | ns | 0.5 mg daily po | 4 ± 1 |
Natalizumab | ¯ | 10 (13.3%) | ns | 300 mg iv | 3 ± 2 | |
interferon beta-1 | ¯ | 19 (25.3%) | ns | 144 mcg 3 times a week | 4 ± 2 | |
Others (Ocrelizumab) | ¯ | 16 (21.4%) | ns | 600 mg iv | 5 ± 2 |
Parameters | MS Patients Taking Fingolimod (MSW) (N = 30)% | MS Patients Not Taking Fingolimod (MSO) (N = 45)% | Independent Mann–Whitney Test (p Value) | |
---|---|---|---|---|
Age (years) (mean ± SD) | 36.2 ± 9.53 | 38.82 ± 10.14 | ns | |
Gender | Male | 9 (30%) | 16 (35.6%) | ns |
Female | 21 (70%) | 29 (64.4%) | ns | |
Age of disease onset (years) (mean ± SE) | 31.16 ± 10.66 | 35.53 ± 10.25 | ns | |
Smoking Status | Smoker | 5 (16.7%) | 6 (13.3%) | ns |
Non-smoker | 25 (83.3%) | 39 (86.7%) | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khdair, S.I.; Waleed, M.; Hammad, A.M.; Al-Khareisha, L.; Jaber, T.; Ayash, M.; Hall, F.S. Cytokine Gene Expression and Treatment Impact on MRI Outcomes in Jordanian Patients with Multiple Sclerosis. Life 2025, 15, 859. https://doi.org/10.3390/life15060859
Khdair SI, Waleed M, Hammad AM, Al-Khareisha L, Jaber T, Ayash M, Hall FS. Cytokine Gene Expression and Treatment Impact on MRI Outcomes in Jordanian Patients with Multiple Sclerosis. Life. 2025; 15(6):859. https://doi.org/10.3390/life15060859
Chicago/Turabian StyleKhdair, Sawsan I., Mohammed Waleed, Alaa M. Hammad, Lubna Al-Khareisha, Tariq Jaber, Majd Ayash, and Frank Scott Hall. 2025. "Cytokine Gene Expression and Treatment Impact on MRI Outcomes in Jordanian Patients with Multiple Sclerosis" Life 15, no. 6: 859. https://doi.org/10.3390/life15060859
APA StyleKhdair, S. I., Waleed, M., Hammad, A. M., Al-Khareisha, L., Jaber, T., Ayash, M., & Hall, F. S. (2025). Cytokine Gene Expression and Treatment Impact on MRI Outcomes in Jordanian Patients with Multiple Sclerosis. Life, 15(6), 859. https://doi.org/10.3390/life15060859