Optimizing ALT Flap Harvest: The Role of Combined Preoperative Duplex Ultrasound and Intraoperative ICG Angiography for Perforator Selection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Study Design and Setting
2.3. Methods
2.4. Operative Technique of ICGFA-Assisted ALT Perforator Selection
2.5. Technical Details of ICGFA-Assisted Perfusion Assessment
2.6. Statistical Analysis
3. Results
3.1. Single-Perforator ALT Flaps (Group 1)
3.2. Two-Perforator ALT Flaps (Group 2)
3.3. Three-Perforator ALT Flaps (Group 3)
3.4. Comparison of Flap Harvest Times Between ICGFA-Assisted Perforator Selection Versus Conventionally Raised ALT Flaps
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALT | Anterolateral thigh perforator flap |
CCDS | Color-coded duplex ultrasonography |
LCFA | Lateral circumflex femoral artery |
ICG | Indocyanine green |
ICGFA | Indocyanine green fluorescence angiography |
STROCSS | Strengthening the reporting of cohort studies in surgery |
References
- Wei, F.; Jain, V.; Celik, N.; Chen, H.; Chuang, D.C.-C.; Lin, C. Have We Found an Ideal Soft-Tissue Flap? An Experience with 672 Anterolateral Thigh Flaps. Plast. Reconstr. Surg. 2002, 109, 2219–2226. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Chen, G.; Song, Y. The Free Thigh Flap: A New Free Flap Concept Based on the Septocutaneous Artery. Br. J. Plast. Surg. 1984, 37, 149–159. [Google Scholar] [CrossRef]
- Kimata, Y.; Uchiyama, K.; Ebihara, S.; Nakatsuka, T.; Harii, K. Anatomic Variations and Technical Problems of the Anterolateral Thigh Flap: A Report of 74 Cases. Plast. Reconstr. Surg. 1998, 102, 1517–1523. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.K.; Wykes, J.; Martin, D.T.; Niles, N. Perforator Variability in the Anterolateral Thigh Free Flap: A Systematic Review. Surg. Radiol. Anat. 2017, 39, 779–789. [Google Scholar] [CrossRef]
- Rozen, W.M.; Ashton, M.W.; Pan, W.-R.; Kiil, B.J.; McClure, V.K.; Grinsell, D.; Stella, D.L.; Corlett, R.J. Anatomical Variations in the Harvest of Anterolateral Thigh Flap Perforators: A Cadaveric and Clinical Study. Microsurgery 2009, 29, 16–23. [Google Scholar] [CrossRef]
- Rozen, W.M.; le Roux, C.M.; Ashton, M.W.; Grinsell, D. The Unfavorable Anatomy of Vastus Lateralis Motor Nerves: A Cause of Donor-Site Morbidity after Anterolateral Thigh Flap Harvest. Plast. Reconstr. Surg. 2009, 123, 1505–1509. [Google Scholar] [CrossRef] [PubMed]
- Saint-Cyr, M.; Wong, C.; Schaverien, M.; Mojallal, A.; Rohrich, R.J. The Perforasome Theory: Vascular Anatomy and Clinical Implications. Plast. Reconstr. Surg. 2009, 124, 1529–1544. [Google Scholar] [CrossRef]
- Palines, P.A.; Nungesser, M.E.; Baudoin, M.E.; Melancon, D.M.; Stalder, M.W. Thigh Perforator Exchange: Intraflap Perforator Augmentation of Anterolateral Thigh Free Flaps. Plast. Reconstr. Surg. Glob. Open 2024, 12, e6072. [Google Scholar] [CrossRef]
- Thomas, B.; Warszawski, J.; Falkner, F.; Nagel, S.S.; Schmidt, V.J.; Kneser, U.; Bigdeli, A.K. A Comparative Study of Preoperative Color-coded Duplex Ultrasonography versus Handheld Audible Dopplers in ALT Flap Planning. Microsurgery 2020, 40, 561–567. [Google Scholar] [CrossRef]
- Thomas, B.; Haug, V.; Falkner, F.; Arras, C.; Nagel, S.S.; Boecker, A.; Schmidt, V.J.; Kneser, U.; Bigdeli, A.K. A Single-center Retrospective Comparison of Duplex Ultrasonography versus Audible Doppler Regarding Anterolateral Thigh Perforator Flap Harvest and Operative Times. Microsurgery 2022, 42, 40–49. [Google Scholar] [CrossRef]
- Holm, C.; Mayr, M.; Höfter, E.; Becker, A.; Pfeiffer, U.J.; Mühlbauer, W. Intraoperative Evaluation of Skin-Flap Viability Using Laser-Induced Fluorescence of Indocyanine Green. Br. J. Plast. Surg. 2002, 55, 635–644. [Google Scholar] [CrossRef]
- Holm, C.; Tegeler, J.; Mayr, M.; Becker, A.; Pfeiffer, U.J.; Mühlbauer, W. Monitoring Free Flaps Using Laser-Induced Fluorescence of Indocyanine Green: A Preliminary Experience. Microsurgery 2002, 22, 278–287. [Google Scholar] [CrossRef]
- Pestana, I.A.; Coan, B.; Erdmann, D.; Marcus, J.; Levin, L.S.; Zenn, M.R. Early Experience with Fluorescent Angiography in Free-Tissue Transfer Reconstruction. Plast. Reconstr. Surg. 2009, 123, 1239–1244. [Google Scholar] [CrossRef]
- Liu, D.Z.; Mathes, D.W.; Zenn, M.R.; Neligan, P.C. The Application of Indocyanine Green Fluorescence Angiography in Plastic Surgery. J. Reconstr. Microsurg. 2011, 27, 355–363. [Google Scholar] [CrossRef]
- Still, J.; Law, E.; Dawson, J.; Bracci, S.; Island, T.; Holtz, J. Evaluation of the Circulation of Reconstructive Flaps Using Laser-Induced Fluorescence of Indocyanine Green. Ann. Plast. Surg. 1999, 42, 266–274. [Google Scholar] [CrossRef]
- Bigdeli, A.K.; Thomas, B.; Falkner, F.; Gazyakan, E.; Hirche, C.; Kneser, U. The Impact of Indocyanine-Green Fluorescence Angiography on Intraoperative Decision-Making and Postoperative Outcome in Free Flap Surgery. J. Reconstr. Microsurg. 2020, 36, 556–566. [Google Scholar] [CrossRef]
- Matsui, A.; Lee, B.T.; Winer, J.H.; Laurence, R.G.; Frangioni, J.V. Quantitative Assessment of Perfusion and Vascular Compromise in Perforator Flaps Using a Near-Infrared Fluorescence-Guided Imaging System. Plast. Reconstr. Surg. 2009, 124, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.T.; Matsui, A.; Hutteman, M.; Lin, S.J.; Winer, J.H.; Laurence, R.G.; Frangioni, J.V. Intraoperative Near-Infrared Fluorescence Imaging in Perforator Flap Reconstruction: Current Research and Early Clinical Experience. J. Reconstr. Microsurg. 2010, 26, 59–65. [Google Scholar] [CrossRef]
- Mathew, G.; Agha, R.; Albrecht, J.; Goel, P.; Mukherjee, I.; Pai, P.; D’Cruz, A.K.; Nixon, I.J.; Roberto, K.; Enam, S.A.; et al. STROCSS 2021: Strengthening the Reporting of Cohort, Cross-Sectional and Case-Control Studies in Surgery. Ann. Med. Surg. 2021, 72, 103026. [Google Scholar] [CrossRef] [PubMed]
- Dindo, D.; Demartines, N.; Clavien, P.-A. Classification of Surgical Complications. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Jeng, S.-F.; Tan, N. Optimizing Aesthetic and Functional Outcomes at Donor Sites. Biomed. J. 2012, 35, 219. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.; Cordts, T.; Lange, W.; Falkner, F.; Haug, V.; Aman, M.; Böcker, A.; Vollbach, F.; Gazyakan, E.; Harhaus, L.; et al. Development of a Mathematical Formula and Online Tool to Calculate the Potential Maximum Flap Width to Allow for Primary Anterolateral Thigh Donor-site Closure in Caucasians. Microsurgery 2022, 42, 641–648. [Google Scholar] [CrossRef]
- Offodile, A.C.; Aherrera, A.; Wenger, J.; Rajab, T.K.; Guo, L. Impact of Increasing Operative Time on the Incidence of Early Failure and Complications Following Free Tissue Transfer? A Risk Factor Analysis of 2,008 Patients from the ACS-NSQIP Database. Microsurgery 2017, 37, 12–20. [Google Scholar] [CrossRef]
- Childers, C.P.; Maggard-Gibbons, M. Understanding Costs of Care in the Operating Room. JAMA Surg. 2018, 153, e176233. [Google Scholar] [CrossRef]
- Maxwell, A.K.; Deleyiannis, F.W.B. Utility of Indocyanine Green Angiography in Arterial Selection during Free Flap Harvest in Patients with Severe Peripheral Vascular Disease. Plast. Reconstr. Surg. Glob. Open 2016, 4, e1097. [Google Scholar] [CrossRef]
- La Padula, S.; Hersant, B.; Meningaud, J.P. Intraoperative Use of Indocyanine Green Angiography for Selecting the More Reliable Perforator of the Anterolateral Thigh Flap: A Comparison Study. Microsurgery 2018, 38, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Ammar, H.M.; Kim, J.; Lee, K.T. Usefulness of Indocyanine Green Angiography in the Intraoperative Evaluation of Recipient Vessels for Microsurgical Lower Extremity Reconstruction in Ischemic Vasculopathy: Report of Three Cases. Microsurgery 2023, 43, 611–616. [Google Scholar] [CrossRef] [PubMed]
Total number of ALT free flaps | 53 |
Gender (female/male) | 9/44 |
Mean age [years] ± SD (range) | 48.7 ± 16.9 (18.0–83.0) |
Mean flap size [cm] (range) | 21.8 × 8.3 (6.0 × 4.0–32.0 × 15.0) |
Cause for reconstruction | |
Traumatic defect [n] (%) | 38 (71.7%) |
Infectious/chronic wound [n] (%) | 11 (20.8%) |
Oncologic defect [n] (%) | 4 (7.5%) |
Flap recipient site | |
Lower extremity [n] (%) | 38 (71.7%) |
Upper extremity [n] (%) | 9 (17.0%) |
Torso [n] (%) | 6 (11.3%) |
Group 1 (1 Perforator) | Group 2 (2 Perforators) | Group 3 (3 Perforators) | |
---|---|---|---|
Number of patients [n] (%) | 7 (13.2%) | 34 (64.2%) | 12 (22.6%) |
Gender (male/female) | 6/1 | 27/7 | 12/2 |
Mean age [years] ± SD (range) | 40.7 ± 20.9 (18–73) | 47.6 ± 19.6 (18–83) | 48.9 ± 16.7 (27–73) |
Mean flap size [cm], range | 22.0 × 9.1, 17.0 × 6.0–32.0 × 15.0 | 22.0 × 7.9, 17.6 × 4.0–28.0 × 12.0 | 21.8 × 9.0, 16.0 × 5.0–28.0 × 12.0 |
Mean operative time ± SD [min] (range) | 423.3 ± 110.8 (255–539) | 437.6 ± 110.3 (275–823) | 414.6 ± 77.6 (287–551) |
Mean flap harvest time ± SD [min](range) | 233.0 ± 53.9 (145–239) | 249.4 ± 72.8 (115–459) | 245.5 ± 48.2 (201–365) |
Subgroup 2A | Subgroup 2B | p-Value | |
---|---|---|---|
Number of dissected perforators | 2 | 1 | |
Number of patients (%) | 23 (67.6%) | 11 (32.4%) | |
Mean flap size [cm] | 22.0 × 9.1 | 22.0 × 7.9 | |
Mean operative time ± SD [min] (range) | 445.8 ± 114.9 (279–823) | 420.4 ± 103.2 (275–597) | >0.05 |
Mean flap harvest time ± SD [min] (range) | 269.2 ± 74.6 (159–459) | 211.5 ± 53.9 (115–284) | 0.02 |
Subgroup 3A | Subgroup 3B | p-Value | |
---|---|---|---|
Number of dissected perforators | 3 | 1 | |
Number of patients (%) | 7 (58.3%) | 5 (41.7%) | |
Mean flap size [cm] | 24.0 × 9.8 | 18.6 × 8.0 | |
Mean operative time ± SD [min] (range) | 428.3 ± 81.8 (295–551) | 412.0 ± 24.7 (376–442) | >0.05 |
Mean flap harvest time ± SD [min] (range) | 265.0 ± 59.6 (211–365) | 226.0 ± 27.1 (201–267) | >0.05 |
Subgroups 2A and 3A | Subgroups 2B and 3B | p-Value | |
---|---|---|---|
Number of patients (%) | 23 + 7 (65.2%) | 11 + 5 (34.8%) | |
Mean flap harvest time ± SD [min] (range) | 268.4 ± 70.9 (159–459) | 216.1 ± 46.7 (115–284) | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, B.; Falkner, F.; Didzun, O.; Panayi, A.C.; Ghanad, I.; Hundeshagen, G.; Gazyakan, E.; Kneser, U.; Bigdeli, A.K. Optimizing ALT Flap Harvest: The Role of Combined Preoperative Duplex Ultrasound and Intraoperative ICG Angiography for Perforator Selection. Life 2025, 15, 620. https://doi.org/10.3390/life15040620
Thomas B, Falkner F, Didzun O, Panayi AC, Ghanad I, Hundeshagen G, Gazyakan E, Kneser U, Bigdeli AK. Optimizing ALT Flap Harvest: The Role of Combined Preoperative Duplex Ultrasound and Intraoperative ICG Angiography for Perforator Selection. Life. 2025; 15(4):620. https://doi.org/10.3390/life15040620
Chicago/Turabian StyleThomas, Benjamin, Florian Falkner, Oliver Didzun, Adriana C. Panayi, Iman Ghanad, Gabriel Hundeshagen, Emre Gazyakan, Ulrich Kneser, and Amir K. Bigdeli. 2025. "Optimizing ALT Flap Harvest: The Role of Combined Preoperative Duplex Ultrasound and Intraoperative ICG Angiography for Perforator Selection" Life 15, no. 4: 620. https://doi.org/10.3390/life15040620
APA StyleThomas, B., Falkner, F., Didzun, O., Panayi, A. C., Ghanad, I., Hundeshagen, G., Gazyakan, E., Kneser, U., & Bigdeli, A. K. (2025). Optimizing ALT Flap Harvest: The Role of Combined Preoperative Duplex Ultrasound and Intraoperative ICG Angiography for Perforator Selection. Life, 15(4), 620. https://doi.org/10.3390/life15040620