A Prospective Pilot Study for Prognosis of Cardiac Resynchronization Therapy Super-Response Using Electrical and Mechanical Dyssynchrony Assessment in Patients with Heart Failure and Strauss Left Bundle Branch Block Criteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Acquisition and Analysis of Electrocardiograms
2.3. Acquisition and Analysis of Echocardiograms
- Global longitudinal strain (GLS)—longitudinal deformation is a deformation of the myocardium directed from the base to the tip of the heart. During systole, the ventricular fibers of the myocardium shorten with translational movement from the base to the tip.
- Global circumferential strain (GCS)—circular deformation is a shortening of the LV myocardial fibers along the circular perimeter in the plane of the short axis of the heart.
- RV free wall strain (RVFWS)—deformity of the RF and the free wall of the RV was measured in the apical four-chamber position using AutoStrain RV.
2.4. Acquisition of Cardiac Scintigraphy Data
2.5. Implantation and Programming of the CRT-D
2.6. Definition of the CRT Super-Response Criteria
2.7. Study Endpoint
2.8. Statistical Analysis, Risk Assessment and Score Creation
3. Results
3.1. Characteristics of the Study Population
3.2. EuroQoL EQ-5D, MLWHFQ and 6MWDT Characteristics
3.3. ECG Characteristics
3.4. Echocardiography Characteristics
3.5. Cardiac Scintigraphy Characteristics
3.6. Risk Stratification Analysis
3.7. Development of a Risk Model
4. Discussion
4.1. Association of Longitudinal Strain Assessed by STE with CRT Super-Response
4.2. Predictive Value of ECG Parameters in CRT Super-Response Prognosis
4.3. Association of MD Assessed by gBPS with CRT Super-Response
4.4. Prognostic Model of CRT Super-Response
- We carefully selected the variables included in the logistic regression model based on both clinical relevance and statistical significance. This selection process was guided by the existing literature and theoretical frameworks, ensuring that we focused on variables that are known to have a meaningful impact on the outcome of interest. By limiting the number of variables to those most pertinent, we aimed to reduce the complexity of the model and mitigate the risk of overfitting.
- We employed a stepwise selection method, which allowed us to iteratively add or remove variables based on their contribution to the model’s predictive power. This approach helped us identify the most significant predictors while avoiding the inclusion of extraneous variables that could lead to overfitting.
- We conducted a cross-validation procedure to assess the robustness of our model. By splitting the dataset into training and validation subsets, we were able to evaluate the model’s performance on unseen data. This process provided insights into how well the model generalizes beyond the sample used for fitting, thereby helping to identify any potential overfitting.
- We reported the model’s performance metrics, including the area under the receiver operating characteristic curve, to provide a quantitative measure of its predictive accuracy. This metric allows for an assessment of the model’s ability to discriminate between outcomes, further supporting the validity of our findings.
5. Conclusions
6. Limitations
- We recommend conducting multi-center studies that include a larger and more diverse patient population. This would help to assess the reproducibility of our findings across different healthcare settings and demographic groups.
- Future research could focus on longitudinal studies that track outcomes over time, which would provide a more comprehensive understanding of the effects observed in our pilot study.
- We encourage the use of randomized controlled trials to further validate our findings. Randomized controlled trials would allow for a more rigorous assessment of the interventions and their effects, minimizing biases that may arise in observational studies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
6MWDT | Six-minute walk distance test |
99mTc-MIBI | 99mTc-methoxy-isobutyl-isonitrile |
AUC | Area under the ROC curve |
BMI | Body mass index |
CI | Confidence interval |
CRT | Cardiac resynchronization therapy |
ECG | Electrocardiography |
eGFR | Estimated glomerular filtration rate |
FC | Functional class |
HF | Heart failure |
LVEF | Left ventricular ejection fraction |
LVPW | Left ventricle posterior wall |
M | Mean |
Me | Median |
MI | Myocardial infarction |
MPS | Myocardial perfusion scintigraphy |
NYHA | New York Heart Association |
OR | Odds ratio |
SD | Standard deviation |
TTE | Transthoracic echocardiography |
References
- Strauss, D.G.; Selvester, R.H.; Wagner, G.S. Defining left bundle branch block in the era of cardiac resynchronization therapy. Am. J. Cardiol. 2011, 107, 927–934. [Google Scholar] [CrossRef]
- Sillanmäki, S.; Lipponen, J.A.; Tarvainen, M.P.; Laitinen, T.; Hedman, M.; Hedman, A.; Kivelä, A.; Hämäläinen, H.; Laitinen, T. Relationships between electrical and mechanical dyssynchrony in patients with left bundle branch block and healthy controls. J. Nucl. Cardiol. 2019, 26, 1228–1239. [Google Scholar] [CrossRef]
- Littmann, L.; Symanski, J.D. Hemodynamic implications of left bundle branch block. J. Electrocardiol. 2000, 33 (Suppl. 2), 115–121. [Google Scholar] [CrossRef]
- Kirk, J.A.; Kass, D.A. Electromechanical dyssynchrony and resynchronization of the failing heart. Circ. Res. 2013, 113, 765–776. [Google Scholar] [CrossRef]
- Glikson, M.; Nielsen, J.C.; Kronborg, M.B.; Michowitz, Y.; Auricchio, A.; Barbash, I.M.; Barrabés, J.A.; Boriani, G.; Braunschweig, F.; Brignole, M.; et al. ESC Scientific Document Group. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur. Heart J. 2021, 42, 3427–3520. [Google Scholar] [CrossRef]
- Shoman, K.A.; Eldamanhory, H.M.; Fakhry, E.E.; Badran, H.A. Role of Strauss ECG criteria as predictor of response in patients undergoing cardiac resynchronization therapy. Egypt. Heart J. 2022, 74, 69. [Google Scholar] [CrossRef] [PubMed]
- Auricchio, A.; Prinzen, F.W. Non-responders to cardiac resynchronization therapy: The magnitude of the problem and the issues. Circ. J. 2011, 75, 521–527. [Google Scholar] [CrossRef]
- Maruo, T.; Seo, Y.; Yamada, S.; Arita, T.; Ishizu, T.; Shiga, T.; Dohi, K.; Toide, H.; Furugen, A.; Inoue, K.; et al. The speckle tracking imaging for the assessment of cardiac resynchronization therapy (START) study. Circ. J. 2015, 79, 613–622. [Google Scholar] [CrossRef]
- Seo, Y.; Ishizu, T.; Machino-Ohtsuka, T.; Yamamoto, M.; Machino, T.; Kuroki, K.; Yamasaki, H.; Sekiguchi, Y.; Nogami, A.; Aonuma, K. Incremental value of speckle tracking echocardiography to predict cardiac resynchronization therapy (CRT) responders. J. Am. Heart Assoc. 2016, 5, e003882. [Google Scholar] [CrossRef]
- Chan, Y.H.; Kuo, C.T.; Wu, L.S.; Wang, C.L.; Yeh, Y.H.; Hsu, L.A.; Ho, W.J. Combined global longitudinal strain and intraventricular mechanical dyssynchrony predicts long-term outcome in patients with systolic heart failure. Circ. J. 2016, 80, 177–185. [Google Scholar] [CrossRef]
- Fulati, Z.; Liu, Y.; Sun, N.; Kang, Y.; Su, Y.; Chen, H.; Shu, X. Speckle tracking echocardiography analyses of myocardial contraction efficiency predict response for cardiac resynchronization therapy. Cardiovasc. Ultrasound 2018, 16, 30. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.S.; Leon, A.R.; Tavazzi, L.; Sun, J.P.; Nihoyannopoulos, P.; Merlino, J.; Abraham, W.T.; Ghio, S.; Leclercq, C.; Bax, J.J.; et al. Results of the predictors of response to CRT (PROSPECT) trial. Circulation 2008, 117, 2608–2616. [Google Scholar] [CrossRef] [PubMed]
- Bax, J.J.; Delgado, V.; Sogaard, P.; Singh, J.P.; Abraham, W.T.; Borer, J.S.; Dickstein, K.; Gras, D.; Brugada, J.; Robertson, M.; et al. Prognostic implications of left ventricular global longitudinal strain in heart failure patients with narrow QRS complex treated with cardiac resynchronization therapy: A subanalysis of the randomized EchoCRT trial. Eur. Heart J. 2017, 38, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, C.T.; Peix, A.; de Amorim, F.F.; Giubbini, R.; Karthikeyan, G.; Massardo, T.; Patel, C.; Pabon, L.M.; Jimenez-Heffernan, A.; Alexanderson, E.; et al. Clinical and gated SPECT MPI parameters associated with super-response to cardiac resynchronization therapy. J. Nucl. Cardiol. 2022, 29, 1166–1174. [Google Scholar] [CrossRef]
- Peix, A.; Karthikeyan, G.; Massardo, T.; Kalaivani, M.; Patel, C.; Pabon, L.M.; Jiménez-Heffernan, A.; Alexanderson, E.; Butt, S.; Kumar, A.; et al. Value of intraventricular dyssynchrony assessment by gated-SPECT myocardial perfusion imaging in the management of heart failure patients undergoing cardiac resynchronization therapy (VISION-CRT). J. Nucl. Cardiol. 2021, 28, 55–64. [Google Scholar] [CrossRef]
- Yanagisawa, S.; Inden, Y.; Shimano, M.; Yoshida, N.; Fujita, M.; Ohguchi, S.; Ishikawa, S.; Kato, H.; Okumura, S.; Miyoshi, A.; et al. Clinical characteristics and predictors of super response to cardiac resynchronization therapy: A combination of predictive factors. Pacing Clin. Electrophysiol. 2014, 37, 1553–1564. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Y.; Hua, W.; Yang, S.; Gu, M.; Niu, H.X.; Ding, L.G.; Wang, J.; Zhang, S. A predictive model for super-response to cardiac resynchronization therapy: The QQ-LAE score. Cardiol. Res. Pract. 2020, 2020, 3856294. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, X.; Liu, C.; Yang, J.; Cheng, X.; Chen, Y.; Li, P.; He, Y.; Wang, J. Heart failure duration combined with left atrial dimension predicts super-response and long-term prognosis in patients with cardiac resynchronization therapy implantation. BioMed Res. Int. 2019, 2019, 2983752. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: Executive summary: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e876–e894. [Google Scholar] [CrossRef] [PubMed]
- Bogossian, H.; Linz, D.; Heijman, J.; Bimpong-Buta, N.Y.; Bandorski, D.; Frommeyer, G.; Erkapic, D.; Seyfarth, M.; Zarse, M.; Crijns, H.J. QTc evaluation in patients with bundle branch block. Int. J. Cardiol. Heart Vasc. 2020, 30, 100636. [Google Scholar] [CrossRef]
- Douglas, P.S.; Carabello, B.A.; Lang, R.M.; Lopez, L.; Pellikka, P.A.; Picard, M.H.; Thomas, J.D.; Varghese, P.; Wang, T.Y.; Weissman, N.J.; et al. 2019 ACC/AHA/ASE key data elements and definitions for transthoracic echocardiography: A report of the American College of Cardiology/American Heart Association task force on clinical data standards (writing committee to develop cardiovascular endpoints data standards) and the American Society of Echocardiography. J. Am. Coll. Cardiol. 2019, 74, 403–469. [Google Scholar] [CrossRef] [PubMed]
- Duvall, W.L.; Guma-Demers, K.A.; George, T.; Henzlova, M.J. Radiation reduction and faster acquisition times with SPECT gated blood pool scans using a high-efficiency cardiac SPECT camera. J. Nucl. Cardiol. 2016, 23, 1128–1138. [Google Scholar] [CrossRef]
- Stiles, M.K.; Fauchier, L.; Morillo, C.A.; Wilkoff, B.L. 2019 HRS/EHRA/APHRS/LAHRS focused update to 2015 expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing. Heart Rhythm 2020, 17, e220–e228. [Google Scholar] [CrossRef]
- Killu, A.M.; Grupper, A.; Friedman, P.A.; Powell, B.D.; Asirvatham, S.J.; Espinosa, R.E.; Luria, D.; Rozen, G.; Buber, J.; Lee, Y.H.; et al. Predictors and outcomes of “super-response” to cardiac resynchronization therapy. J. Card. Fail. 2014, 20, 379–386. [Google Scholar] [CrossRef] [PubMed]
- De Pooter, J.; El Haddad, M.; Kamoen, V.; Kallupurackal, T.T.; Stroobandt, R.; De Buyzere, M.; Timmermans, F. Relation between electrical and mechanical dyssynchrony in patients with left bundle branch block: An electro- and vectorcardiographic study. Ann. Noninvasive Electrocardiol. 2018, 23, e12525. [Google Scholar] [CrossRef]
- Bazoukis, G.; Thomopoulos, C.; Tse, G.; Tsioufis, K.; Nihoyannopoulos, P. Global longitudinal strain predicts responders after cardiac resynchronization therapy-a systematic review and meta-analysis. Heart Fail. Rev. 2022, 27, 827–836. [Google Scholar] [CrossRef]
- Kydd, A.C.; Khan, F.Z.; Ring, L.; Pugh, P.J.; Virdee, M.S.; Dutka, D.P. Development of a multiparametric score to predict left ventricular remodeling and prognosis after cardiac resynchronization therapy. Eur. J. Heart Fail. 2014, 16, 1206–1213. [Google Scholar] [CrossRef]
- D’Andrea, A.; Caso, P.; Scarafile, R.; Riegler, L.; Salerno, G.; Castaldo, F.; Gravino, R.; Cocchia, R.; Del Viscovo, L.; Limongelli, G.; et al. Effects of global longitudinal strain and total scar burden on response to cardiac resynchronization therapy in patients with ischaemic dilated cardiomyopathy. Eur. J. Heart Fail. 2009, 11, 58–67. [Google Scholar] [CrossRef]
- Knappe, D.; Pouleur, A.C.; Shah, A.M.; Cheng, S.; Uno, H.; Hall, W.J.; Bourgoun, M.; Foster, E.; Zareba, W.; Goldenberg, I.; et al. Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy Investigators. Dyssynchrony, contractile function, and response to cardiac resynchronization therapy. Circ. Heart Fail. 2011, 4, 433–440. [Google Scholar] [CrossRef]
- Kadoglou, N.P.E.; Bouwmeester, S.; de Lepper, A.G.W.; de Kleijn, M.C.; Herold, I.H.F.; Bouwman, A.R.A.; Korakianitis, I.; Simmers, T.; Bracke, F.; Houthuizen, P. The Prognostic Role of Global Longitudinal Strain and NT-proBNP in Heart Failure Patients Receiving Cardiac Resynchronization Therapy. J. Pers. Med. 2024, 14, 188. [Google Scholar] [CrossRef]
- Garcia-Seara, J.; Iglesias Alvarez, D.; Alvarez Alvarez, B.; Gude Sampedro, F.; Martinez Sande, J.L.; Rodriguez-Manero, M.; Kreidieh, B.; Fernandez-Lopez, X.A.; Gonzalez Melchor, L.; Gonzalez Juanatey, J.R. Cardiac resynchronization therapy response in heart failure patients with different subtypes of true left bundle branch block. J. Interv. Card. Electrophysiol. 2018, 52, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Caputo, M.L.; van Stipdonk, A.; Illner, A.; D’Ambrosio, G.; Regoli, F.; Conte, G.; Moccetti, T.; Klersy, C.; Prinzen, F.W.; Vernooy, K.; et al. The definition of left bundle branch block influences the response to cardiac resynchronization therapy. Int. J. Cardiol. 2018, 269, 165–169. [Google Scholar] [CrossRef]
- Bertaglia, E.; Migliore, F.; Baritussio, A.; De Simone, A.; Reggiani, A.; Pecora, D.; D’Onofrio, A.; Rapacciuolo, A.; Savarese, G.; Pierantozzi, A.; et al. Stricter criteria for left bundle branch block diagnosis do not improve response to CRT. Pacing Clin. Electrophysiol. 2017, 40, 850–856. [Google Scholar] [CrossRef]
- Shipulin, V.V.; Gonchikova, E.V.; Polikarpov, S.A.; Mochula, A.V. Association of cardiac mechanical dyssynchrony indices with data of dynamic single-photon emission computed tomography of the myocardium: The role of the time interval between the stress test and recording. Sib. J. Clin. Exp. Med. 2024, 39, 149–159. (In Russian) [Google Scholar] [CrossRef]
- Singhal, A.; Khangembam, B.C.; Seth, S.; Patel, C. Equilibrium radionuclide angiography in evaluation of left ventricular mechanical dyssynchrony in patients with dilated cardiomyopathy: Comparison with electrocardiographic parameters and speckle-tracking echocardiography. Indian. J. Nucl. Med. 2019, 34, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Patel, C.D.; Naik, N.; Sharma, G.; Roy, A. Quantitative assessment of cardiac mechanical dyssynchrony and prediction of response to cardiac resynchronization therapy in patients with non-ischaemic dilated cardiomyopathy using equilibrium radionuclide angiography. Europace 2016, 18, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xue, X.; Gu, Y.; Xu, H.; Zhang, X. Equilibrium radionuclide angiography compared with tissue doppler imaging for detection of right ventricular dyssynchrony and prediction of acute response to cardiac resynchronization therapy. Medicine 2020, 99, e19296. [Google Scholar] [CrossRef]
- Naya, M.; Manabe, O.; Koyanagawa, K.; Tamaki, N. The role of nuclear medicine in assessments of cardiac dyssynchrony. J. Nucl. Cardiol. 2018, 25, 1980–1987. [Google Scholar] [CrossRef]
- Badhwar, N.; James, J.; Hoffmayer, K.S.; O’Connell, J.W.; Green, D.; De Marco, T.; Botvinick, E.H. Utility of Equilibrium Radionuclide Angiogram-Derived Measures of Dyssynchrony to Predict Outcomes in Heart Failure Patients Undergoing Cardiac Resynchronization Therapy. J. Nucl. Med. 2016, 57, 1880–1886. [Google Scholar] [CrossRef]
- Goldenberg, I.; Moss, A.J.; Hall, W.J.; Foster, E.; Goldberger, J.J.; Santucci, P.; Shinn, T.; Solomon, S.; Steinberg, J.S.; Wilber, D.; et al. MADIT-CRT Executive Committee. Predictors of response to cardiac resynchronization therapy in the Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy (MADIT-CRT). Circulation 2011, 124, 1527–1536. [Google Scholar] [CrossRef]
- Maass, A.H.; Vernooy, K.; Wijers, S.C.; van ’t Sant, J.; Cramer, M.J.; Meine, M.; Allaart, C.P.; De Lange, F.J.; Prinzen, F.W.; Gerritse, B.; et al. Refining success of cardiac resynchronization therapy using a simple score predicting the amount of reverse ventricular remodeling: Results from the Markers and Response to CRT (MARC) study. Europace 2018, 20, e1–e10. [Google Scholar] [CrossRef] [PubMed]
Demographic and Clinical Characteristics | Overall Population (n = 54) | 1st Group Pts with CRT SR (n = 39) | 2nd Group Pts Without CRT SR (n = 15) | p2–3 |
---|---|---|---|---|
1 | 2 | 3 | ||
Age, year, M ± SD | 59.9 ± 9.8 | 60.2 ± 10.1 | 59.3 ± 9.1 | 0.801 |
Male sex, n (%) | 36 (66.6) | 26 (66.6) | 10 (66.6) | 0.990 |
EuroQoL EQ-5D, score, M ± SD | 57.7 ± 9.4 | 57.1 ± 9.8 | 59.3 ± 8.4 | 0.279 |
MLWHFQ, score, M ± SD | 59.5 ± 15.8 | 58.7 ± 17.3 | 61.4 ± 11.7 | 0.824 |
6MWDT, m, M ± SD | 299.7 ± 69.3 | 295.4 ± 68.9 | 301.4 ± 70.3 | 0.854 |
Heart failure etiology: | ||||
Ischemic, n (%) | 23 (42.6) | 17 (43.6) | 6 (40.0) | 0.694 |
Non-ischemic, n (%) | 31 (57.4) | 22 (56.4) | 9 (60.0) | 0.347 |
New York Heart Association class: | ||||
II, n (%) | 26 (48.1) | 18 (46.2) | 8 (53.3) | 0.647 |
III, n (%) | 28 (51.9) | 21 (53.8) | 7 (46.7) | 0.647 |
Arrhythmias prior to CRT-D implantation: | ||||
Sustained VT, n (%) | 3 (5.5) | 3 (7.7) | 0 (0.0) | 0.284 |
Ventricular fibrillation, n (%) | 2 (3.7) | 1 (2.6) | 1 (6.6) | 0.497 |
Paroxysmal AF, n (%) | 14 (25.9) | 11 (28.2) | 3 (20.0) | 0.549 |
Comorbidities: | ||||
Hypertension, n (%) | 17 (31.5) | 12 (30.7) | 5 (33.3) | 0.637 |
Diabetes mellitus, n (%) | 11 (20.4) | 8 (20.5) | 3 (20.0) | 0.977 |
BMI, kg/m2, M ± SD | 28.5 ± 5.2 | 28.5 ± 5.0 | 28.5 ± 5.9 | 0.706 |
Dyslipidemia, n (%) | 34 (62.9) | 26 (66.6) | 8 (53.3) | 0.374 |
eGFR, ml/min/1.73 m2, M ± SD | 72.4 ± 17.9 | 74.4 ± 18.2 | 67.3 ± 16.8 | 0.195 |
Stroke, n (%) | 4 (7.4) | 2 (5.1) | 2 (13.3) | 0.317 |
Therapy: | ||||
Beta-blockers, n (%) | 52 (96.3) | 38 (97.4) | 14 (93.3) | 0.497 |
Loop diuretics, n (%) | 26 (48.1) | 19 (48.7) | 7 (46.7) | 0.902 |
MRA, n (%) | 52 (96.3) | 37 (94.9) | 15 (100.0) | 0.392 |
ARNi, n (%) | 33 (61.1) | 25 (64.1) | 8 (53.3) | 0.437 |
SGLT2i, n (%) | 43 (79.6) | 32 (82.1) | 11 (73.3) | 0.488 |
ACEI, n (%) | 14 (25.9) | 8 (20.5) | 6 (40.0) | 0.150 |
Antiplatelet agents, n (%) | 29 (53.7) | 19 (48.7) | 10 (66.6) | 0.244 |
Lipid-lowering treatment, n (%) | 48 (88.9) | 36 (92.3) | 12 (80.0) | 0.207 |
Angiotensin II receptor blocker, n (%) | 6 (11.1) | 3 (7.7) | 3 (20.0) | 0.207 |
Amiodarone, n (%) | 21 (38.9) | 15 (38.4) | 6 (40.0) | 0.927 |
Anticoagulants, n (%) | 18 (33.3) | 14 (35.9) | 4 (26.6) | 0.530 |
Ivabradine, n (%) | 3 (5.5) | 2 (5.1) | 1 (6.6) | 0.845 |
Left ventricular lead position: | ||||
Lateral vein, n (%) | 30 (55.5) | 21 (53.8) | 9 (60.0) | 0.694 |
Posterolateral vein, n (%) | 13 (24.1) | 7 (17.9) | 6 (40.0) | 0.095 |
Anterolateral vein, n (%) | 5 (9.2) | 5 (12.8) | 0 (0.0) | 0.154 |
Posterior vein, n (%) | 2 (3.7) | 2 (5.1) | 0 (0.0) | 0.392 |
Characteristics | Pts with CRT SR (n = 39) | Pts Without CRT SR (n = 15) | p1–4 | p2–5 | ||||
---|---|---|---|---|---|---|---|---|
Baseline | 6 m. | p | Baseline | 6 m. | p | |||
1 | 2 | 3 | 4 | 5 | 6 | |||
PQ, ms | 198.2 ± 38.4 | 135.3 ± 28.1 | <0.001 | 193.6 ± 35.1 | 136.2 ± 32.1 | 0.001 | 0.931 | 0.735 |
QRS, ms | 174.3 ± 14.5 | 141.7 ± 15.4 | <0.001 | 168.0 ± 19.5 | 146.9 ± 16.7 | <0.001 | 0.324 | 0.315 |
∆QRS, ms | - | 18.6 ± 9.3 | - | - | 12.3 ± 7.3 | - | - | 0.014 |
QTc, ms | 505.8 ± 28.1 | 478.2 ± 29.3 | <0.001 | 495.1 ± 23.1 | 476.7 ± 26.8 | 0.026 | 0.199 | 0.884 |
cQTc, ms | 433.0 ± 25.3 | 435.9 ± 23.3 | 0.485 | 428.5 ± 21.3 | 430.8 ± 24.0 | 0.711 | 0.629 | 0.685 |
AA, ° | −30.0 [−40.0; −5.0] | −5.0 [−40.0; 125.0] | 0.069 | −38.0 [−48.0; −30.0] | −75.0 [−126.0; 90.0] | 0.711 | 0.132 | 0.120 |
QRS notching/slurring in leads: | ||||||||
I | 38 (97.4) | - | - | 14 (93.3) | - | - | 0.497 | - |
aVL | 38 (97.4) | - | - | 15 (100.0) | - | - | 0.562 | - |
V5 | 32 (82.0) | - | - | 10 (66.6) | - | - | 0.232 | - |
V6 | 39 (100.0) | - | - | 12 (80.0) | - | - | 0.004 | - |
QS in V1 | 15 (38.4) | - | - | 8 (53.3) | - | - | 0.332 | - |
rS in V1 | 24 (61.6) | - | - | 7 (46.7) | - | - | 0.332 | - |
QS in V2 | 7 (17.9) | - | - | 3 (20.0) | - | - | 0.874 | - |
rS in V2 | 32 (82.1) | - | - | 12 (80.0) | - | - | 0.874 | - |
S wave in leads: | ||||||||
V1, mV | 1.8 ± 0.8 | 0.8 ± 0.6 | <0.001 | 1.1 ± 0.5 | 0.8 ± 0.6 | 0.012 | 0.006 | 0.877 |
V2, mV | 2.7 ± 1.1 | 1.2 ± 0.8 | <0.001 | 1.6 ± 0.9 | 1.3 ± 0.9 | 0.239 | 0.004 | 0.877 |
V3, mV | 3.0 ± 0.9 | 1.8 ± 0.8 | <0.001 | 2.5 ± 1.1 | 1.9 ± 1.0 | 0.083 | 0.170 | 0.976 |
V6, mV | 0.0 [0.0; 0.2] | 0.1 [0.0; 0.5] | 0.047 | 0.1 [0.0; 0.4] | 0.4 [0.0; 0.8] | 0.037 | 0.185 | 0.102 |
q wave in leads: | ||||||||
I, mV | 0.0 [0.0; 0.0] | 0.2 [0.0; 0.5] | <0.001 | 0.0 [0.0; 0.0] | 0.1 [0.1; 0.5] | 0.005 | 0.757 | 0.961 |
aVL, mV | 0.0 [0.0; 0.0] | 0.2 [0.1; 0.6] | <0.001 | 0.0 [0.0; 0.1] | 0.2 [0.1; 0.5] | 0.002 | 0.469 | 0.862 |
V5, mV | 0.0 [0.0; 0.0] | 0.0 [0.0; 0.2] | 0.003 | 0.0 [0.0; 0.0] | 0.0 [0.0; 0.2] | 0.067 | 0.779 | 1.000 |
V6, mV | 0.0 [0.0; 0.0] | 0.1 [0.0; 0.5] | <0.001 | 0.0 [0.0; 0.0] | 0.1 [0.0; 0.4] | 0.007 | 0.984 | 0.892 |
Indicators | Pts with CRT SR (n = 39) | Pts Without CRT SR (n = 15) | p1–4 | p2–5 | ||||
---|---|---|---|---|---|---|---|---|
Baseline | 6 m. | p | Baseline | 6 m. | p | |||
1 | 2 | 3 | 4 | 5 | 6 | |||
GLS, % | −7.8 [−10.1; −6.0] | −9.7 [−11.5; −7.9] | <0.001 | −10.0 [−12.3; −9.8] | −12.5 [−14.7; −11.0] | <0.001 | 0.001 | <0.001 |
GCS, % | −8.0 [−8.9; −5.8] | −9.5 [−10.0; −8.0] | <0.001 | −8.4 [−8.5; −7.2] | −10.5 [−11.0; −8.9] | <0.001 | 0.216 | 0.068 |
RVFWS, % | −12.2 [−14.0; −10.0] | −13.3 [−15.0; −11.0] | <0.001 | −12.0 [−12.0; −11.0] | −13.3 [−13.3; −11.5] | <0.001 | 0.428 | 1.000 |
LVEDD, mm | 66.0 ± 6.3 | 60.4 ± 8.7 | <0.001 | 70.5 ± 8.1 | 68.5 ± 9.5 | 0.169 | 0.047 | 0.009 |
LVESD, mm | 57.4 ± 6.1 | 49.3 ± 9.8 | <0.001 | 61.1 ± 8.3 | 58.4 ± 8.7 | 0.046 | 0.182 | 0.004 |
LVEDV, mL | 240.0 ± 60.4 | 184.5 ± 65.2 | <0.001 | 258.1 ± 73.7 | 233.8 ± 78.8 | 0.015 | 0.353 | 0.047 |
LVESV, mL | 173.7 ± 49.4 | 113.4 ± 52.0 | <0.001 | 178.0 ± 58.0 | 160.4 ± 59.1 | 0.018 | 0.728 | 0.008 |
LA, mm | 45.9 ± 5.1 | 43.8 ± 4.9 | 0.001 | 47.6 ± 5.8 | 47.2 ± 5.9 | 0.480 | 0.390 | 0.039 |
RV, mm | 25.2 ± 4.4 | 24.1 ± 3.2 | 0.093 | 24.9 ± 4.1 | 24.1 ± 3.1 | 0.260 | 0.877 | 0.809 |
LVEDI, mL/m2 | 121.4 [102.6; 144.0] | 83.9 [74.0; 108.7] | <0.001 | 124.6 [106.3; 146.7] | 103.8 [86.4; 155.2] | 0.019 | 0.575 | 0.051 |
LVESI, mL/m2 | 89.6 [69.2; 101.8] | 50.8 [40.6; 74.5] | <0.001 | 89.0 [69.9; 97.7] | 69.2 [56.0; 99.6] | 0.018 | 0.854 | 0.006 |
LAI, mL/m2 | 53.3 [44.6; 66.1] | 42.1 [33.9; 54.1] | <0.001 | 58.4 [49.0; 76.6] | 53.0 [39.3; 70.2] | 0.023 | 0.311 | 0.037 |
RAI, mL/m2 | 34.7 [29.4; 61.4] | 33.8 [28.1; 45.3] | 0.017 | 40.9 [29.8; 54.5] | 39.7 [27.6; 54.9] | 0.712 | 0.869 | 0.395 |
RAV, mL | 86.5 ± 39.2 | 74.3 ± 26.2 | 0.013 | 86.9 ± 33.4 | 85.6 ± 38.2 | 0.593 | 0.801 | 0.422 |
LAV, mL | 108.9 ± 34.6 | 89.0 ± 29.8 | <0.001 | 122.9 ± 43.9 | 112.5 ± 42.1 | 0.035 | 0.306 | 0.040 |
IVS, mm | 9.9 ± 1.6 | 10.5 ± 2.1 | 0.002 | 9.4 ± 1.3 | 9.8 ± 1.5 | 0.059 | 0.434 | 0.457 |
LVPW, mm | 10.2 ± 1.2 | 10.4 ± 1.6 | 0.472 | 9.8 ± 0.9 | 9.6 ± 1.2 | 0.262 | 0.137 | 0.039 |
LVEF, % | 29.0 [25.0; 31.0] | 38.0 [35.0; 45.0] | <0.001 | 32.0 [28.0; 35.0] | 32.0 [29.0; 35.0] | 0.326 | 0.013 | <0.001 |
SV, mL | 66.2 ± 16.8 | 71.1 ± 17.2 | 0.071 | 80.1 ± 18.4 | 73.4 ± 22.7 | 0.041 | 0.019 | 0.549 |
MM, g | 272.1 ± 59.1 | 232.5 ± 63.0 | <0.001 | 264.6 ± 54.0 | 246.2 ± 63.7 | 0.209 | 0.846 | 0.411 |
MMI, g/m2 | 139.4 ± 34.3 | 119.1 ± 31.3 | <0.001 | 134.4 ± 29.1 | 123.9 ± 29.5 | 0.124 | 0.969 | 0.439 |
CI, L/min/m2 | 2.1 [1.7; 2.5] | 2.4 [1.8; 3.1] | 0.072 | 2.3 [2.1; 3.2] | 2.4 [1.7; 3.3] | 0.118 | 0.057 | 0.969 |
LVSI | 0.69 ± 0.19 | 0.59 ± 0.07 | <0.001 | 0.68 ± 0.08 | 0.67 ± 0.09 | 0.834 | 0.530 | 0.008 |
E, cm/s | 70.7 ± 24.2 | 53.8 ± 17.4 | 0.001 | 84.2 ± 35.5 | 70.0 ± 33.0 | 0.014 | 0.185 | 0.131 |
A, cm/s | 61.9 ± 22.2 | 66.5 ± 19.5 | 0.291 | 61.9 ± 23.5 | 68.1 ± 23.7 | 0.182 | 0.824 | 0.480 |
E/A | 1.40 ± 0.89 | 0.94 ± 0.63 | 0.002 | 1.62 ± 0.99 | 1.27 ± 1.02 | 0.064 | 0.505 | 0.334 |
e′, cm/s | 6.15 ± 1.93 | 6.21 ± 2.37 | 0.733 | 5.65 ± 2.04 | 6.34 ± 1.96 | 0.382 | 0.275 | 0.636 |
E/e′ | 12.2 ± 4.8 | 9.4 ± 4.7 | 0.005 | 16.5 ± 8.9 | 11.0 ± 4.0 | 0.012 | 0.046 | 0.113 |
RAA, cm/m2 | 1.79 ± 0.21 | 1.79 ± 0.21 | 0.840 | 1.89 ± 0.26 | 1.84 ± 0.31 | 0.043 | 0.231 | 0.649 |
RVS, cm/m2 | 1.78 ± 0.19 | 1.83 ± 0.21 | 0.009 | 1.86 ± 0.22 | 1.84 ± 0.26 | 0.554 | 0.364 | 0.915 |
RVSP, mmHg | 31.0 [25.0; 42.0] | 29.0 [26.0; 32.0] | 0.035 | 37.0 [30.0; 57.0] | 31.0 [28.0; 40.0] | 0.388 | 0.038 | 0.042 |
Indicators | Pts with CRT SR (n = 39) | Pts Without CRT SR (n = 15) | p1–4 | p2–5 | ||||
---|---|---|---|---|---|---|---|---|
Baseline | 6 m. | p | Baseline | 6 m. | p | |||
1 | 2 | 3 | 4 | 5 | 6 | |||
RVID, ms | 106.0 [78.0; 133.0] | 90.0 [64.0; 112.0] | 0.036 | 139.3 [93.0; 182.0] | 111.1 [89.0; 146.0] | 0.099 | 0.040 | 0.108 |
LVID, ms | 129.3 [105.0; 155.0] | 80.0 [50.0; 123.0] | <0.001 | 134.1 [123.0; 152.0] | 113.8 [81.8; 123.0] | 0.061 | 0.779 | 0.030 |
IVD, ms | 93.0 [40.0; 122.0] | 55.0 [33.0; 76.0] | 0.003 | 45.0 [15.0; 73.0] | 37.0 [11.0; 67.0] | 0.776 | 0.005 | 0.167 |
HBW LV, ° | 186.0 [126.0; 240.0] | 108.0 [72.0; 180.0] | <0.001 | 216.0 [198.0; 253.0] | 138.0 [102.0; 180.0] | 0.002 | 0.032 | 0.205 |
Phase standard deviation of the left ventricle walls: | ||||||||
AW, ° | 25.0 [16.0; 32.0] | 21.0 [9.0; 27.0] | 0.055 | 24.0 [11.0; 34.2] | 20.0 [16.0; 23.0] | 0.706 | 0.369 | 0.794 |
IW, ° | 27.0 [15.0; 32.0] | 18.0 [11.0; 28.0] | 0.214 | 40.0 [24.0; 44.0] | 33.0 [21.0; 44.0] | 0.529 | 0.021 | 0.075 |
SW, ° | 45.0 [27.0; 60.0] | 26.0 [12.0; 36.0] | <0.001 | 46.0 [39.0; 62.0] | 24.0 [17.0; 32.0] | 0.001 | 0.816 | 0.721 |
LW, ° | 11.0 [9.0; 15.0] | 17.0 [10.0; 24.0] | 0.021 | 15.0 [8.0; 22.0] | 22.0 [9.0; 44.0] | 0.115 | 0.499 | 0.523 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atabekov, T.; Smorgon, A.; Mishkina, A.; Krivolapov, S.; Sazonova, S.; Khlynin, M.; Batalov, R.; Popov, S. A Prospective Pilot Study for Prognosis of Cardiac Resynchronization Therapy Super-Response Using Electrical and Mechanical Dyssynchrony Assessment in Patients with Heart Failure and Strauss Left Bundle Branch Block Criteria. Life 2025, 15, 605. https://doi.org/10.3390/life15040605
Atabekov T, Smorgon A, Mishkina A, Krivolapov S, Sazonova S, Khlynin M, Batalov R, Popov S. A Prospective Pilot Study for Prognosis of Cardiac Resynchronization Therapy Super-Response Using Electrical and Mechanical Dyssynchrony Assessment in Patients with Heart Failure and Strauss Left Bundle Branch Block Criteria. Life. 2025; 15(4):605. https://doi.org/10.3390/life15040605
Chicago/Turabian StyleAtabekov, Tariel, Andrey Smorgon, Anna Mishkina, Sergey Krivolapov, Svetlana Sazonova, Mikhail Khlynin, Roman Batalov, and Sergey Popov. 2025. "A Prospective Pilot Study for Prognosis of Cardiac Resynchronization Therapy Super-Response Using Electrical and Mechanical Dyssynchrony Assessment in Patients with Heart Failure and Strauss Left Bundle Branch Block Criteria" Life 15, no. 4: 605. https://doi.org/10.3390/life15040605
APA StyleAtabekov, T., Smorgon, A., Mishkina, A., Krivolapov, S., Sazonova, S., Khlynin, M., Batalov, R., & Popov, S. (2025). A Prospective Pilot Study for Prognosis of Cardiac Resynchronization Therapy Super-Response Using Electrical and Mechanical Dyssynchrony Assessment in Patients with Heart Failure and Strauss Left Bundle Branch Block Criteria. Life, 15(4), 605. https://doi.org/10.3390/life15040605