Assessment of the Efficiency of Combined Seeding Rates of Common Vetch and Ryegrass for Controlling Weed Development in Organic Forage Cultivation Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climatic Data
2.2. Experimental Design and Sowing Procedure
2.3. Measurements and Harvesting
2.4. Statistical Analysis
3. Results
3.1. Plant Height (cm)
3.2. Green Forage Yield (kg ha)
3.3. Dry Matter Yield (kg ha)
3.4. The Effects of Treatments in the Experiment on Weeds and Weed Measurement Evaluations (g m2)
3.5. The Effects of Common Vetch and Ryegrass Mixture Ratios on Weed Species
4. Discussion
5. Conclusions
- Yield performance: Pure ryegrass (100% RG) achieved the highest forage and dry matter yields but lacked nutritional diversity.
- Balanced approach: Ryegrass-dominant mixtures (e.g., 30% V 70% RG and %60 V %40 RG) provided high yields, effective weed suppression, and improved nutritional benefits from vetch.
- Weed control: In regions with high weed pressure, ryegrass-dominant mixtures are recommended due to their superior weed suppression.
- Sustainability and efficiency: Incorporating legumes and grasses in appropriate proportions enhances the sustainability and efficiency of organic forage cropping systems.
- Practical recommendations: Farmers should tailor mixture ratios based on regional and climatic conditions and specific production goals to optimize both yield and weed management.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gallandt, E.R. How can we are get the weed seed bank? Weed Sci. 2006, 54, 588–596. [Google Scholar] [CrossRef]
- Kirchhof, G.; Möller, K.; Lindner, J. The Role of Legume-Grass Mixtures in Weed Suppression and Forage Production. Agron. J. 2017, 109, 2182–2192. [Google Scholar]
- Vyn, T.J.; Dinnes, D.L.; Lynch, J.P. Effectiveness of Legume-Grass Mixtures in Weed Suppression in Organic Forage Systems. Agric. Syst. 2018, 165, 19–28. [Google Scholar]
- Akinsanmi, O.A.; Olanrewaju, O.S.; Adeyemi, A.A. Effect of Legume-Grass Mixture son Weed Control and Forage Yield in Organic Farming Systems. Field Crops Res. 2020, 259, 107–114. [Google Scholar]
- Brooker, R.W.; Bennett, A.E.; Cong, W.-F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- Kuşvuran, A.; Kaplan, M.; Nazlı, R.I. Effects of Mixture Ratio and Row Spacing in Hungarıan Vetch (Vicia pannonica Crantz.) and Annual Ryegrass (Lolium multiflorum L.) Intercropping System on Yield and Quality Under Semi Arid Climate Conditions. Turk. J. Field Crops 2014, 19, 118–128. [Google Scholar] [CrossRef]
- Geren, H.; Soya, H.; Avcıoğlu, R. The Effect of Different Harvest Time son SomeQuality Characteristics in Annual Ryegrass and Hairy Vetch Mixtures. Ege Univ. Fac. Agric. J. 2003, 40, 17–24. [Google Scholar]
- Gonzalez-Andujar, J.L.; Fernandez-Quintanilla, C. Modelling the population dynamics of annual ryegrass (Lolium rigidum) under various weed management systems. Crop Prot. 2004, 23, 723–729. [Google Scholar] [CrossRef]
- Asci, O.O.; Acar, Z.; Arıcı, Y.K. Hay yield, quality traits and inter species competition of foragepea-triticale mixtures harvested at different stages. Turk. J. Field Crops 2015, 20, 166–173. [Google Scholar]
- Jensen, E.S.; Carlsson, G.; Hauggaard-Nielsen, H. Intercropping of grain legumes and cereal simproves the use of soil Nresources and reduces N losses. Front. Plant Sci. 2020, 11, 318. [Google Scholar]
- Giller, K.E. Nitrogen Fixation in Tropical Cropping Systems; CAB Publishing: Wallingford, UK, 2001; p. 423. [Google Scholar] [CrossRef]
- Liebman, M.; Davis, A.S. Managing Weeds in Organic Farming Systems: An Ecological Approach. In Organic Farming: The Ecological System; Wiley: Hoboken, NJ, USA, 2009; Volume 54, Chapter 8. [Google Scholar] [CrossRef]
- Arlauskienė, A.; Jablonskytė-Raščė, D.; Šarūnaitė, L.; Toleikienė, M.; Masilionytė, L.; Gecaitė, V.; Kadžiulienė, Ž. Perennial forage legume cultivation and their above-ground mass management methods for weed suppression in arable organic cropping systems. Chem. Biol. Technol. Agric. 2021, 8, 34. [Google Scholar] [CrossRef]
- Corre-Hellou, G.; Brisson, N.; Launay, M.; Fustec, J.; Crozat, Y. Functional modeling of intercropping systems: A review. Field Crops Res. 2011, 124, 247–259. [Google Scholar]
- Bàrberi, P. Weed management inorganic agriculture: Are we addressing the right issues? Weed Res. 2002, 42, 177–193. [Google Scholar] [CrossRef]
- Weisser, W.W.; Roscher, C.; Meyer, S.T.; Ebeling, A.; Luo, G.; Allan, E.; Beßler, H.; Barnard, R.L.; Buchmann, N.; Buscot, F.; et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and openquestions. Basic Appl. Ecol. 2017, 23, 1–73. [Google Scholar] [CrossRef]
- Altieri, M.A. Applying agroecology to enhance the productivity of peasant farming systems in Latin America. Environ. Dev. Sustain. 1999, 1, 197–217. [Google Scholar] [CrossRef]
- TTSM. Technical Instructions; TTSM: Ankara, Turkey, 2022. [Google Scholar]
- Liebman, M.; Davis, A.S. Integration of soil, crop and weed management in low-external-input farming systems. Weed Res. 2000, 40, 27–47. [Google Scholar] [CrossRef]
- Frankow-Lindberg, B.E.; Brophy, C.; Collins, R.P.; Connolly, J. Biodiversity effects on yield and unsown species invasion inatemperate forage system. Ann. Bot. 2009, 103, 913–921. [Google Scholar] [CrossRef]
- Dhima, K.V.; Lithourgidis, A.S.; Vasilakoglou, I.B.; Dordas, C.A. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Res. 2007, 100, 249–256. [Google Scholar] [CrossRef]
- Carlsson, G.; Huss-Danell, K. Nitrogen fixation inperennial forage legumes in the field. Plant Soil 2003, 253, 353–372. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Anderson, R.L.; Lemerle, D.; Powles, S.B. Cultural weed management. In Weed Biology and Management; Inderjit, Ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2001, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Lithourgidis, A.S.; Dordas, C.A.; Damalas, C.A.; Vlachostergios, D.N. Annual intercrops: An alternative pathway for sustainable agriculture. Aust. J. Crop Sci. 2011, 5, 396–410. [Google Scholar]
- Hauggaard-Nielsen, H.; Ambus, P.; Jensen, E.S. Inter specific competition, N use and interference with weeds inpea–barley intercropping. Field Crops Res. 2001, 70, 101–109. [Google Scholar] [CrossRef]
No | Planting Systems | Vetch (kg ha) | Ryegrass (kg ha) | Total (kg ha) |
---|---|---|---|---|
1 | 100% RG (Trinova) | 0 | 30 | 30 |
2 | 100% V (Aneto) | 100 | 0 | 100 |
3 | 10% V/90% RG | 10 | 27 | 37 |
4 | 20% V/80% RG | 20 | 24 | 44 |
5 | 30% V/70% RG | 30 | 21 | 51 |
6 | 40% V/60% RG | 40 | 18 | 58 |
7 | 50% V/50% RG | 50 | 15 | 65 |
8 | 60% V/40% RG | 60 | 12 | 72 |
9 | 70% V/30% RG | 70 | 9 | 79 |
10 | 80% V/20% RG | 80 | 6 | 86 |
11 | 90% V/10% RG | 90 | 3 | 93 |
Planting Systems | Ankara/Yenikent | Manisa/Beydere | General Average |
---|---|---|---|
%100 V | 55.3 a | 75.0 a | 65.2 a |
%90 V/%10 RG | 54.3 abc | 74.7 ab | 64.5 ab |
%80 V/%20 RG | 55.0 a | 73.7 bcd | 64.3 ab |
%70 V/%30 RG | 52.7 c | 74.7 ab | 63.7 bcd |
%60 V/%40 RG | 53.7 abc | 73.7 bcd | 63.7 bcd |
%50 V/%50 RG | 54.7 ab | 73.7 bcd | 64.2 bc |
%40 V/%60 RG | 53.0 bc | 73.7 bcd | 63.3 cd |
%30 V/%70 RG | 53.0 bc | 74.3 abc | 63.7 bcd |
%20 V/%80 RG | 54.0 abc | 73.3 cd | 63.7 bcd |
%10 V/%90 RG | 53.7 abc | 72.7 d | 63.2 d |
F | * | ** | ** |
CV (%) | 1.8 | 0.9 | 1.3 |
LSD | 1.69 | 1.1 | 1.0 |
Planting Systems | Ankara/Yenikent | Manisa/Beydere | General Average |
---|---|---|---|
%100 RG | 58.9 a | 92.3 a | 75.6 a |
%90 V/%10 RG | 51.9 e | 88.7 b | 70.3 e |
%80 V/%20 RG | 54.0 d | 88.5 bc | 71.3 cde |
%70 V/%30 RG | 54.8 d | 86.2 d | 70.5 de |
%60 V/%40 RG | 55.2 d | 87.6 bcd | 71.4 bcd |
%50 V/%50 RG | 55.8 bc | 87.1 cd | 71.5 bcd |
%40 V/%60 RG | 54.9 cd | 88.2 bc | 71.6 bc |
%30 V/%70 RG | 55.4 bcd | 88.9 b | 72.2 bc |
%20 V/%80 RG | 56.5 b | 88.2 bc | 72.4 b |
%10 V/%90 RG | 58.3 a | 91.2 a | 74.8 a |
F | ** | ** | ** |
CV (%) | 1.5 | 1.0 | 1.2 |
LSD | 1.45 | 1.59 | 1.01 |
Planting Systems | Ankara/Yenikent | Manisa/Beydere | General Average | Order Success |
---|---|---|---|---|
%100 RG | 24,933 a | 29,200 b | 27,067 a | 1 |
%100 V | 14,400 ef | 23,200 cd | 18,800 d | 7 |
%90 V/%10 RG | 12,900 f | 33,244 a | 23,072 b | 2 |
%80 V/%20 RG | 14,333 ef | 22,355 d | 18,344 d | 9 |
%70 V/%30 RG | 17,267 cd | 20,844 de | 19,056 d | 6 |
%60 V/%40 RG | 16,433 de | 26,400 bc | 21,417 bc | 4 |
%50 V/%50 RG | 15,300 def | 24,133 cd | 19,717 cd | 5 |
%40 V/%60 RG | 13,767 ef | 17,911 e | 15,839 e | 11 |
%30 V/%70 RG | 21,200 b | 23,466 cd | 22,333 b | 3 |
%20 V/%80 RG | 17,433 cd | 18,667 e | 18,050 de | 10 |
%10 V/%90 RG | 19,333 bc | 17,867 e | 18,600 d | 8 |
F | ** | ** | ** | |
CV (%) | 96.3 | 92.2 | 94.4 | |
LSD | 2774.1 | 364.6.5 | 2220.1 |
Planting Systems | Ankara/Yenikent | Manisa/Beydere | General Average | Order Success |
---|---|---|---|---|
%100 RG | 4059 ab | 5501 b | 4780 a | 1 |
%100 V | 2748 fe | 4421 cde | 3584 fg | 9 |
%90 V/%10 RG | 2840 def | 6505 a | 4673 ab | 2 |
%80 V/%20 RG | 2659 f | 3679 e | 3169 g | 11 |
%70 V/%30 RG | 3282 dc | 3849 e | 3566 fg | 10 |
%60 V/%40 RG | 3206 cde | 5161 bc | 4183 cd | 5 |
%50 V/%50 RG | 3252 cd | 4880 bcd | 4066 de | 7 |
%40 V/%60 RG | 3660 bc | 3832 e | 3747 ef | 8 |
%30 V/%70 RG | 3920 b | 5274 b | 4597 abc | 3 |
%20 V/%80 RG | 3902 b | 4246 de | 4074 de | 6 |
%10 V/%90 RG | 4512 a | 4142 de | 4327 bcd | 4 |
F | ** | ** | ** | |
CV (%) | 82.3 | 95.0 | 91.0 | |
LSD | 485.1 | 754.2 | 444.1 |
Planting Systems | Fresh Weight (g m2) | Dry Weight (g m2) |
---|---|---|
%100 RG | 39.7 e | 14.7 de |
%100 V | 107.0a | 29.8 a |
%90 V/%10 RG | 42.8 e | 13.0 e |
%80 V/%20 RG | 24.0 f | 10.7 f |
%70 V/%30 RG | 13.7 g | 9.0 f |
%60 V/%40 RG | 26.0 f | 9.8 f |
%50 V/%50 RG | 38.0 e | 13.3 de |
%40 V/%60 RG | 53.0 d | 15.2 d |
%30 V/%70 RG | 71.0 c | 19.5 c |
%20 V/%80 RG | 96.7 b | 27.0 b |
%10 YF/%90 RG | 55.5 g | 20.8 c |
F | ** | ** |
CV (%) | 9.4 | 6.8 |
LSD | 8.3 | 1.9 |
Planting Systems | Fresh Weight (g m2) | Dry Weight (g m2) |
---|---|---|
%100 RG | 49.7 bc | 22.2 bcd |
%100 V | 67.7 a | 29.3 ab |
%90 V/%10 RG | 71.3 a | 40.5 a |
%80 V/%20 RG | 48.0 bc | 19.2 de |
%70 V/%30 RG | 46.2 bc | 20.3 cde |
%60 V/%40 RG | 27.3 c | 11.7 e |
%50 V/%50 RG | 40.9 c | 25.4 bcd |
%40 V/%60 RG | 45.4 bc | 22.8 bcd |
%30 V/%70 RG | 52.4 b | 25.7 bcd |
%20 V/%80 RG | 55.1 b | 30.0 b |
%10 YF/%90 RG | 48.4 bc | 20.2 cde |
F | ** | ** |
CV (%) | 11.3 | 23.34 |
LSD | 9.6 | 6.4 |
Planting Systems | AMARE | ATXPA | AVEFA | BROIN | CHRSE | CONAR | CYNDA | CYPRO | HORMU | LACSE | LOLTE | MALNE | MATCH | MEDSA | PHRCO | POROL | PAPRH | SETVI | STEME | SONAR | SOLNI | SORHA | TRBTE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
%100 RG | - | - | 0.42 | - | - | 0.84 | 0.84 | - | 1.25 | - | 1.25 | - | 1.00 | - | - | - | - | - | - | 0.42 | - | - | - |
%100 V | 1.63 | 1.25 | 0.84 | 0.42 | - | 0.24 | - | - | - | - | - | - | 0.88 | 0.42 | - | - | - | - | 0.42 | 1.67 | - | 1.24 | 2.22 |
%90 V/ %10 RG | 1.18 | 4.60 | 0.84 | 1.67 | 0.42 | 0.42 | 1.25 | 0.42 | 0.42 | 0.42 | 1.25 | 0.84 | 1.25 | 1.25 | - | - | 0.42 | - | 0.84 | - | 1.25 | 0.90 | 1.27 |
%80 V/ %20 RG | 0.95 | 0.84 | 1.25 | 0.84 | 0.42 | 1.25 | 0.42 | 0.84 | - | 0.84 | - | - | - | 0.84 | - | - | - | 0.42 | 0.42 | 1.25 | - | - | 0.95 |
%70 V/ %30 RG | 1.33 | 2.93 | 0.55 | - | 0.84 | 0.84 | - | 1.25 | 0.84 | - | 2.09 | - | 0.42 | - | 2.51 | 1.25 | - | 0.42 | - | - | 1.25 | - | - |
%60 V/ %40 RG | 0.95 | - | - | - | 0.75 | 1.25 | 0.42 | - | 0.42 | - | - | - | - | - | - | 0.42 | - | - | - | - | - | - | |
%50 V/ %50 RG | 0.42 | - | - | 2.09 | - | 0.84 | - | - | 0.42 | 0.33 | - | 0.42 | - | - | - | - | - | - | 0.25 | - | - | - | - |
%40 V/ %60 RG | 0.49 | 1.67 | 1.25 | - | - | - | - | - | - | 0.24 | 0.42 | 0.42 | - | - | - | - | 0.84 | 0.42 | - | - | - | 0.20 | |
%30 V/ %70 RG | 0.34 | 1.25 | 1.47 | - | 0.42 | 0.84 | - | - | 1.25 | - | - | 0.84 | 0.22 | 0.25 | - | - | 0.42 | - | - | - | - | - | |
%20 V/ %80 RG | 0.57 | 2.93 | - | 0.84 | - | - | 0.42 | - | - | - | 2.09 | - | - | - | - | - | - | -- | |||||
%10 V/ %90 RG | 0.27 | 2.93 | 0.42 | 0.84 | 0.25 | - | - | - | - | 0.67 | - | - | - | - | - | 0.42 | 0.42 | - | - | - | - | - |
Planting Systems | AMARE | BROIN | CONAR | CYNDA | FUMOF | LOLTE | MALNE | PHRCO | POROL | SETVI | SILMA | SINAR | STEME | SONAR | SOLNI | SORHA | VERHE | TRBTE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
%100 RG | 0.84 | - | - | 0.84 | - | 0.63 | - | - | - | 1.68 | - | - | - | - | - | - | - | - |
%100 V | 0.42 | 0.42 | 2.10 | - | 0.42 | 1.05 | 1.26 | - | 0.74 | - | - | 0.84 | 0.53 | 0.75 | 1.68 | 0.84 | - | - |
%90 V/ %10 RG | 0.32 | - | 1.26 | - | 1.26 | 1.37 | 0.42 | - | 0.42 | 0.90 | - | 0.42 | 2.15 | 1.32 | - | - | 1.68 | 1.39 |
%80 V/ %20 RG | - | - | 0.42 | - | - | 1.47 | - | - | - | - | - | 0.32 | - | 0.46 | - | - | 0.42 | - |
%70 V/ %30 RG | - | 0.46 | - | - | 1.26 | 1.58 | - | - | - | - | - | - | 0.19 | 0.34 | 0.42 | 0.42 | - | - |
%60 V/ %40 RG | 0.15 | - | 2.10 | - | 0.84 | 0.95 | - | 0.84 | - | 0.32 | - | - | - | - | 0.42 | 0.42 | - | - |
%50 V/ %50 RG | - | - | 0.42 | - | - | 0.84 | - | - | - | - | - | 0.11 | 0.25 | 0.32 | 1.68 | - | - | - |
%40 V/ %60 RG | - | 0.32 | - | 2.65 | - | 1.79 | - | - | - | - | - | - | - | 0.32 | - | 0.42 | - | - |
%30 V/ %70 RG | - | 0.32 | - | 1.13 | - | 1.16 | - | 0.42 | - | 0.53 | 0.42 | - | - | - | - | 0.84 | - | - |
%20 V/ %80 RG | - | - | - | 1.89 | - | 1.89 | - | - | - | - | - | - | - | - | - | - | - | - |
%10 Y/ %90 RG | - | - | - | - | - | 0.74 | - | 0.42 | - | - | - | - | - | - | 0.26 | 0.42 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çağlar, H.; Kizil Aydemir, S.; Kaçan, K. Assessment of the Efficiency of Combined Seeding Rates of Common Vetch and Ryegrass for Controlling Weed Development in Organic Forage Cultivation Systems. Life 2025, 15, 731. https://doi.org/10.3390/life15050731
Çağlar H, Kizil Aydemir S, Kaçan K. Assessment of the Efficiency of Combined Seeding Rates of Common Vetch and Ryegrass for Controlling Weed Development in Organic Forage Cultivation Systems. Life. 2025; 15(5):731. https://doi.org/10.3390/life15050731
Chicago/Turabian StyleÇağlar, Hüseyin, Serap Kizil Aydemir, and Koray Kaçan. 2025. "Assessment of the Efficiency of Combined Seeding Rates of Common Vetch and Ryegrass for Controlling Weed Development in Organic Forage Cultivation Systems" Life 15, no. 5: 731. https://doi.org/10.3390/life15050731
APA StyleÇağlar, H., Kizil Aydemir, S., & Kaçan, K. (2025). Assessment of the Efficiency of Combined Seeding Rates of Common Vetch and Ryegrass for Controlling Weed Development in Organic Forage Cultivation Systems. Life, 15(5), 731. https://doi.org/10.3390/life15050731