Glycemic Control in Patients with Diabetes on Peritoneal Dialysis: From Glucose Sparing Approach to Glucose Monitoring
Abstract
1. Introduction
2. Literature Search Strategy
3. Survival of Diabetic Patients on PD
4. Metabolic Risk Factors in Patients with Diabetes on PD
4.1. PD Solutions Related Factors
4.2. Dyslipidemia in PD Patients
5. New-Onset DM (NODM) in PD Patients
6. Glucose-Sparing PD Regimens
6.1. Biocompatibility of PD Solutions
6.2. The Role of Icodextrin in PD Regimen in Patients with Diabetes
6.3. Amino Acid-Based Dialysis Solutions
6.4. The Clinical Perspective of Biocompatible PD Solutions
7. Glucose Monitoring in PD Patients with Diabetes
7.1. Long-Term Glycemic Indicators
7.2. The Role of Continuous Glucose Monitoring in Assessing Glycemic Variability
8. Treatment of Patients with Diabetes on PD
9. Future Directions and Limitations
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DM | Diabetes mellitus |
ESRD | End-stage renal disease |
PD | Peritoneal dialysis |
HbA1c | Hemoglobin A1c |
GDP | Glucose degradation products |
AGEs | Advanced glycation end products |
CGM | Continuous glucose monitoring |
T2D | Type 2 diabetes |
HD | Hemodialysis |
BMI | Body mass index |
RRF | Residual renal function |
NODM | New-onset diabetes mellitus |
MS | Metabolic syndrome |
IR | Insulin resistance |
Ty/G | Triglyceride/glucose index |
RAGE | Receptor for advanced glycation end products |
T1D | Type 1 diabetes |
CKD | Chronic kidney disease |
VLDL | Very-low-density lipoprotein |
HDL | High-density lipoprotein |
Apo | Apolipoprotein |
LDL | Low-density lipoprotein |
IGT | Impaired glucose tolerance |
IFG | Impaired fasting glucose |
OGTT | oral glucose tolerance test |
ADA | American Diabetes Association |
FG | Fasting glucose |
GA | Glycated albumin |
HOMA | Homeostasis model assessment |
CRP | C-reactive protein |
CAPD | Continuous ambulatory peritoneal dialysis |
PSTR | Peritoneal solute transfer rate |
KDIGO | Kidney-Disease Improving Global Outcomes |
ESAs | Erythropoiesis-stimulating agents |
ISPD | International Society for Peritoneal Dialysis |
GDH | Glucose dehydrogenase |
GDH-PQQ | Glucose dehydrogenase with pyrroloquinolinequinone |
GOx | Glucose-oxidase |
TIR | Target range |
TAR | Time above range |
TBR | Time below range |
GLP-1 RA | Glucagon-like peptide receptor agonists |
DPP-4 | Dipeptidyl peptidase-4 |
SGLT2i | Sodium-glucose Cotransporter-2 Inhibitors |
GLUT | Glucose transporter |
TGF | Transforming growth factor |
VEGF | Vascular endothelial growth factor |
CTGF | Connective tissue growth factor |
HIF | Hypoxia-inducible factor |
SMBG | Self-monitoring blood glucose |
References
- Koye, D.N.; Magliano, D.J.; Nelson, R.G.; Pavkov, M.E. The Global Epidemiology of Diabetes and Kidney Disease. Adv. Chronic Kidney Dis. 2018, 25, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lee, K.; Ni, Z.; He, J.C. Diabetic Kidney Disease: Challenges, Advances, and Opportunities. Kidney Dis. 2020, 6, 215–225. [Google Scholar] [CrossRef]
- Klinger, M.; Madziarska, K. Mortality predictor pattern in hemodialysis and peritoneal dialysis in diabetic patients. Adv. Clin. Exp. Med. 2019, 28, 133–135. [Google Scholar] [CrossRef]
- Pecoits-Filho, R.; Okpechi, I.G.; Donner, J.A.; Harris, D.C.H.; Aljubori, H.M.; Bello, A.K.; Bellorin-Font, E.; Caskey, F.J.; Collins, A.; Cueto-Manzano, A.M.; et al. Capturing and monitoring global differences in untreated and treated end-stage kidney disease, kidney replacement therapy modality, and outcomes. Kidney Int. Suppl. 2020, 10, 3–9. [Google Scholar] [CrossRef]
- Williams, M.E.; Lacson, E., Jr.; Wang, W.; Lazarus, J.M.; Hakim, R. Glycemic control and extended hemodialysis survival in patients with diabetes mellitus: Comparative results of traditional and time-dependent Cox model analyses. Clin. J. Am. Soc. Nephrol. 2010, 5, 1595–1601. [Google Scholar] [CrossRef]
- Gu, W.L.; Yi, C.; Yu, X.; Yang, X. Metabolic Syndrome and Mortality in Continuous Ambulatory Peritoneal Dialysis Patients: A 5-Year Prospective Cohort Study. Kidney Blood Press. Res. 2019, 44, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.L.; Cho, J.H.; Choi, J.Y.; Kim, C.D.; Park, S.H. Systemic and Local Impact of Glucose and Glucose Degradation Products in Peritoneal Dialysis Solution. J. Ren. Nutr. 2013, 23, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.M.; Leung, A.M.; Kovesdy, C.P.; Lynch, K.E.; Brent, G.A.; Kalantar-Zadeh, K. Updates on the management of diabetes in dialysis patients. Semin. Dial. 2014, 27, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Vonesh, E.F.; Snyder, J.J.; Foley, R.N.; Collins, A.J. Mortality studies comparing peritoneal dialysis and hemodialysis: What do they tell us? Kidney Int. Suppl. 2006, 103, 3–11. [Google Scholar] [CrossRef]
- Lukowsky, L.R.; Mehrotra, R.; Kheifets, L.; Arah, O.A.; Nissenson, A.R.; Kalantar-Zadeh, K. Comparing mortality of peritoneal and hemodialysis patients in the first 2 years of dialysis therapy: A marginal structural model analysis. Clin. J. Am. Soc. Nephrol. 2013, 8, 619–628. [Google Scholar] [CrossRef]
- Kuriyama, S. Peritoneal dialysis in patients with diabetes: Are the benefits greater than the disadvantages? Perit. Dial. Int. 2007, 27, 190–195. [Google Scholar] [CrossRef]
- Liem, Y.S.; Wong, J.B.; Hunink, M.G.; de Charro, F.T.; Winkelmayer, W.C. Comparison of hemodialysis and peritoneal dialysis survival in The Netherlands. Kidney Int. 2007, 71, 153–158. [Google Scholar] [CrossRef]
- Collins, A.J.; Hao, W.; Xia, H.; Ebben, J.P.; Everson, S.E.; Constantini, E.G.; Ma, J.Z. Mortality risks of peritoneal dialysis and hemodialysis. Am. J. Kidney Dis. 1999, 34, 1065–1074. [Google Scholar] [CrossRef]
- Cheng, L.; Hu, N.; Song, D.; Chen, Y. Mortality of Peritoneal Dialysis versus Hemodialysis in Older Adults: An Updated Systematic Review and Meta-Analysis. Gerontology 2024, 70, 461–478. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; He, Z.; Hu, X.; Li, S.; Wang, L.; Zhao, D.; Lin, Q.; Liu, X.; Lu, F.; Zhang, D. Propensity-matched comparison of mortality between peritoneal dialysis and hemodialysis in patients with type 2 diabetes. Int. Urol. Nephrol. 2022, 54, 1373–1381. [Google Scholar] [CrossRef]
- Liu, L.; Pang, J.; Xu, J.; Liu, L.N.; Liao, M.Y.; Huang, Q.X.; Li, Y.L. Impact of initial dialysis modality on the survival of patients with ESRD: A propensity-score-matched study. BMC Nephrol. 2023, 24, 313. [Google Scholar] [CrossRef]
- Elsayed, M.E.; Morris, A.D.; Li, X.; Browne, L.D.; Stack, A.G. Propensity score matched mortality comparisons of peritoneal and in-centre haemodialysis: Systematic review and meta-analysis. Nephrol. Dial. Transplant. 2020, 35, 2172–2182. [Google Scholar] [CrossRef] [PubMed]
- Wong, B.; Ravani, P.; Oliver, M.J.; Holroyd-Leduc, J.; Venturato, L.; Garg, A.X.; Quinn, R.R. Comparison of Patient Survival Between Hemodialysis and Peritoneal Dialysis Among Patients Eligible for Both Modalities. Am. J. Kidney Dis. 2018, 71, 344–351. [Google Scholar] [CrossRef]
- Chung, S.H.; Han, D.C.; Noh, H.; Jeon, J.S.; Kwon, S.H.; Lindholm, B.; Lee, H.B. Risk factors for mortality in diabetic peritoneal dialysis patients. Nephrol. Dial. Transplant. 2010, 25, 3742–3748. [Google Scholar] [CrossRef]
- Gensberger-Reigl, S.; Weigel, I.; Stützer, J.; Auditore, A.; Nikolaus, T.; Pischetsrieder, M. Degradation and de novo formation of nine major glucose degradation products during storage of peritoneal dialysis fluids. Sci. Rep. 2022, 12, 4268. [Google Scholar] [CrossRef]
- Zeier, M.; Schwenger, V.; Deppisch, R.; Haug, U.; Weigel, K.; Bahner, U.; Wanner, C.; Schneider, H.; Henle, T.; Ritz, E. Glucose degradation products in PD fluids: Do they disappear from the peritoneal cavity and enter the systemic circulation? Kidney Int. 2003, 63, 298–305. [Google Scholar] [CrossRef]
- Burkart, J. Metabolic consequences of peritoneal dialysis. Semin. Dial. 2004, 17, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Skubala, A.; Zywiec, J.; Zełobowska, K.; Gumprecht, J.; Grzeszczak, W. Continuous glucose monitoring system in 72-h glucose profile assessment in patients with end-stage renal disease on maintenance continuous ambulatory peritoneal dialysis. Med. Sci. Monit. 2010, 16, 75–83. [Google Scholar] [PubMed]
- Lambie, M.; Bonomini, M.; Davies, S.J.; Accili, D.; Arduini, A.; Zammit, V. Insulin resistance in cardiovascular disease, uremia, and peritoneal dialysis. Trends Endocrinol. Metab. 2021, 32, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Adeva-Andany, M.M.; Martínez-Rodríguez, J.; González-Lucán, M.; Fernández-Fernández, C.; Castro-Quintela, E. Insulin resistance is a cardiovascular risk factor in humans. Diabetes Metab. Syndr. 2019, 13, 1449–1455. [Google Scholar] [CrossRef]
- Shahim, B.; De Bacquer, D.; De Backer, G.; Gyberg, V.; Kotseva, K.; Mellbin, L.; Schnell, O.; Tuomilehto, J.; Wood, D.; Rydén, L. The Prognostic Value of Fasting Plasma Glucose, Two-Hour Postload Glucose, and HbA1c in Patients with Coronary Artery Disease: A Report From EUROASPIRE IV: A Survey from the European Society of Cardiology. Diabetes Care 2017, 40, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, L.; Gu, Y.; Hao, C.; Zhu, T. Insulin resistance as a predictor of cardiovascular disease in patients on peritoneal dialysis. Perit. Dial. Int. 2013, 33, 411–418. [Google Scholar] [CrossRef]
- Fortes, P.C.; de Moraes, T.P.; Mendes, J.G.; Stinghen, A.E.; Ribeiro, S.C.; Pecoits-Filho, R. Insulin resistance and glucose homeostasis in peritoneal dialysis. Perit. Dial. Int. 2009, 29, 145–148. [Google Scholar] [CrossRef]
- Wang, X.F.; Chen, X.; Tang, Y.; Wu, J.M.; Qin, D.L.; Yu, L.; Yu, C.L.; Zhou, X.G.; Wu, A.G. The Therapeutic Potential of Plant Polysaccharides in Metabolic Diseases. Pharmaceuticals 2022, 15, 1329. [Google Scholar] [CrossRef]
- Yan, Z.; Yu, D.; Cai, Y.; Shang, J.; Qin, R.; Xiao, J.; Zhao, B.; Zhao, Z.; Simmons, D. Triglyceride Glucose Index Predicting Cardiovascular Mortality in Chinese Initiating Peritoneal Dialysis: A Cohort Study. Kidney Blood Press. Res. 2019, 44, 669–678. [Google Scholar] [CrossRef]
- Li, P.K.; Kwan, B.C.; Ko, G.T.; Chow, K.M.; Leung, C.B.; Szeto, C.C. Treatment of metabolic syndrome in peritoneal dialysis patients. Perit. Dial. Int. 2009, 29, 149–152. [Google Scholar] [CrossRef]
- Sanguankeo, A.; Upala, S. Metabolic Syndrome Increases Mortality Risk in Dialysis Patients: A Systematic Review and Meta-Analysis. Int. J. Endocrinol. Metab. 2018, 16, e61201. [Google Scholar] [CrossRef] [PubMed]
- Duong, U.; Mehrotra, R.; Molnar, M.Z.; Noori, N.; Kovesdy, C.P.; Nissenson, A.R.; Kalantar-Zadeh, K. Glycemic control and survival in peritoneal dialysis patients with diabetes mellitus. Clin. J. Am. Soc. Nephrol. 2011, 6, 1041–1048. [Google Scholar] [CrossRef]
- Wu, H.Y.; Hung, K.Y.; Huang, T.M.; Hu, F.C.; Peng, Y.S.; Huang, J.W.; Lin, S.L.; Chen, Y.M.; Chu, T.S.; Tsai, T.J.; et al. Safety issues of long-term glucose load in patients on peritoneal dialysis—A 7-year cohort study. PLoS ONE 2012, 7, 30337. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Guo, Q.; Yang, X.; Wu, X.; Feng, S.; Tan, J.; Xu, R.; Yu, X. High glucose concentrations in peritoneal dialysate are associated with all-cause and cardiovascular disease mortality in continuous ambulatory peritoneal dialysis patients. Perit. Dial. Int. 2015, 35, 70–77. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Shaper, A.G.; Whincup, P.H.; Lennon, L.; Sattar, N. Impact of diabetes on cardiovascular disease risk and all-cause mortality in older men: Influence of age at onset, diabetes duration, and established and novel risk factors. Arch. Intern. Med. 2011, 171, 404–410. [Google Scholar] [CrossRef]
- Yamagishi, S.I.; Nakamura, N.; Matsui, T. Glycation and cardiovascular disease in diabetes: A perspective on the concept of metabolic memory. J. Diabetes 2017, 9, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, S.I.; Matsui, T. Role of Hyperglycemia-Induced Advanced Glycation End Product (AGE) Accumulation in Atherosclerosis. Ann. Vasc. Dis. 2018, 11, 253–258. [Google Scholar] [CrossRef]
- Nin, J.W.; Jorsal, A.; Ferreira, I.; Schalkwijk, C.G.; Prins, M.H.; Parving, H.H.; Tarnow, L.; Rossing, P.; Stehouwer, C.D. Higher plasma levels of advanced glycation end products are associated with incident cardiovascular disease and all-cause mortality in type 1 diabetes: A 12-year follow-up study. Diabetes Care 2011, 34, 442–447. [Google Scholar] [CrossRef]
- Kilhovd, B.K.; Juutilainen, A.; Lehto, S.; Rönnemaa, T.; Torjesen, P.A.; Hanssen, K.F.; Laakso, M. Increased serum levels of advanced glycation endproducts predict total, cardiovascular and coronary mortality in women with type 2 diabetes: A population-based 18 year follow-up study. Diabetologia 2007, 50, 1409–1417. [Google Scholar] [CrossRef]
- Davies, S.J.; Mushahar, L.; Yu, Z.; Lambie, M. Determinants of peritoneal membrane function over time. Semin. Nephrol. 2011, 31, 172–182. [Google Scholar] [CrossRef]
- Nakano, T.; Mizumasa, T.; Kuroki, Y.; Eriguchi, M.; Yoshida, H.; Taniguchi, M.; Masutani, K.; Tsuruya, K.; Kitazono, T. Advanced glycation end products are associated with immature angiogenesis and peritoneal dysfunction in patients on peritoneal dialysis. Perit. Dial. Int. 2020, 40, 67–75. [Google Scholar] [CrossRef]
- Li, J.; Xing, H.; Lin, W.; Yu, H.; Yang, B.; Jiang, C.; Zhang, J.; Wu, R.; Ding, F.; Pei, M.; et al. Specific gut microbiome and metabolome changes in patients with continuous ambulatory peritoneal dialysis and comparison between patients with different dialysis vintages. Front. Med. 2024, 10, 1302352. [Google Scholar] [CrossRef]
- Fan, J.; Wang, L.; Yang, T.; Liu, J.; Ge, W.; Shen, J.; Wang, L. Comparative analysis of gut microbiota in incident and prevalent peritoneal dialysis patients with peritoneal fibrosis, correlations with peritoneal equilibration test data in the peritoneal fibrosis cohort. Ther. Apher. Dial. 2024. [Google Scholar] [CrossRef]
- Stepanova, N. Dyslipidemia in Peritoneal Dialysis: Implications for Peritoneal Membrane Function and Patient Outcomes. Biomedicines 2024, 12, 2377. [Google Scholar] [CrossRef]
- Suh, S.H.; Kim, S.W. Dyslipidemia in Patients with Chronic Kidney Disease: An Updated Overview. Diabetes Metab. J. 2023, 47, 612–629. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Ronco, C.; Rosner, M.H. Counteracting the Metabolic Effects of Glucose Load in Peritoneal Dialysis Patients; an Exercise-Based Approach. Blood Purif. 2019, 48, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Constantinou, C.; Karavia, E.A.; Xepapadaki, E.; Petropoulou, P.I.; Papakosta, E.; Karavyraki, M.; Zvintzou, E.; Theodoropoulos, V.; Filou, S.; Hatziri, A.; et al. Advances in high-density lipoprotein physiology: Surprises, overturns, and promises. Am. J. Physiol. Endocrinol. Metab. 2016, 310, E1–E14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, X.; Tang, X.; Tang, L.; Shang, S.; Wang, X.; Wen, Y.; Feng, X.; Zhou, Q.; Su, N.; et al. The association between diabetes coexisting with low levels of high-density lipoprotein cholesterol and peritoneal dialysis-related peritonitis. Diabetol. Metab. Syndr. 2022, 14, 60. [Google Scholar] [CrossRef]
- Xue, C.; Gu, Y.Y.; Cui, C.J.; Zhou, C.C.; Wang, X.D.; Ruan, M.N.; Huang, L.X.; Chen, S.X.; Yang, B.; Chen, X.J.; et al. New-onset glucose disorders in peritoneal dialysis patients: A meta-analysis and systematic review. Nephrol. Dial. Transplant. 2020, 35, 1412–1419. [Google Scholar] [CrossRef]
- Lambie, M.; Chess, J.; Do, J.Y.; Noh, H.; Lee, H.B.; Kim, Y.L.; Summers, A.; Williams, P.F.; Davison, S.; Dorval, M.; et al. Global Fluid Study Investigators. Peritoneal Dialysate Glucose Load and Systemic Glucose Metabolism in Non-Diabetics: Results from the GLOBAL Fluid Cohort Study. PLoS ONE 2016, 11, 0155564. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37, 81–90. [Google Scholar] [CrossRef]
- Yarragudi, R.; Gessl, A.; Vychytil, A. New-Onset Diabetes Mellitus in Peritoneal Dialysis and Hemodialysis Patients: Frequency, Risk Factors, and Prognosis-A Review. Ther. Apher. Dial. 2019, 23, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.Y.; Liang, C.C.; Kuo, H.L.; Chang, C.T.; Liu, J.H.; Lin, H.H.; Wang, I.K.; Yang, Y.F.; Huang, C.C. Comparing risk of new onset diabetes mellitus in chronic kidney disease patients receiving peritoneal dialysis and hemodialysis using propensity score matching. PLoS ONE 2014, 9, e87891. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Yang, Z.K.; Chen, Y. Older Age, Higher Body Mass Index and Inflammation Increase the Risk for New-Onset Diabetes and Impaired Glucose Tolerance in Patients on Peritoneal Dialysis. Perit. Dial. Int. 2016, 36, 277–283. [Google Scholar] [CrossRef]
- Wu, P.P.; Kor, C.T.; Hsieh, M.C.; Hsieh, Y.P. Association between End-Stage Renal Disease and Incident Diabetes Mellitus-A Nationwide Population-Based Cohort Study. J. Clin. Med. 2018, 7, 343. [Google Scholar] [CrossRef] [PubMed]
- Szeto, C.C.; Chow, K.M.; Kwan, B.C.; Chung, K.Y.; Leung, C.B.; Li, P.K. New-onset hyperglycemia in nondiabetic chinese patients started on peritoneal dialysis. Am. J. Kidney Dis. 2007, 49, 524–532. [Google Scholar] [CrossRef]
- Tien, K.J.; Lin, Z.Z.; Chio, C.C.; Wang, J.J.; Chu, C.C.; Sun, Y.M.; Kan, W.C.; Chien, C.C. Epidemiology and mortality of new-onset diabetes after dialysis: Taiwan national cohort study. Diabetes Care 2013, 36, 3027–3032. [Google Scholar] [CrossRef]
- Woodward, R.S.; Schnitzler, M.A.; Baty, J.; Lowell, J.A.; Lopez-Rocafort, L.; Haider, S.; Woodworth, T.G.; Brennan, D.C. Incidence and cost of new onset diabetes mellitus among U.S. wait-listed and transplanted renal allograft recipients. Am. J. Transplant. 2003, 3, 590–598. [Google Scholar] [CrossRef]
- Wang, I.K.; Lin, C.L.; Chen, H.C.; Lin, S.Y.; Chang, C.T.; Yen, T.H.; Sung, F.C. Risk of new-onset diabetes in end-stage renal disease patients undergoing dialysis: Analysis from registry data of Taiwan. Nephrol. Dial. Transplant. 2018, 33, 670–675. [Google Scholar] [CrossRef]
- Bernardo, A.P.; Oliveira, J.C.; Santos, O.; Carvalho, M.J.; Cabrita, A.; Rodrigues, A. Insulin Resistance in Nondiabetic Peritoneal Dialysis Patients: Associations with Body Composition, Peritoneal Transport, and Peritoneal Glucose Absorption. Clin. J. Am. Soc. Nephrol. 2015, 10, 2205–2212. [Google Scholar] [CrossRef] [PubMed]
- García-López, E.; Lindholm, B.; Davies, S. An update on peritoneal dialysis solutions. Nat. Rev. Nephrol. 2012, 8, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Stachowska-Pietka, J.; Waniewski, J.; Olszowska, A.; Garcia-Lopez, E.; Yan, J.; Yao, Q.; Wankowicz, Z.; Lindholm, B. Can one long peritoneal dwell with icodextrin replace two short dwells with glucose? Front. Physiol. 2024, 15, 1339762. [Google Scholar] [CrossRef]
- de Moraes, T.P.; Andreoli, M.C.; Canziani, M.E.; da Silva, D.R.; Caramori, J.C.; Ponce, D.; Cassi, H.V.; de Andrade Bastos, K.; Rio, D.R.; Pinto, S.W.; et al. Icodextrin reduces insulin resistance in non-diabetic patients undergoing automated peritoneal dialysis: Results of a randomized controlled trial (STARCH). Nephrol. Dial. Transplant. 2015, 30, 1905–1911. [Google Scholar] [CrossRef]
- Li, P.K.; Culleton, B.F.; Ariza, A.; Do, J.Y.; Johnson, D.W.; Sanabria, M.; Shockley, T.R.; Story, K.; Vatazin, A.; Verrelli, M.; et al. IMPENDIA and EDEN Study Groups. Randomized, controlled trial of glucose-sparing peritoneal dialysis in diabetic patients. J. Am. Soc. Nephrol. 2013, 24, 1889–1900. [Google Scholar] [CrossRef]
- Sniderman, A.D.; Sloand, J.A.; Li, P.K.; Story, K.; Bargman, J.M. Influence of low-glucose peritoneal dialysis on serum lipids and apolipoproteins in the IMPENDIA/EDEN trials. J. Clin. Lipidol. 2014, 8, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Sniderman, A.D.; Islam, S.; Yusuf, S.; McQueen, M.J. Discordance analysis of apolipoprotein B and non-high density lipoprotein cholesterol as markers of cardiovascular risk in the INTERHEART study. Atherosclerosis 2012, 225, 444–449. [Google Scholar] [CrossRef]
- Sniderman, A.D.; Williams, K.; Contois, J.H.; Monroe, H.M.; McQueen, M.J.; de Graaf, J.; Furberg, C.D. A meta-analysis of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B as markers of cardiovascular risk. Circ. Cardiovasc. Qual. Outcomes 2011, 4, 337–345. [Google Scholar] [CrossRef]
- Babazono, T.; Nakamoto, H.; Kasai, K.; Kuriyama, S.; Sugimoto, T.; Nakayama, M.; Hamada, C.; Furuya, R.; Hasegawa, H.; Kasahara, M.; et al. Japanese Extraneal Collaborated Study Group. Effects of icodextrin on glycemic and lipid profiles in diabetic patients undergoing peritoneal dialysis. Am. J. Nephrol. 2007, 27, 409–415. [Google Scholar] [CrossRef]
- Kanda, E.; Ai, M.; Iwamoto, A.; Okazaki, M.; Maeda, Y.; Sasaki, S.; Yoshida, M. Relationship between Icodextrin use and decreased level of small low-density lipoprotein cholesterol fractioned by high-performance gel permeation chromatography. BMC Nephrol. 2013, 14, 234. [Google Scholar] [CrossRef]
- Noori, N.; Caulfield, M.P.; Salameh, W.A.; Reitz, R.E.; Nicholas, S.B.; Molnar, M.Z.; Nissenson, A.R.; Kovesdy, C.P.; Kalantar-Zadeh, K. Novel lipoprotein subfraction and size measurements in prediction of mortality in maintenance hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2011, 6, 2861–2870. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Abudukeremu, A.; Li, K.; Zheng, M.; Li, H.; Huang, T.; Huang, C.; Wen, K.; Wang, Y.; Zhang, Y. High-Density Lipoprotein Subclasses and Their Role in the Prevention and Treatment of Cardiovascular Disease: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 7856. [Google Scholar] [CrossRef]
- Huang, Y.F.; Zhu, D.J.; Chen, X.W.; Ouyang, M.Z.; Zhang, W.J. Biphasic Regulation of Lipid Metabolism: A Meta-Analysis of Icodextrin in Peritoneal Dialysis. Biomed Res. Int. 2015, 2015, 208980. [Google Scholar] [CrossRef]
- Takatori, Y.; Akagi, S.; Sugiyama, H.; Inoue, J.; Kojo, S.; Morinaga, H.; Nakao, K.; Wada, J.; Makino, H. Icodextrin increases technique survival rate in peritoneal dialysis patients with diabetic nephropathy by improving body fluid management: A randomized controlled trial. Clin. J. Am. Soc. Nephrol. 2011, 6, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.K.; Chan, C.I.; Lin, A.H.; Yu, T.M.; Yen, T.H.; Lai, P.C.; Li, C.Y.; Sung, F.C. The impact of icodextrin on the outcomes of incident peritoneal dialysis patients. PLoS ONE 2024, 19, e0297688. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.I.; Ryu, D.R.; Yoo, T.H.; Kim, H.J.; Kang, E.W.; Kim, H.; Chang, J.H.; Kim, D.K.; Moon, S.J.; Yoon, S.Y.; et al. Yonsei Associate Network CHronic Kidney Disease Trial (YACHT) investigators. Effect of Icodextrin Solution on the Preservation of Residual Renal Function in Peritoneal Dialysis Patients: A Randomized Controlled Study. Medicine 2016, 95, e2991. [Google Scholar] [CrossRef]
- Goossen, K.; Becker, M.; Marshall, M.R.; Bühn, S.; Breuing, J.; Firanek, C.A.; Hess, S.; Nariai, H.; Sloand, J.A.; Yao, Q.; et al. Icodextrin Versus Glucose Solutions for the Once-Daily Long Dwell in Peritoneal Dialysis: An Enriched Systematic Review and Meta-analysis of Randomized Controlled Trials. Am. J. Kidney Dis. 2020, 75, 830–846. [Google Scholar] [CrossRef]
- Elphick, E.H.; Teece, L.; Chess, J.A.; Do, J.Y.; Kim, Y.L.; Lee, H.B.; Davison, S.N.; Topley, N.; Davies, S.J.; Lambie, M. Biocompatible Solutions and Long-Term Changes in Peritoneal Solute Transport. Clin. J. Am. Soc. Nephrol. 2018, 13, 1526–1533. [Google Scholar] [CrossRef]
- Sanchez, J.E.; Ulloa, C.; Bueno, C.M.; Astudillo, E.; Rodríguez-Suárez, C. Impact of peritoneal dialysis strategy on technique and patient survival. Clin. Kidney J. 2023, 16, 2523–2529. [Google Scholar] [CrossRef]
- Davies, S.; Zhao, J.; McCullough, K.P.; Kim, Y.L.; Wang, A.Y.; Badve, S.V.; Mehrotra, R.; Kanjanabuch, T.; Kawanishi, H.; Robinson, B.; et al. PDOPPS Dialysis Prescription and Fluid Management Working Group. International Icodextrin Use and Association with Peritoneal Membrane Function, Fluid Removal, Patient and Technique Survival. Kidney360 2022, 3, 872–882. [Google Scholar] [CrossRef]
- Htay, H.; Johnson, D.W.; Wiggins, K.J.; Badve, S.V.; Craig, J.C.; Strippoli, G.F.; Cho, Y. Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database Syst. Rev. 2018, 10, CD007554. [Google Scholar] [CrossRef]
- Orihuela, O.; de Jesús Ventura, M.; Ávila-Díaz, M.; Cisneros, A.; Vicenté-Martínez, M.; Furlong, M.D.; García-González, Z.; Villanueva, D.; Alcántara, G.; Lindholm, B.; et al. Effect of icodextrin on heart rate variability in diabetic patients on peritoneal dialysis. Perit. Dial. Int. 2014, 34, 57–63. [Google Scholar] [CrossRef]
- Wang, I.K.; Tsai, T.H.; Chang, S.S.; Lin, S.Y.; Yen, T.H.; Lin, C.L.; Sung, F.C. Icodextrin is associated with a lower risk of atrial fibrillation in peritoneal dialysis patients. Nephrology 2019, 24, 1273–1278. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Y.; Brimble, K.S.; Brunier, G.; Holt, S.G.; Jha, V.; Johnson, D.W.; Kang, S.W.; Kooman, J.P.; Lambie, M.; McIntyre, C.; et al. ISPD Cardiovascular and Metabolic Guidelines in Adult Peritoneal Dialysis Patients Part I—Assessment and Management of Various Cardiovascular Risk Factors. Perit. Dial. Int. 2015, 35, 379–387. [Google Scholar] [CrossRef]
- Dousdampanis, P.; Trigka, K.; Chu, M.; Khan, S.; Venturoli, D.; Oreopoulos, D.G.; Bargman, J.M. Two icodextrin exchanges per day in peritoneal dialysis patients with ultrafiltration failure: One center’s experience and review of the literature. Int. Urol. Nephrol. 2011, 43, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Dousdampanis, P.; Musso, C.G.; Trigka, K. Icodextrin and peritoneal dialysis: Advantages and new applications. Int. Urol. Nephrol. 2018, 50, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Goffin, E.; Béchade, C.; Courivaud, C.; Francois, K.; Bammens, B.; Jadoul, M.Y.; Devuyst, O.; Wilkie, M.E.; Bertrand, A.; Lobbedez, T. Double vs. Single Icodextrin Dose in Older Incident Patients on Incremental Continuous Ambulatory Peritoneal Dialysis (CAPD): Results from the DIDo (Double Icodextrin Dose) Study: TH-PO1184. J. Am. Soc. Nephrol. 2024, 35, 10. [Google Scholar] [CrossRef]
- Biblaki, D.N.; Filiopoulos, V.C.; Vlassopoulos, D.A. Icodextrin skin rash incidence. Kidney Int. 2015, 87, 1258. [Google Scholar] [CrossRef]
- Finkelstein, F.; Healy, H.; Abu-Alfa, A.; Ahmad, S.; Brown, F.; Gehr, T.; Nash, K.; Sorkin, M.; Mujais, S. Superiority of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration. J. Am. Soc. Nephrol. 2005, 16, 546–554. [Google Scholar] [CrossRef]
- Park, M.S.; Choi, S.R.; Song, Y.S.; Yoon, S.Y.; Lee, S.Y.; Han, D.S. New insight of amino acid-based dialysis solutions. Kidney Int. Suppl. 2006, 103, 110–114. [Google Scholar] [CrossRef]
- Li, F.K.; Chan, L.Y.; Woo, J.C.; Ho, S.K.; Lo, W.K.; Lai, K.N.; Chan, T.M. A 3-year, prospective, randomized, controlled study on amino acid dialysate in patients on CAPD. Am. J. Kidney Dis. 2003, 42, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Misra, M.; Reaveley, D.A.; Ashworth, J.; Muller, B.; Seed, M.; Brown, E.A. Six-month prospective cross-over study to determine the effects of 1.1% amino acid dialysate on lipid metabolism in patients on continuous ambulatory peritoneal dialysis. Perit. Dial. Int. 1997, 17, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Yung, S.; Lui, S.L.; Ng, C.K.; Yim, A.; Ma, M.K.; Lo, K.Y.; Chow, C.C.; Chu, K.H.; Chak, W.L.; Lam, M.F.; et al. Impact of a low-glucose peritoneal dialysis regimen on fibrosis and inflammation biomarkers. Perit. Dial. Int. 2015, 35, 147–158. [Google Scholar] [CrossRef]
- Dervisoglu, E.; Ozdemir, O.; Yilmaz, A. Commencing peritoneal dialysis with 1.1% amino acid solution does not influence biochemical nutritional parameters in incident CAPD patients. Ren. Fail. 2010, 32, 653–658. [Google Scholar] [CrossRef]
- Chen, J.H.C.; Johnson, D.W.; Cho, Y.; Cheetham, M.; Sud, K.; Hayat, A.; Stallard, B.; Clayton, P.; Davies, C.E.; Borlace, M.; et al. Associations of neutral pH, low-GDP peritoneal dialysis solutions with patient survival, transfer to haemodialysis and peritonitis. Nephrol. Dial. Transplant. 2024, 39, 222–232. [Google Scholar] [CrossRef]
- Yohanna, S.; Alkatheeri, A.M.; Brimble, S.K.; McCormick, B.; Iansavitchous, A.; Blake, P.G.; Jain, A.K. Effect of Neutral-pH, Low-Glucose Degradation Product Peritoneal Dialysis Solutions on Residual Renal Function, Urine Volume, and Ultrafiltration: A Systematic Review and Meta-Analysis. Clin. J. Am. Soc. Nephrol. 2015, 10, 1380–1388. [Google Scholar] [CrossRef]
- Szeto, C.C.; Chow, K.M.; Lam, C.W.; Leung, C.B.; Kwan, B.C.; Chung, K.Y.; Law, M.C.; Li, P.K. Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose-degradation products--a 1-year randomized control trial. Nephrol. Dial. Transplant. 2007, 22, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Szeto, C.C.; Kwan, B.C.; Chow, K.M.; Cheng, P.M.; Kwong, V.W.; Choy, A.S.; Law, M.C.; Leung, C.B.; Li, P.K. The Effect of Neutral Peritoneal Dialysis Solution with Low Glucose-Degradation-Product on the Fluid Status and Body Composition--A Randomized Control Trial. PLoS ONE 2015, 10, e0141425. [Google Scholar] [CrossRef]
- Cho, Y.; Büchel, J.; Steppan, S.; Passlick-Deetjen, J.; Hawley, C.M.; Dimeski, G.; Clarke, M.; Johnson, D.W. Longitudinal Trend in Lipid Profile of Incident Peritoneal Dialysis Patients is Not Influenced by the Use of Biocompatible Solutions. Perit. Dial. Int. 2016, 36, 146–153. [Google Scholar] [CrossRef]
- Misra, P.S.; Nessim, S.J.; Perl, J. “Biocompatible” Neutral pH Low-GDP Peritoneal Dialysis Solutions: Much Ado About Nothing? Semin. Dial. 2017, 30, 164–173. [Google Scholar] [CrossRef]
- Bonomini, M.; Zammit, V.; Divino-Filho, J.C.; Davies, S.J.; Di Liberato, L.; Arduini, A.; Lambie, M. The osmo-metabolic approach: A novel and tantalizing glucose-sparing strategy in peritoneal dialysis. J. Nephrol. 2021, 34, 503–519. [Google Scholar] [CrossRef] [PubMed]
- Bonomini, M.; Di Liberato, L.; Zammit, V.; Arduini, A. Current Opinion on Usage of L-Carnitine in End-Stage Renal Disease Patients on Peritoneal Dialysis. Molecules 2019, 24, 3449. [Google Scholar] [CrossRef] [PubMed]
- de Boer, I.H.; Khunti, K.; Sadusky, T.; Tuttle, K.R.; Neumiller, J.J.; Rhee, C.M.; Rosas, S.E.; Rossing, P.; Bakris, G. Diabetes Management in Chronic Kidney Disease: A Consensus Report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care 2022, 45, 3075–3090. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2020, 98, S1–S115. [Google Scholar] [CrossRef]
- Ly, J.; Marticorena, R.; Donnelly, S. Red blood cell survival in chronic renal failure. Am. J. Kidney Dis. 2004, 44, 715–719. [Google Scholar] [CrossRef]
- Hahr, A.J.; Molitch, M.E. Management of diabetes mellitus in patients with chronic kidney disease. Clin. Diabetes Endocrinol. 2015, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Peacock, T.P.; Shihabi, Z.K.; Bleyer, J.; Dolbare, E.L.; Byers, J.R.; Knovich, M.A.; Calles-Escandon, J.; Russell, G.B.; Freedman, B.I. Comparison of glycated albumin and hemoglobin A(1c) levels in diabetic subjects on hemodialysis. Kidney Int. 2008, 73, 1062–1068. [Google Scholar] [CrossRef]
- Peng, F.; Xia, X.; He, F.; Li, Z.; Huang, F.; Yu, X. The Effect of Glycated Hemoglobin and Albumin-Corrected Glycated Serum Protein on Mortality in Diabetic Patients Receiving Continuous Peritoneal Dialysis. Perit. Dial. Int. 2015, 35, 566–575. [Google Scholar] [CrossRef]
- Abe, M.; Hamano, T.; Hoshino, J.; Wada, A.; Nakai, S.; Masakane, I. Glycemic control and survival in peritoneal dialysis patients with diabetes: A 2-year nationwide cohort study. Sci. Rep. 2019, 9, 3320. [Google Scholar] [CrossRef]
- Don, B.R.; Kaysen, G. Serum albumin: Relationship to inflammation and nutrition. Semin. Dial. 2004, 17, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Fukami, K.; Shibata, R.; Nakayama, H.; Yamada, K.; Okuda, S.; Koga, M. Serum albumin-adjusted glycated albumin is a better indicator of glycaemic control in diabetic patients with end-stage renal disease not on haemodialysis. Ann. Clin. Biochem. 2015, 52, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Ling, J.; Ng, J.K.C.; Chan, J.C.N.; Chow, E. Use of Continuous Glucose Monitoring in the Assessment and Management of Patients with Diabetes and Chronic Kidney Disease. Front. Endocrinol. 2022, 13, 869899. [Google Scholar] [CrossRef] [PubMed]
- Inaba, M.; Okuno, S.; Kumeda, Y.; Yamada, S.; Imanishi, Y.; Tabata, T.; Okamura, M.; Okada, S.; Yamakawa, T.; Ishimura, E.; et al. Glycated albumin is a better glycemic indicator than glycated hemoglobin values in hemodialysis patients with diabetes: Effect of anemia and erythropoietin injection. J. Am. Soc. Nephrol. 2007, 18, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Abe, M.; Yoshida, Y.; Suzuki, H.; Maruyama, N.; Okada, K. Glycated Albumin versus Glycated Hemoglobin as a Glycemic Indicator in Diabetic Patients on Peritoneal Dialysis. Int. J. Mol. Sci. 2016, 17, 619. [Google Scholar] [CrossRef]
- Miyabe, M.; Kurajoh, M.; Mori, K.; Okuno, S.; Okada, S.; Emoto, M.; Tsujimoto, Y.; Inaba, M. Superiority of glycated albumin over glycated haemoglobin as indicator of glycaemic control and predictor of all-cause mortality in patients with type 2 diabetes mellitus receiving peritoneal dialysis. Ann. Clin. Biochem. 2019, 56, 684–691. [Google Scholar] [CrossRef]
- Hoshino, J.; Abe, M.; Hamano, T.; Hasegawa, T.; Wada, A.; Nakai, S.; Hanafusa, N.; Masakane, I.; Nitta, K. Glycated albumin to glycated hemoglobin ratio and mortality in diabetic patients on dialysis: A new association. Nephrol. Dial. Transplant. 2023, 38, 1309–1317. [Google Scholar] [CrossRef]
- Rasche, F.M.; Ebert, T.; Beckmann, J.; Busch, V.; Barinka, F.; Rasche, W.G.; Lindner, T.H.; Schneider, J.G.; Schiekofer, S. Influence of Erythropoiesis-Stimulating Agents on HbA1c and Fructosamine in Patients with Haemodialysis. Exp. Clin. Endocrinol. Diabetes 2017, 125, 384–391. [Google Scholar] [CrossRef]
- Bomholt, T.; Feldt-Rasmussen, B.; Butt, R.; Borg, R.; Sarwary, M.H.; Elung-Jensen, T.; Almdal, T.; Knop, F.K.; Nørgaard, K.; Ranjan, A.G.; et al. Hemoglobin A1c and Fructosamine Evaluated in Patients with Type 2 Diabetes Receiving Peritoneal Dialysis Using Long-Term Continuous Glucose Monitoring. Nephron 2022, 146, 146–152. [Google Scholar] [CrossRef]
- Lee, S.Y.; Chen, Y.C.; Tsai, I.C.; Yen, C.J.; Chueh, S.N.; Chuang, H.F.; Wu, H.Y.; Chiang, C.K.; Cheng, H.T.; Hung, K.Y.; et al. Glycosylated hemoglobin and albumin-corrected fructosamine are good indicators for glycemic control in peritoneal dialysis patients. PLoS ONE 2013, 8, e57762. [Google Scholar] [CrossRef]
- John, J.; Sakarde, A.; Chafle, J.; Amle, D.; Jose, J.; Sakhare, V.; Rathod, B.D. An Assessment of the Utility of Serum Fructosamine in the Diagnosis and Monitoring of Diabetes Mellitus. Cureus 2023, 15, e33549. [Google Scholar] [CrossRef]
- Okada, E.; Oishi, D.; Sakurada, T.; Yasuda, T.; Shibagaki, Y. A Comparison Study of Glucose Fluctuation During Automated Peritoneal Dialysis and Continuous Ambulatory Peritoneal Dialysis. Adv. Perit. Dial. 2015, 31, 34–37. [Google Scholar]
- Danne, T.; Nimri, R.; Battelino, T.; Bergenstal, R.M.; Close, K.L.; DeVries, J.H.; Garg, S.; Heinemann, L.; Hirsch, I.; Amiel, S.A.; et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care 2017, 40, 1631–1640. [Google Scholar] [CrossRef]
- Bomholt, T.; Kofod, D.; Nørgaard, K.; Rossing, P.; Feldt-Rasmussen, B.; Hornum, M. Can the Use of Continuous Glucose Monitoring Improve Glycemic Control in Patients with Type 1 and 2 Diabetes Receiving Dialysis? Nephron 2023, 147, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Silver, S.A.; Harel, Z.; Perl, J. Practical considerations when prescribing icodextrin: A narrative review. Am. J. Nephrol. 2014, 39, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Oei, E.; Samad, N.; Visser, A.; Chowdhury, T.A.; Fan, S.L. Use of continuous glucose monitoring in patients with diabetes on peritoneal dialysis: Poor correlation with HbA1c and high incidence of hypoglycaemia. Diabet. Med. 2016, 33, e17–e20. [Google Scholar] [CrossRef]
- Schwing, W.D.; Erhard, P.; Newman, L.N.; Nodge, M.M.; Czechanski, B.J.; Orlin, S.M.; Walden, S.M.; Behm, K.; Cacho, C.P.; Negrea, L.A.; et al. Assessing 24-h blood glucose patterns in diabetic paitents treated by peritoneal dialysis. Adv. Perit. Dial. 2004, 20, 213–216. [Google Scholar] [PubMed]
- Qayyum, A.; Chowdhury, T.A.; Oei, E.L.; Fan, S.L. Continuous Glucose monitoring in patients with diabetes mellitus on peritoneal dialysis: Correlation with glycated hemoglobin and detection of high incidence of unaware hypoglycemia. Blood Purif. 2016, 41, 18–24. [Google Scholar] [CrossRef]
- Marshall, J.; Jennings, P.; Scott, A.; Fluck, R.J.; McIntyre, C.W. Glycemic Control in Diabetic Capd Patients Assessed by Continuous Glucose Monitoring System (Cgms). Kidney Int. 2003, 64, 1480–1486. [Google Scholar] [CrossRef]
- Ng, J.K.C.; Ling, J.; Luk, A.O.Y.; Lau, E.S.H.; Ma, R.C.W.; Li, P.K.T.; Szeto, C.C.; Chan, J.C.N.; Chow, E. Evaluation of a Fourth-Generation Subcutaneous Real-Time Continuous Glucose Monitor (CGM) in Individuals with Diabetes on Peritoneal Dialysis. Diabetes Care 2023, 46, 1191–1195. [Google Scholar] [CrossRef]
- Ling, J.; Ng, J.K.C.; Lau, E.S.H.; Luk, A.O.Y.; Ma, R.C.W.; Vigersky, R.A.; Li, P.K.T.; Chan, J.C.N.; Szeto, C.C.; Chow, E. Impact of Body Composition and Anemia on Accuracy of a Real-Time Continuous Glucose Monitor in Diabetes Patients on Continuous Ambulatory Peritoneal Dialysis. Diabetes Technol. Ther. 2024, 26, 70–75. [Google Scholar] [CrossRef]
- Martens, T.; Beck, R.W.; Bailey, R.; Ruedy, K.J.; Calhoun, P.; Peters, A.L.; Pop-Busui, R.; Philis-Tsimikas, A.; Bao, S.; Umpierrez, G.; et al. Effect of Continuous Glucose Monitoring on Glycemic Control in Patients with Type 2 Diabetes Treated with Basal Insulin: A Randomized Clinical Trial. JAMA 2021, 325, 2262–2272. [Google Scholar] [CrossRef] [PubMed]
- Bomholt, T.; Idorn, T.; Knop, F.K.; Jørgensen, M.B.; Ranjan, A.G.; Resuli, M.; Hansen, P.M.; Borg, R.; Persson, F.; Feldt-Rasmussen, B.; et al. The Glycemic Effect of Liraglutide Evaluated by Continuous Glucose Monitoring in Persons with Type 2 Diabetes Receiving Dialysis. Nephron 2021, 145, 27–34. [Google Scholar] [CrossRef]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations from the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, L.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, N.A.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI clinical practice guideline for nutrition in CKD: 2020 update. Am. J. Kidney Dis. 2020, 76, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Hahr, A.J.; Molitch, M.E. Management of Diabetes Mellitus in Patients With CKD: Core Curriculum 2022. Am. J. Kidney Dis. 2022, 79, 728–736. [Google Scholar] [CrossRef]
- Mottl, A.K.; Alicic, R.; Argyropoulos, C.; Brosius, C.F.; Mauer, M.; Molitch, M.; Nelson, G.R.; Perreault, L.; Nicholas, B.S. KDOQI US Commentary on the KDIGO 2020 Clinical Practice Guideline for Diabetes Management in CKD. Am. J. Kidney Dis. 2022, 79, 457–479. [Google Scholar] [CrossRef] [PubMed]
- Granhall, C.; Søndergaard, F.L.; Thomsen, M.; Anderson, T.W. Pharmacokinetics, safety and tolerability of oral semaglutide in subjects with renal impairment. Clin. Pharmacokinet. 2018, 57, 1571–1580. [Google Scholar] [CrossRef]
- Jacobsen, L.V.; Hindsberger, C.; Robson, R.; Zdravkovic, M. Effect of renal impairment on the pharmacokinetics of the GLP-1 analogue liraglutide. Br. J. Clin. Pharmacol. 2009, 68, 898–905. [Google Scholar] [CrossRef]
- Wijewickrama, P.; Williams, J.; Bain, S.; Dasgupta, I.; Chowdhury, T.A.; Wahba, M.; Frankel, A.H.; Lambie, M.; Karalliedde, J.; Association of British Clinical Diabetologists (ABCD) and UK Kidney Association (UKKA) Diabetic Kidney Disease Clinical Speciality Group. Narrative Review of Glycemic Management in People with Diabetes on Peritoneal Dialysis. Kidney Int. Rep. 2023, 8, 700–714. [Google Scholar] [CrossRef]
- Lin, M.H.; Yang, H.Y.; Yen, C.L.; Wu, C.Y.; Jenq, C.C.; Kuo, G.; Peng, W.S.; Liu, J.R.; Tian, Y.C.; Yang, C.W.; et al. Pioglitazone Is Associated with Lower Major Adverse Cardiovascular and Cerebrovascular Events than DPP4-Inhibitors in Diabetic Patients with End-Stage Renal Disease: A Taiwan Nationwide Cohort Study, 2006–2016. J. Clin. Med. 2020, 9, 3578. [Google Scholar] [CrossRef]
- Karalliedde, J.; Winocour, P.; Chowdhury, T.A.; De, P.; Frankel, A.H.; Montero, R.M.; Pokrajac, A.; Banerjee, D.; Dasgupta, I.; Fogarty, D.; et al. Clinical practice guidelines for management of hyperglycaemia in adults with diabetic kidney disease. Diabet. Med. 2022, 39, e14769. [Google Scholar] [CrossRef] [PubMed]
- Balzer, M.S.; Rong, S.; Nordlohne, J.; Zemtsovski, J.D.; Schmidt, S.; Stapel, B.; Bartosova, M.; von Vietinghoff, S.; Haller, H.; Schmitt, C.P.; et al. SGLT2 Inhibition by Intraperitoneal Dapagliflozin Mitigates Peritoneal Fibrosis and Ultrafiltration Failure in a Mouse Model of Chronic Peritoneal Exposure to High-Glucose Dialysate. Biomolecules 2020, 10, 1573. [Google Scholar] [CrossRef]
- Schricker, S.; Oberacker, T.; Fritz, P.; Ketteler, M.; Alscher, M.D.; Schanz, M. Peritoneal Expression of SGLT-2, GLUT1, and GLUT3 in Peritoneal Dialysis Patients. Kidney Blood Press. Res. 2022, 47, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lv, X.; A-Ni-Wan, A.S.; Tian, S.S.; Wang, J.M.; Liu, H.Y.; Fan, X.G.; Zhou, S.J.; Yu, P. Canagliflozin alleviates high glu-cose-induced peritoneal fibrosis via HIF-1α inhibition. Front. Pharmacol. 2023, 14, 1152611. [Google Scholar] [CrossRef]
- Lai, J.W.; Wang, C.C.N.; Chou, C.Y. SGLT-2 inhibitors in chronic peritoneal dialysis patients: A follow-up study. BMC Nephrol. 2024, 25, 238. [Google Scholar] [CrossRef]
- Moral Berrio, E.; De La Flor, J.C.; Arambarri Segura, M.; Rodríguez-Doyágüez, P.; Martínez Calero, A.; Zamora, R.; Cieza-Terrones, M.; Yuste-Lozano, C.; Sánchez de la Nieta García, M.D.; Nieto Iglesias, J.; et al. Effects of Sodium–Glucose Cotransporter 2 Inhibitors in Diabetic and Non-Diabetic Patients with Advanced Chronic Kidney Disease in Peritoneal Dialysis on Residual Kidney Function: In Real-World Data. Medicina 2024, 60, 1198. [Google Scholar] [CrossRef]
- Alhwiesh, A.K.; Abdul-Rahman, I.S.; Nasreldin, M.A.; Mohammed, A.M.; Al-Oudah, S.; Al-Thwainy, R.; AyatAlAwal; Alsenpisi, Z.; Abdulrahman, A.; Al-Warthan, S.; et al. The Use of SGLT2 Inhibitors in Peritoneal Dialysis Patients: A Shade of Light on Dapagliflozin. Arch. Nephrol. Urol. 2022, 5, 1–8. [Google Scholar] [CrossRef]
- Blaine, E.; Tumlinson, R.; Colvin, M.; Haynes, T.; Whitley, H.P. Systematic literature review of insulin dose adjustments when initiating hemodialysis or peritoneal dialysis. Pharmacotherapy 2022, 42, 177–187. [Google Scholar] [CrossRef]
- Szeto, C.C.; Chow, K.M.; Leung, C.B.; Kwan, B.C.; Chung, K.Y.; Law, M.C.; Li, P.K. Increased subcutaneous insulin requirements in diabetic patients recently commenced on peritoneal dialysis. Nephrol. Dial. Transplant. 2007, 22, 1697–1702. [Google Scholar] [CrossRef]
- Gómez, A.M.; Vallejo, S.; Ardila, F.; Muñoz, O.M.; Ruiz, Á.J.; Sanabria, M.; Bunch, A.; Morros, E.; Kattah, L.; García-Jaramillo, M.; et al. Impact of a basal-bolus insulin regimen on metabolic control and risk of hypoglycemia in patients with diabetes undergoing peritoneal dialysis. J. Diabetes Sci. Technol. 2018, 12, 129–135. [Google Scholar] [CrossRef]
- Clarke, W.L.; Cox, D.J.; Gonder-Frederick, L.A.; Julian, D.; Schlundt, D.; Polonsky, W. Reduced awareness of hypoglycemia in adults with IDDM. A prospective study of hypoglycemic frequency and associated symptoms. Diabetes Care 1995, 18, 517–522. [Google Scholar] [CrossRef] [PubMed]
Glucose Solutions | Icodextrin | References | |
---|---|---|---|
GDP | ↑ | ↓ | [20,21] |
Insulin resistance | ↑ | ↓ | [64] |
Triglycerides | ↑ | ↓ | [65,66,69] |
LDL | ↑ | ↓ | [69,70] |
VLDL | ↑ | ↓ | [65,66] |
HDL cholesterol | ↓ | ↑ | [67,69,70,73] |
Study | Year | Number of Participants with DM | CGM Device | Main Results of the Study |
---|---|---|---|---|
Oei et al. [125] | 2016 | 3 | Dexcom G4 | The use of CGM may provide more meaningful estimates of glucose control. |
Schwing et al. [126] | 2004 | 7 | Medtronic Minimed | Increase in sensor glucose after PD exchange. |
Lee et al. [119] | 2013 | 25 | Medtronic Minimed | Increase in sensor glucose within 60 min of refilling glucose-based PD exchange, and reduced sensor glucose during icodextrin dwell. |
Okada et al. [121] | 2015 | 20 | Medtronic Gold | 33% time glucose level was above 10 mmol/L in patients with mean HbA1c of 5.9% |
Qayyum et al. [127] | 2016 | 60 | Dexcom G4 | The occurrence of sensor-detected hypoglycemia even in patients with HbA1c > 9% |
Marshall et al. [128] | 2003 | 8 | Medtronic Minimed | Introduction of icodextrin exchange in PD regime was associated with lower glycemic variability. |
Skubala et al. [23] | 2010 | 16 | Medtronic Minimed | Mean sensor glucose and mean changes in sensor glucose were significantly greater in high transporters in comparison with high-average transporters. |
Ng et al. [129] | 2023 | 30 | Medtronic Guardian Sensor 3 | Satisfactory performance of CGM sensor (paired readings against gold standard Yellow Spring Instruments for venous glucose measurement). |
Practice Points |
---|
1. It is efficacious in minimizing high glucose variability associated with PD exchanges (glucose influx during PD dwell). |
2. It allows more accurate insulin dose titrations. |
3. Small studies demonstrated the benefits of CGM use in PD patients, but results from large studies are missing. |
4. For high-risk patients more than 50% per day, the target range for blood glucose level should be between 3.9 and 10.0 mmol/L, and less than 1% of the time, blood glucose value may be below 3.9 mmol/L (less than 15 min per day) and less than 50% per day it may be above the 10.0 mmol/L. |
5. CGM is not widely available and has a high cost. |
Options | Additional Remarks | |
---|---|---|
Oral antidiabetic drugs |
|
|
Insulin therapy |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kezić, A.; Gajić, S.; Ostojić, A.R.; Bekić, I.; Bontić, A.; Pavlović, J.; Baralić, M.; Popović, L. Glycemic Control in Patients with Diabetes on Peritoneal Dialysis: From Glucose Sparing Approach to Glucose Monitoring. Life 2025, 15, 798. https://doi.org/10.3390/life15050798
Kezić A, Gajić S, Ostojić AR, Bekić I, Bontić A, Pavlović J, Baralić M, Popović L. Glycemic Control in Patients with Diabetes on Peritoneal Dialysis: From Glucose Sparing Approach to Glucose Monitoring. Life. 2025; 15(5):798. https://doi.org/10.3390/life15050798
Chicago/Turabian StyleKezić, Aleksandra, Selena Gajić, Ana Račić Ostojić, Ivana Bekić, Ana Bontić, Jelena Pavlović, Marko Baralić, and Ljiljana Popović. 2025. "Glycemic Control in Patients with Diabetes on Peritoneal Dialysis: From Glucose Sparing Approach to Glucose Monitoring" Life 15, no. 5: 798. https://doi.org/10.3390/life15050798
APA StyleKezić, A., Gajić, S., Ostojić, A. R., Bekić, I., Bontić, A., Pavlović, J., Baralić, M., & Popović, L. (2025). Glycemic Control in Patients with Diabetes on Peritoneal Dialysis: From Glucose Sparing Approach to Glucose Monitoring. Life, 15(5), 798. https://doi.org/10.3390/life15050798