Long-Term Functional Outcomes and Quality of Life After Microvascular Reconstruction of Ankle and Foot Defects: A Monocentric Controlled Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Data Collection
2.2. Controlled Cohort Study Design
2.2.1. Patient-Reported Outcome Measures
Lower Extremity Functional Scale
Patient Scar Assessment Scale
Aesthetic Likert Scale
Short-Form 36 Health Survey Questionnaire
Numeric Rating Scale for Pain
Footwear
2.3. Statistical Analysis
3. Results
3.1. Demographic Data
3.2. Defect Characteristics and Peri-Operative Data
3.3. Flap-Related Complications and Revision Surgery
3.4. Long-Term Follow-Up
3.4.1. Long-Term Functional Outcome
3.4.2. Long-Term Health-Related Quality of Life and Pain
3.4.3. Long-Term Scar Quality and Aesthetic Satisfaction
3.4.4. Long-Term Usage of Footwear
4. Discussion
4.1. Long-Term Functionality After Microsurgical Reconstruction of Foot and Ankle Defects
4.2. Long-Term Health-Related Quality of Life After Microsurgical Reconstruction of Foot and Ankle Defects
4.3. Long-Term Aesthetic Satisfaction and Scar Quality After Microsurgical Reconstruction of Foot and Ankle Defects
4.4. Long-Term Pain After Microsurgical Reconstruction of Foot and Ankle Defects
4.5. Long-Term Usage of Footwear After Microsurgical Reconstruction of Foot and Ankle Defects
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hernández-Díaz, C.; Saavedra, M.Á.; Navarro-Zarza, J.E.; Canoso, J.J.; Villaseñor-Ovies, P.; Vargas, A.; Kalish, R.A. Clinical Anatomy of the Ankle and Foot. Reum. Clin. 2012, 8 (Suppl. 2), 46–52. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, M.; Yaali, R.; Sadeghi, H.; Luczak, T. The effect of foot posture on static balance, ankle and knee proprioception in 18-to-25-year-old female student: A cross-sectional study. BMC Musculoskelet. Disord. 2023, 24, 547. [Google Scholar] [CrossRef] [PubMed]
- Sanniec, K.; Nguyen, T.; van Asten, S.; La Fontaine, J.; Lavery, L.A. Dpm Split-Thickness Skin Grafts to the Foot and Ankle of Diabetic Patients. J. Am. Podiatr. Med. Assoc. 2017, 107, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, Y.; He, X.; Zhu, M.; Li, F.; Xu, Y. Foot and ankle reconstruction: An experience on the use of 14 different flaps in 226 cases. Microsurgery 2013, 33, 600–604. [Google Scholar] [CrossRef]
- El-Sabbagh, A.H. Non-microsurgical skin flaps for reconstruction of difficult wounds in distal leg and foot. Chin. J. Traumatol. 2018, 21, 197–205. [Google Scholar] [CrossRef]
- Lin, C.-H. Functional Restoration in Lower Extremity Reconstruction. Clin. Plast. Surg. 2021, 48, 289–297. [Google Scholar] [CrossRef]
- Heidekrueger, P.I.; Ehrl, D.; Prantl, L.; Thiha, A.; Weinschenk, F.; Forte, A.J.; Ninkovic, M.; Broer, P.N. Microsurgical Reconstruction of the Plantar Foot: Long-Term Functional Outcomes and Quality of Life. J. Reconstr. Microsurg. 2019, 35, 379–388. [Google Scholar] [CrossRef]
- Korompilias, A.V.; Lykissas, M.G.; Vekris, M.D.; Beris, A.E.; Soucacos, P.N. Microsurgery for lower extremity injuries. Injury 2008, 39 (Suppl. 3), 103–108. [Google Scholar] [CrossRef]
- Wink, J.D.; Nelson, J.A.; Fischer, J.P.; Cleveland, E.C.; Kovach, S. Free tissue transfer for complex reconstruction of the lower extremity: Experience of a young microsurgeon. J. Reconstr. Microsurg. 2014, 30, 349–358. [Google Scholar] [CrossRef]
- Kozusko, S.; Liu, X.; Riccio, C.; Chang, J.; Boyd, L.; Kokkalis, Z.; Konofaos, P. Selecting a free flap for soft tissue coverage in lower extremity reconstruction. Injury 2019, 50, S32–S39. [Google Scholar] [CrossRef]
- Krijgh, D.D.; List, E.B.; Beljaars, B.; Shao, S.S.Q.; de Jong, T.; Rakhorst, H.A.; Verheul, E.M.; Maarse, W.; Coert, J.H. Patient-reported esthetic outcomes following lower extremity free flap reconstruction: A cross-sectional multicenter study. J. Plast. Reconstr. Aesthetic Surg. 2024, 93, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Krijgh, D.D.; Teunis, T.; List, E.B.; Mureau, M.A.M.; Luijsterburg, A.J.M.; Maarse, W.; Schellekens, P.P.A.; Hietbrink, F.; de Jong, T.; Coert, J.H. Mental health is strongly associated with capability after lower extremity injury treated with free flap limb salvage or amputation. Eur. J. Trauma Emerg. Surg. 2024, 50, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Grigor, E.J.; Bitoiu, B.; Zeitouni, C.; Zhang, J. Patient-reported outcomes following free flap lower extremity reconstruction: A systematic review and meta-analysis. J. Plast. Reconstr. Aesthetic Surg. 2023, 76, 251–267. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.H.; Shammas, R.L.; Carney, M.J.; Weissler, J.M.; Bauder, A.R.; Glener, A.D.; Kovach, S.J.; Hollenbeck, S.T.; Levin, L.S. Muscle versus Fasciocutaneous Free Flaps in Lower Extremity Traumatic Reconstruction: A Multicenter Outcomes Analysis. Plast. Reconstr. Surg. 2018, 141, 191–199. [Google Scholar] [CrossRef]
- Shimbo, K.; Kawamoto, H.; Koshima, I. Muscle/musculocutaneous versus fasciocutaneous free flap reconstruction in the lower extremity: A systematic review and meta-analysis. Microsurgery 2022, 42, 835–847. [Google Scholar] [CrossRef]
- Yazar, S.; Lin, C.-H.; Lin, Y.-T.; Ulusal, A.E.; Wei, F.-C. Outcome comparison between free muscle and free fasciocutaneous flaps for reconstruction of distal third and ankle traumatic open tibial fractures. Plast. Reconstr. Surg. 2006, 117, 2468–2475. [Google Scholar] [CrossRef]
- Seyidova, N.; Anderson, K.; Abood, A. Comparison of patients satisfaction with aesthetic outcomes following lower extremity reconstruction: Muscle vs. fasciocutaneous free flaps. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 65–70. [Google Scholar] [CrossRef]
- Moullot, P.; Gay, A.M.; Bertrand, B.; Legré, R.; Kerfant, N.; Casanova, D.; Philandrianos, C. Soft Tissue Coverage in Distal Lower Extremity Open Fractures: Comparison of Free Anterolateral Thigh and Free Latissimus Dorsi Flaps. J. Reconstr. Microsurg. 2018, 34, 121–129. [Google Scholar] [CrossRef]
- Fischer, J.P.; Haddock, N.T.; Mackay, D.; Wink, J.D.; Newman, A.S.; Levin, L.S.; Kovach, S.J.; Nelson, J.A. Striving for Normalcy after Lower Extremity Reconstruction with Free Tissue: The Role of Secondary Esthetic Refinements. J. Reconstr. Microsurg. 2016, 32, 101–108. [Google Scholar] [CrossRef]
- Dolan, R.; Butler, J.; Murphy, S.; Cronin, K. Health-related quality of life, surgical and aesthetic outcomes following microvascular free flap reconstructions: An 8-year institutional review. Ann. R. Coll. Surg. Engl. 2012, 94, 43–51. [Google Scholar] [CrossRef]
- Fricchione, G. Mind body medicine: A modern bio-psycho-social model forty-five years after Engel. Biopsychosoc. Med. 2023, 17, 12. [Google Scholar] [CrossRef] [PubMed]
- Engel, G.L. The need for a new medical model: A challenge for biomedicine. Science 1977, 196, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Almaawi, A.; Alqarni, H.; Thallaj, A.K.; Alhuqbani, M.; Aldosari, Z.; Aldosari, O.; Alsaber, N. Foot health and quality of life among adults in Riyadh, Saudi Arabia: A cross-sectional study. J. Orthop. Surg. Res. 2023, 18, 192. [Google Scholar] [CrossRef]
- Letizia, S.; Mario, M.; Isabella, P.; Giulia, F.; Danya, F.; Michele, R.; Antonio, G. Foot fractures and complex trauma of the foot: A case series. Eur. J. Orthop. Surg. Traumatol. 2021, 31, 1077–1085. [Google Scholar] [CrossRef]
- Mehta, S.P.; Fulton, A.; Quach, C.; Thistle, M.; Toledo, C.; Evans, N.A. Measurement Properties of the Lower Extremity Functional Scale: A Systematic Review. J. Orthop. Sports Phys. Ther. 2016, 46, 200–216. [Google Scholar] [CrossRef]
- Naal, F.D.; Impellizzeri, F.M.; Torka, S.; Wellauer, V.; Leunig, M.; von Eisenhart-Rothe, R. The German Lower Extremity Functional Scale (LEFS) Is Reliable, Valid and Responsive in Patients Undergoing Hip or Knee Replacement. Qual. Life Res. 2015, 24, 405–410. [Google Scholar] [CrossRef]
- Pan, S.-L.; Liang, H.-W.; Hou, W.-H.; Yeh, T.-S. Responsiveness of SF-36 and Lower Extremity Functional Scale for assessing outcomes in traumatic injuries of lower extremities. Injury 2014, 45, 1759–1763. [Google Scholar] [CrossRef]
- Draaijers, L.J.; Tempelman, F.R.H.; Botman, Y.A.M.; Tuinebreijer, W.E.; Middelkoop, E.; Kreis, R.W.; van Zuijlen, P.P.M. The Patient and Observer Scar Assessment Scale: A reliable and feasible tool for scar evaluation. Plast. Reconstr. Surg. 2004, 113, 1960–1965. [Google Scholar] [CrossRef]
- Mundy, L.R.; Miller, H.C.; Klassen, A.F.; Cano, S.J.; Pusic, A.L. Patient-Reported Outcome Instruments for Surgical and Traumatic Scars: A Systematic Review of their Development, Content, and Psychometric Validation. Aesthetic Plast. Surg. 2016, 40, 792–800. [Google Scholar] [CrossRef]
- Karimi, M.; Brazier, J. Health, Health-Related Quality of Life, and Quality of Life: What is the Difference? Pharmacoeconomics 2016, 34, 645–649. [Google Scholar] [CrossRef]
- Veiga, D.; Neto, M.S.; Ferreira, L.; Garcia, E.; Filho, J.V.; Novo, N.; Rocha, J. Quality of life outcomes after pedicled TRAM flap delayed breast reconstruction. Br. J. Plast. Surg. 2004, 57, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Morfeld, M.; Bullinger, M. Der SF-36 Health Survey zur Erhebung und Dokumentation gesundheitsbezogener Lebensqualität. Phys. Med. Rehabil. Kurortmed. 2008, 18, 250–255. [Google Scholar] [CrossRef]
- Bullinger, M. German translation and psychometric testing of the SF-36 Health Survey: Preliminary results from the IQOLA Project. International Quality of Life Assessment. Soc. Sci. Med. 1995, 41, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Marinozzi, A.; Martinelli, N.; Panascì, M.; Cancilleri, F.; Franceschetti, E.; Vincenzi, B.; Di Martino, A.; Denaro, V. Italian translation of the Manchester-Oxford Foot Questionnaire, with re-assessment of reliability and validity. Qual. Life Res. 2009, 18, 923–927. [Google Scholar] [CrossRef]
- Xiong, L.; Gazyakan, E.; Kremer, T.; Hernekamp, F.J.; Harhaus, L.; Saint-Cyr, M.; Kneser, U.; Hirche, C. Free flaps for reconstruction of soft tissue defects in lower extremity: A meta-analysis on microsurgical outcome and safety. Microsurgery 2016, 36, 511–524. [Google Scholar] [CrossRef]
- Penn-Barwell, J.G. Outcomes in lower limb amputation following trauma: A systematic review and meta-analysis. Injury 2011, 42, 1474–1479. [Google Scholar] [CrossRef]
- Kotsougiani, D.; Platte, J.; Bigdeli, A.K.; Hoener, B.; Kremer, T.; Kneser, U.; Harhaus, L. Evaluation of 389 patients following free-flap lower extremity reconstruction with respect to secondary refinement procedures. Microsurgery 2018, 38, 242–250. [Google Scholar] [CrossRef]
- Disa, J.J.; Hu, Q.Y.; Hidalgo, D.A. Retrospective Review of 400 Consecutive Free Flap Reconstructions for Oncologic Surgical Defects. Ann. Surg. Oncol. 1997, 4, 663–669. [Google Scholar] [CrossRef]
- Paravlic, A.H.; Pisot, S.; Mitic, P.; Pisot, R. Validation of the Oxford Knee Score and Lower Extremity Functional Score Questionnaires for Use in Slovenia. Arch. Orthop. Trauma Surg. 2020, 140, 1515–1522. [Google Scholar] [CrossRef]
- Pohlenz, P.; Blessmann, M.; Blake, F.; Li, L.; Schmelzle, R.; Heiland, M. Outcome and complications of 540 microvascular free flaps: The Hamburg experience. Clin. Oral Investig. 2007, 11, 89–92. [Google Scholar] [CrossRef]
- Ulusal, B.G.; Lin, Y.; Ulusal, A.E.; Lin, C. Reconstruction of foot defects with free lateral arm fasciocutaneous flaps: Analysis of fifty patients. Microsurgery 2005, 25, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Varghese, B.; Babu, P.; Roy, T. Microsurgical free muscle flaps for reconstruction of post-traumatic complex tissue defects of foot. Med. J. Armed Forces India 2016, 72, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Egeler, S.A.; de Jong, T.M.; Luijsterburg, A.J.M.M.; Mureau, M.A.M.M. Long-term patient-reported outcomes following free flap lower extremity reconstruction for traumatic injuries. Plast. Reconstr. Surg. 2018, 141, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Tirrell, A.R.B.; Kim, K.G.B.; Rashid, W.B.; Attinger, C.E.; Fan, K.L.; Evans, K.K. Patient-reported Outcome Measures following Traumatic Lower Extremity Amputation: A Systematic Review and Meta-analysis. Plast. Reconstr. Surg.-Glob. Open 2021, 9, e3920. [Google Scholar] [CrossRef]
- Struckmann, V.; Hirche, C.; Struckmann, F.; Kolios, L.; Lehnhardt, M.; Kneser, U.; Daigeler, A. Free and Pedicled flaps for reconstruction of the weightbearing sole of the foot: A comparative analysis of functional results. J. Foot Ankle Surg. 2014, 53, 727–734. [Google Scholar] [CrossRef]
- List, E.B.; Hahn, B.A.; Qiu, S.S.; de Jong, T.; Rakhorst, H.A.; Verheul, E.M.; Maarse, W.; Coert, J.H.; Krijgh, D.D. Free fasciocutaneous versus muscle flaps in lower extremity reconstruction: Implications for functionality and quality of life. J. Reconstr. Microsurg. 2024. [Google Scholar] [CrossRef]
- Lu, J.; DeFazio, M.V.; Lakhiani, C.; Abboud, M.; Penzler, M.; Elmarsafi, T.; Kim, P.J.; Attinger, C.E.; Evans, K.K. Limb Salvage and Functional Outcomes following Free Tissue Transfer for the Treatment of Recalcitrant Diabetic Foot Ulcers. J. Reconstr. Microsurg. 2019, 35, 117–123. [Google Scholar] [CrossRef]
- Ciudad, P.; Kaciulyte, J.; Torto, F.L.; Vargas, M.I.; Bustamante, A.; Chen, H.; Maruccia, M.; Zulueta, J.; Trignano, E.; Bolletta, A. The profunda artery perforator free flap for lower extremity reconstruction. Microsurgery 2022, 42, 13–21. [Google Scholar] [CrossRef]
- Mundy, L.R.; Grier, A.J.; Weissler, E.H.; Carty, M.J.; Pusic, A.L.; Hollenbeck, S.T.; Gage, M.J. Patient-reported Outcome Instruments in Lower Extremity Trauma: A Systematic Review of the Literature. Plast. Reconstr. Surg.-Glob. Open 2019, 7, e2218. [Google Scholar] [CrossRef]
- Poutoglidou, F.; Khan, R.; Krkovic, M. Amputation versus Reconstruction in Severe Lower Extremity Injury: A Systematic Review and Meta-Analysis. Arch. Bone Jt. Surg. 2023, 11, 378–387. [Google Scholar]
- Pedras, S.; Vilhena, E.; Carvalho, R.; Pereira, M.G. Quality of Life Following a Lower Limb Amputation in Diabetic Patients: A Longitudinal and Multicenter Study. Psychiatry 2020, 83, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Tough, H.; Siegrist, J.; Fekete, C. Social relationships, mental health and wellbeing in physical disability: A systematic review. BMC Public Health 2017, 17, 414. [Google Scholar]
- Ellert, U.; Kurth, B.M. Gesundheitsbezogene Lebensqualität bei Erwachsenen in Deutschland: Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1). Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz 2013, 56, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Laaksonen, M.; Rahkonen, O.; Martikainen, P.; Karvonen, S.; Lahelma, E. Smoking and SF-36 health functioning. Prev. Med. 2006, 42, 206–209. [Google Scholar] [CrossRef]
- Christensen, J.; Ipsen, T.; Doherty, P.; Langberg, H. Physical and social factors determining quality of life for veterans with lower-limb amputation(s): A systematic review. Disabil. Rehabil. 2016, 38, 2345–2353. [Google Scholar] [CrossRef]
- Zeiderman, M.R.; Pu, L.L.Q. Contemporary approach to soft-tissue reconstruction of the lower extremity after trauma. Burn. Trauma 2021, 9, tkab024. [Google Scholar] [CrossRef]
- Al khaled, N.; Manegold, S.; Tsitsilonis, S.; Krapohl, B.D. Complex Foot Trauma: Amputation vs. Reconstruction-Clinical Evaluation and Long-Term Quality of Life. Ann. Plast. Reconstr. Surg. 2022, 6, 1094. [Google Scholar]
- Grzebień, A.; Chabowski, M.; Malinowski, M.; Uchmanowicz, I.; Milan, M.; Janczak, D. Analysis of selected factors determining quality of life in patients after lower limb amputation—A review article. Pol. J. Surg. 2017, 89, 57–61. [Google Scholar] [CrossRef]
- Amici, J.M.; Taieb, C.; Le Floc’h, C.; Demessant, A.; Seité, S.; Cogrel, O. The impact of visible scars on well-being and quality of life: An international epidemiological survey in adults. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 3–6. [Google Scholar] [CrossRef]
- Engel, H.; Lin, C.-H.; Wei, F.-C. Role of Microsurgery in Lower Extremity Reconstruction. Plast. Reconstr. Surg. 2011, 127 (Suppl. S1), 228S–238S. [Google Scholar] [CrossRef]
- Katz, N. Proceedings from the Roundtable on “The Role of Coxibs in Successful Pain Management” The Impact of Pain Management on Quality of Life. J. Pain Symptom Manag. 2002, 24, S38. [Google Scholar]
- Hadi, M.A.; McHugh, G.A.; Closs, S.J. Impact of Chronic Pain on Patients’ Quality of Life: A Comparative Mixed-Methods Study. J. Patient Exp. 2019, 6, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Pandelani, F.F.; Nyalunga, S.L.N.; Mogotsi, M.M.; Mkhatshwa, V.B. Chronic pain: Its impact on the quality of life and gender. Front. Pain Res. 2023, 4, 1253460. [Google Scholar] [CrossRef]
- Bigdeli, A.K.; Gazyakan, E.; Schmidt, V.J.; Bauer, C.; Germann, G.; Radu, C.A.; Kneser, U.; Hirche, C. Long-Term Outcome after Successful Lower Extremity Free Flap Salvage. J. Reconstr. Microsurg. 2019, 35, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Mantha, S.; Thisted, R.; Foss, J.; Ellis, J.E.; Roizen, M.F. A Proposal to Use Confidence Intervals for Visual Analog Scale Data for Pain Measurement to Determine Clinical Significance. Anesthesia Analg. 1993, 77, 1041–1047. [Google Scholar] [CrossRef]
- Depaoli, A.; Magnani, M.; Casamenti, A.; Ramella, M.; Menozzi, G.C.; Gallone, G.; Viotto, M.; Rocca, G.; Trisolino, G. Evaluation of Physical and Mental Health in Adults Who Underwent Limb-Lengthening Procedures with Circular External Fixators During Childhood or Adolescence. Children 2024, 11, 1322. [Google Scholar] [CrossRef]
- Juto, H.; Gärtner Nilsson, M.; Möller, M.; Wennergren, D.; Morberg, P. Evaluating Non-Responders of a Survey in the Swedish Fracture Register: No Indication of Different Functional Result. BMC Musculoskelet. Disord. 2017, 18, 278. [Google Scholar] [CrossRef]
Characteristics, n (%) | FFG | HC |
---|---|---|
Number of patients | 13 | 16 |
Gender | ||
Male | 11 (84.6) | 14 (87.5) |
Female | 2 (15.4) | 2 (12.5) |
Age at surgery (years), mean (SD) | 50.9 (11.9) | |
Age at follow-up (years), mean (SD) | 59.0 (10.4) | 51.1 (11.3) |
BMI (kg/m2), mean/median (SD/range) | 26.9/26.5 (4.0/21.1–33.0) | 25.9/25.4 (4.3/20.3–36.3) |
Non-smoker | 7 (53.8) | 8 (50.0) |
Smoker | 6 (46.2) | 4 (25.0) |
Follow-Up (years), mean/median (SD/range) | 8.6/9.4 (5.2/0.9–17.1) | |
Comorbidities, n (%) | ||
Cardiovascular | 7 (53.8) | 3 (18.8) |
Diabetes mellitus | 3 (23.1) | 2 (12.5) |
Neurological | 4 (30.8) | 0 (0) |
Malignancy | 2 (15.4) | 0 (0) |
Musculoskeletal | 1 (7.7) | 0 (0) |
Peripheral Artery Disease | 3 (23.1) | 0 (0) |
Kidney | 1 (7.7) | 0 (0) |
Rheumatic | 1 (7.7) | 0 (0) |
ASA Score, n (%) | ||
ASA I | 3 (23.1) | |
ASA II | 5 (38.5) | |
ASA III | 4 (30.8) | |
ASA IV | 1 (7.7) |
Etiology, n (%) | FFG (n = 13) |
Trauma | 5 (38.5) |
Infection | 4 (30.8) |
Vascular disease | 3 (23.1) |
Malignancy | 1 (7.7) |
Localization, n (%) | |
Distal third of lower leg | 5 (38.5) |
Dorsum pedis | 4 (30.8) |
Planta pedis | 3 (23.1) |
Calcaneus | 3 (23.1) |
Medial malleolus | 1 (7.7) |
Achilles tendon region | 1 (7.7) |
Lateral malleolus | 0 (0.0) |
Flap Type, n (%) | |
Gracilis flap | 7 (53.8) |
Lateral arm flap | 2 (15.4) |
Latissimus dorsi flap | 1 (7.7) |
Scapula flap | 1 (7.7) |
Vertical rectus abdominis flap | 1 (7.7) |
Medial femur condyle flap | 1 (7.7) |
Operation time (minutes), mean/median (SD/range) | 384.5/373.0 (99.2/241–571) |
Recipient Vessels, n (%) | |
A./V. tibialis posterior | 7 (53.8) |
A./V. tibialis anterior | 4 (30.8) |
A./V. dorsalis pedis | 1 (7.7) |
A./V. poplitea | 1 (7.7) |
Flap Type and Recipient Artery | |
GFF—A./V. tibialis anterior | 4 (30.8) |
GFF—A./V. tibialis posterior | 3 (23.1) |
LAF—A./V. tibialis posterior | 2 (15.4) |
LDM—A./V. tibialis posterior | 1 (7.7) |
SFF—A./V. tibialis posterior | 1 (7.7) |
VRAM—A./V. poplitea | 1 (7.7) |
MFC—A./V. dorsalis pedis | 1 (7.7) |
Arterial Anastomosis, n (%) | |
End-to-Side | 8 (61.5) |
End-to-End | 4 (30.8) |
Unknown | 1 (7.7) |
Flap Success Rate, n (%) | 13 (100%) |
Partial Flap Loss | 0 (0.0) |
Complete Flap Loss | 0 (0.0) |
Flap-Related Complications, n (%) | 5 (38.5) |
Wound healing disorder | 4 (30.8) |
Haematoma | 0 (0.0) |
Thrombosis | 1 (7.7) |
Infection | 2 (15.4) |
Seroma | 0 (0.0) |
Flap-Specific Complications Dependent on Location | |
Distal third of the lower leg | 2 |
Calcaneus | 2 |
Dorsum pedis | 1 |
Planta pedis | 1 |
Achilles tendon region | 1 |
Revision Surgery, n (%) | 4 (30.8) |
Number of Revision Surgeries | |
1 | 2 (15.4) |
2 | 1 (7.7) |
3 | 0 |
4 | 1 (7.7) |
Refinement Surgery, n (%) | |
Yes | 3 (23.1) |
No | 10 (76.9) |
FFG | HC | p-Value (FFG vs. HC) | Effect Size | Foot/Ankle | Distal Third of Lower Leg | |
---|---|---|---|---|---|---|
Number of patients (n) | 13 | 16 | 8 | 5 | ||
LEFS, mean/median (SD/range) [0–80] | 42.5/43.0 (20.5/5–80) | 68.7/78.0 (19.6/23–80) | 0.002 | 1.27 | 37.5/39.5 (19.2/5–68) | 50.6/43.0 (21.9/23–80) |
SF-36, mean/median (SD/range) [0–100] | ||||||
Pain b | 55.8/55.0 (34.5/0.0–100) | 83.8/100 (27.2/22.5–100) | 0.019 | 0.905 | 51.3/55.0 (35.1/0.0–100) | 63.0/57.5 (36.0/22.5–100) |
Physical functioning a | 55.0/45.0 (29.7/0.0–100) | 83.8/97.5 (27.2/25.0–100) | 0.013 | 0.987 | 50.0/55.0 (29.3/0.0–80.0) | 63.0/45.0 (31.7/35.0–100) |
Vitality b | 56.5/60.0 (20.6/5.0–80.0) | 63.1/67.5 (22.5/25.0–100) | 0.422 | 0.296 | 53.8/60.0 (22.3/5.0–80.0) | 61.0/65.0 (18.8/30.0–80.0) |
Physical role functioning b | 38.5/25.0 (44.0/0.0–100) | 82.8/100 (29.9/0.0–100) | 0.006 | 1.17 | 31.3/12.5 (43.8/0.0–100) | 50.0/25.0 (46.8/0.0–100) |
Emotional role functioning a | 66.7/100 (47.1/0.0–100) | 77.1/100 (37.9/0.0–100) | 0.619 | 0.24 | 62.5/100 (51.8/0.0–100) | 73.3/100 (43.5/0.0–100) |
Social functioning a | 85.6/87.5 (17.6/50.0–100) | 89.1/100 (20.3/50.0–100) | 0.374 | 0.177 | 82.8/87.5 (18.8/50.0–100) | 90.0/100 (16.3/62.5–100) |
Emotional well-being a | 70.6/80.0 (23.7/28.0–96.0) | 78.3/82.0 (18.5/44.0–100) | 0.329 | 0.354 | 69.3/80.0 (24.3/30.0–96.0) | 72.8/80.0 (25.5/28.0–92.0) |
General health b | 60.4/65.0 (25.8/20.0–90.0) | 67.8/65.0 (22.9/30.0–100) | 0.418 | 0.298 | 58.1/62.5 (25.1/20.0–90.0) | 64.0/75.0 (29.5/30.0–90.0) |
PSAS mean/median (SD/range) | ||||||
Total score [6–60] | 23.5/25.5 (13.5/6–46) | 22.7/23.0 (13.0/6–38) | 24.6/28.0 (15.6/6–46) | |||
Pain | 2.2/1.0 (2.0/1–8) | 1.6/1.0 (1.0/1–3) | 3.0/2.0 (2.9/1–8) | |||
Itch | 2.3/1.5 (1.8/1–7) | 1.7/1.0 (1.0/1–3) | 3.0/2.0 (2.6/1–7) | |||
Color | 4.9/5.0 (2.9/1–10) | 4.7/5.0 (2.6/1–9) | 5.2/5.0 (3.5/1–10) | |||
Stiffness | 4.7/5.0 (2.9/1–9) | 5.0/6.0 (3.4/1–9) | 4.2/5.0 (2.3/1–7) | |||
Thickness | 4.5/3.5 (3.0/1–9) | 4.6/3.0 (3.5/1–9) | 4.4/4.0 (2.6/1–7) | |||
Irregularity | 5.0/5.0 (3.5/1–10) | 5.1/6.0 (3.6/1–10) | 4.8/4.0 (3.7/1–10) | |||
Overall impression [1–10] | 4.4/4.0 (3.0/1–9) | 4.6/4.0 (3.3/1–9) | 4.2/4.0 (2.8/1–7) | |||
Aesthetic Likert Scale, mean/median (SD/range) [4–20] | ||||||
Total score | 14.3/15 (4.4/5–20) | 14.6/16.0 (4.8/5–20) | 13.8/13.0 (4.3/9–20) | |||
Form | 3.8/4.0 (1.2/1–5) | 3.9/4.0 (1.3/1–5) | 3.6/4.0 (1.1/2–5) | |||
Color | 3.3/3.5 (1.4/1–5) | 3.6/4.0 (1.4/1–5) | 3.0/2.0 (1.4/2–5) | |||
Texture | 3.7/4.0 (0.9/2–5) | 3.6/4.0 (1.0/2–5) | 3.8/4.0 (0.8/3–5) | |||
General appearance | 3.5/4.0 (1.2/1–5) | 3.6/4.0 (1.3/1–5) | 3.4/3.0 (1.1/2–5) | |||
Pain, mean/median (SD/range) [0–10] | ||||||
At Rest | 1.0/0.0 (1.3/0–4) | 1.2/0.5 (1.6/0–4) | 0.8/0.0 (1.1/0–2) | |||
At Activity | 3.3/3.0 (3.2/0–9) | 4.0/3.5 (3.8/0–9) | 2.4/3.0 (2.3/0–5) | |||
Footwear, n (%) | ||||||
Regular footwear | 5 (38.5) | 2 (25.0) | 3 (60.0) | |||
Orthopedic shoes | 7 (53.8) | 6 (75.0) | 1 (20.0) | |||
Orthopedic insoles | 1 (7.7) | 0 | 1 (20.0) | |||
Problems caused by footwear | 7 (53.8) | 5 (62.5) | 2 (40.0) | |||
Regular footwear | 2 | 1 | 1 | |||
Orthopedic shoes | 4 | 4 | 0 | |||
Orthopedic insoles | 1 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfeifenberger, S.; Hecker, A.; Watzinger, N.; Moshammer, M.; Pignet, A.-L.; Draschl, A.; Martin, R.; Louca, C.; Kamolz, L.-P.; Spendel, S. Long-Term Functional Outcomes and Quality of Life After Microvascular Reconstruction of Ankle and Foot Defects: A Monocentric Controlled Cohort Study. Life 2025, 15, 775. https://doi.org/10.3390/life15050775
Pfeifenberger S, Hecker A, Watzinger N, Moshammer M, Pignet A-L, Draschl A, Martin R, Louca C, Kamolz L-P, Spendel S. Long-Term Functional Outcomes and Quality of Life After Microvascular Reconstruction of Ankle and Foot Defects: A Monocentric Controlled Cohort Study. Life. 2025; 15(5):775. https://doi.org/10.3390/life15050775
Chicago/Turabian StylePfeifenberger, Sarah, Andrzej Hecker, Nikolaus Watzinger, Maximilian Moshammer, Anna-Lisa Pignet, Alexander Draschl, Ron Martin, Charalambos Louca, Lars-Peter Kamolz, and Stephan Spendel. 2025. "Long-Term Functional Outcomes and Quality of Life After Microvascular Reconstruction of Ankle and Foot Defects: A Monocentric Controlled Cohort Study" Life 15, no. 5: 775. https://doi.org/10.3390/life15050775
APA StylePfeifenberger, S., Hecker, A., Watzinger, N., Moshammer, M., Pignet, A.-L., Draschl, A., Martin, R., Louca, C., Kamolz, L.-P., & Spendel, S. (2025). Long-Term Functional Outcomes and Quality of Life After Microvascular Reconstruction of Ankle and Foot Defects: A Monocentric Controlled Cohort Study. Life, 15(5), 775. https://doi.org/10.3390/life15050775