Is It Possible to Accurately Evaluate the Tumor Bed After Neoadjuvant Chemotherapy Using a 14G Tru-Cut Biopsy?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Response Evaluation
2.3. Biopsies After NST and Surgery
2.4. Statistical Analysis
3. Results
3.1. Patients and Tumor Characteristics in All Cohorts
3.2. Pathology Results of the Surgical Specimen
3.3. Pathology Results of the Ultrasound-Guided Biopsy
3.4. The False-Negative Cases
3.5. The rCR Group
3.6. The rCR and Tru-Cut pCR Group
4. Discussion
Potential Reasons for Biopsy Failure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
CNB | Core needle biopsy |
DCE-MRI | Dynamic contrast-enhanced magnetic resonance imaging |
DCIS | Ductal carcinoma in situ |
FN | False negative |
FNA | Fine needle aspiration |
FNR | False negative rate |
G | Gauge |
HER2 | Human epidermal growth factor receptor 2 |
IGBx | Image-guided biopsy |
IDC | Invasive ductal carcinoma |
ILC | Invasive lobular carcinoma |
MMG | Mammography |
NPV | Negative predictive value |
NST | Neoadjuvant systemic therapy |
pCR | Pathologic complete response |
PPV | Positive predictive value |
rCR | Radiologic complete response |
RECIST | Response Evaluation Criteria in Solid Tumours |
rPR | Radiologic partial response |
T | Tesla |
TN | Triple-negative |
TNBC | Triple-negative breast cancer |
UG | Ultrasound-guided |
UGBx | Ultrasound-guided biopsy |
USG | Ultrasonography |
VAB | Vacuum-assisted biopsy |
References
- Kaufmann, M.; von Minckwitz, G.; Mamounas, E.P.; Cameron, D.; Carey, L.A.; Cristofanilli, M.; Denkert, C.; Eiermann, W.; Gnant, M.; Harris, J.R.; et al. Recommendations from an International Consensus Conference on the Current Status and Future of Neoadjuvant Systemic Therapy in Primary Breast Cancer. Ann. Surg. Oncol. 2012, 19, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Killelea, B.K.; Yang, V.Q.; Mougalian, S.; Horowitz, N.R.; Pusztai, L.; Chagpar, A.B.; Lannin, D.R. Neoadjuvant chemotherapy for breast cancer increases the rate of breast conservation: Results from the National Cancer Database. J. Am. Coll. Surg. 2015, 220, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: Meta-analysis of individual patient data from ten randomised trials. Lancet Oncol. 2018, 19, 27–39. [Google Scholar] [CrossRef]
- Ogston, K.N.; Miller, I.D.; Payne, S.; Hutcheon, A.W.; Sarkar, T.K.; Smith, I.; Schofield, A.; Heys, S.D. A new histological grading system to assess response of breast cancers to primary chemotherapy: Prognostic significance and survival. Breast 2003, 12, 320–327. [Google Scholar] [CrossRef]
- Filho, O.M.; Stover, D.G.; Asad, S.; Ansell, P.J.; Watson, M.; Loibl, S.; Geyer, C.E., Jr.; Bae, J.; Collier, K.; Cherian, M.; et al. Association of Immunophenotype with Pathologic Complete Response to Neoadjuvant Chemotherapy for Triple-Negative Breast Cancer A Secondary Analysis of the BrighTNess Phase 3 Randomized Clinical Trial. JAMA Oncol. 2021, 7, 603–608. [Google Scholar] [CrossRef]
- van Ramshorst, M.S.; van der Voort, A.; van Werkhoven, E.D.; Mandjes, I.A.; Kemper, I.; Dezentjé, V.O.; Oving, I.M.; Honkoop, A.H.; Tick, L.W.; van de Wouw, A.J.; et al. Neoadjuvant chemotherapy with or without anthracyclines in the presence of dual HER2 blockade for HER2-positive breast cancer (TRAIN-2): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2018, 19, 1630–1640. [Google Scholar] [CrossRef]
- Wuerstlein, R.; Harbeck, N. Neoadjuvant therapy for HER2-positive breast cancer. Rev. Recent Clin. Trials 2017, 12, 81–92. [Google Scholar] [CrossRef]
- Rosen, E.L.; Blackwell, K.L.; Baker, J.A.; Soo, M.S.; Bently, R.C.; Yu, D.; Samulski, T.V.; Dewhirst, M.W. Accuracy of MRI in the detection of residual breast cancer after neoadjuvan chemotherapy. AJR Am. J. Roentgenol. 2003, 181, 1275–1282. [Google Scholar] [CrossRef]
- Balu-Maestro, C.; Chapellier, C.; Bleuse, A.; Chanalet, I.; Chauvel, C.; Largillier, R. Imaging in evaluation of response to neoadjuvant breast cancer treatment benefits of MRI. Breast Cancer Res. Treat. 2002, 72, 145–152. [Google Scholar] [CrossRef]
- Woodhams, R.; Kakita, S.; Hata, H.; Iwabuchi, K.; Kuranami, M.; Gautam, S.; Hatabu, H.; Kan, S.; Mountford, C. Identification of Residual Breast Carcinoma Following Neoadjuvant Chemotherapy: Diffusion -weighted Imaging Comparison with Contrast-enhanced MR Imaging and Pathologic Findings. Radiology 2010, 254, 357–366. [Google Scholar] [CrossRef]
- Heil, J.; Kümmel, S.; Schaefgen, B.; Paepke, S.; Thomssen, C.; Rauch, G.; Ataseven, B.; Große, R.; Dreesmann, V.; Kühn, T.; et al. Diagnosis of pathological complete response to neoadjuvant chemotherapy in breast cancer by minimal invasive biopsy techniques. Br. J. Cancer 2015, 113, 1565–1570. [Google Scholar] [CrossRef] [PubMed]
- Heil, J.; Schaefgen, B.; Sinn, P.; Richter, H.; Harcos, A.; Gomez, C.; Stieber, A.; Hennigs, A.; Rauch, G.; Schuetz, F.; et al. Can a pathological complete response of breast cancer after neoadjuvant chemotherapy be diagnosed by minimal invasive biopsy? Eur. J. Cancer 2016, 69, 142–150. [Google Scholar] [CrossRef]
- Tasoulis, M.K.; Lee, H.B.; Yang, W.; Pope, R.; Krishnamurthy, S.; Kim, S.Y.; Cho, N.; Teoh, V.; Rauch, G.M.; Smith, B.D.; et al. Accuracy of Post–Neoadjuvant Chemotherapy Image-Guided Breast Biopsy to Predict Residual Cancer. JAMA Surg. 2020, 155, e204103. [Google Scholar] [CrossRef]
- Lee, H.B.; Han, W.; Kim, S.Y.; Cho, N.; Kim, K.E.; Park, J.H.; Ju, Y.W.; Lee, E.S.; Lim, S.J.; Kim, J.H.; et al. Prediction of pathologic complete response using image-guided biopsy after neoadjuvant chemotherapy in breast cancer patients selected based on MRI findings: A prospective feasibility trial. Breast Cancer Res. Treat. 2020, 182, 97–105. [Google Scholar] [CrossRef]
- Hammond, M.E.; Hayes, D.F.; Dowsett, M.; Allred, D.C.; Hagerty, K.L.; Badve, S.; Fitzgibbons, P.L.; Francis, G.; Goldstein, N.S.; Hayes, M.; et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch. Pathol. Lab. Med. 2010, 134, e48–e72. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Houssami, N.; Macaskill, P.; von Minckwitz, G.; Marinovich, M.L.; Mamounas, E. Meta-analysis of the association of breast cancer subtype and pathologic complete response to neoadjuvant chemotherapy. Eur. J. Cancer 2012, 48, 3342–3354. [Google Scholar] [CrossRef]
- van Hemert, A.K.E.; van Duijnhoven, F.H.; van Loevezijn, A.A.; Loo, C.E.; Wiersma, T.; Groen, E.J.; Peeters, M.T.F.D.V. Biopsy-Guided Pathological Response Assessment in Breast Cancer is Insufficient: Additional Pathology Findings of the MICRA Trial. Ann. Surg. Oncol. 2023, 30, 4682–4689. [Google Scholar] [CrossRef]
- Francis, A.; Herring, K.; Molyneux, R.; Jafri, M.; Trivedi, S.; Shaaban, A.; Rea, D.W. Abstract P5-16-14:NOSTRA PRELIM: A non-randomised pilot study designed to assess the ability of image-guided core biopsies to detect residual disease in patients with early breast cancer who have received neoadjuvant chemotherapy to inform the design of a planned trial. Cancer Res. 2017, 77 (Suppl. S4), P5-16-14. [Google Scholar] [CrossRef]
- Basik, M.; Cecchini, R.S.; Santos, J.F.D.L.; Umphrey, H.R.; Julian, T.B.; Mamounas, E.P.; White, J.; Lucas, P.C.; Balanoff, C.; Tan, A.R.; et al. Abstract GS5-05: Primary analysis of NRG-BR005, a phase II trial assessing accuracy of tumor bed biopsies in predicting pathologic complete response (pCR) in patients with clinical/radiological complete response after neoadjuvant chemotherapy (NCT) to explore the feasibility of breast conserving treatment without surgery. Cancer Res. 2020, 80 (Suppl. S4), GS5-05. [Google Scholar] [CrossRef]
- Burbank, F. Stereotactic breast biopsy of atypical ductal hyperplasia and ductal carcinoma in situ lesions: Improved accuracy with directional, vacuum-assisted biopsy. Radiology 1997, 202, 843–847. [Google Scholar] [CrossRef]
- Parker, S.H.; Klaus, A.J. Performing a breast biopsy with a directional, vacuum-assisted biopsy instrument. Radiographics 1997, 17, 1233–1252. [Google Scholar] [CrossRef]
- Marinovich, M.L.; Houssami, N.; Macaskill, P.; Sardanelli, F.; Irwig, L.; Mamounas, E.P.; von Minckwitz, G.; Brennan, M.E.; Ciatto, S. Meta-Analysis of Magnetic Resonance Imaging in Detecting Residual Breast Cancer After Neoadjuvant Therapy. J. Natl. Cancer Inst. 2013, 105, 321–333. [Google Scholar] [CrossRef]
- Cheng, Q.; Huang, J.; Liang, J.; Ma, M.; Ye, K.; Shi, C.; Luo, L. The Diagnostic Performance of DCE-MRI in Evaluating the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer: A Meta-Analysis. Front. Oncol. 2020, 10, 93. [Google Scholar] [CrossRef]
- Fukuda, T.; Horii, R.; Gomi, N.; Miyagi, Y.; Takahashi, S.; Ito, Y.; Akiyama, F.; Ohno, S.; Iwase, T. Accuracy of magnetic resonance imaging for predicting pathological complete response of breast cancer after neoadjuvant chemotherapy: Association with breast cancer subtype. Springerplus 2016, 5, 152. [Google Scholar] [CrossRef]
- Moskovic, E.C.; Mansi, J.L.; King, D.M.; Murch, C.R.; Smith, I.E. Mammography in the assessment of response to medical treatment of large primary breast cancer. Clin. Radiol. 1993, 47, 339–344. [Google Scholar] [CrossRef]
- Adrada, B.E.; Huo, L.; Lane, D.L.; Arribas, E.M.; Resetkova, E.; Yang, W. Histopathologic correlation of residual mammographic microcalcifications after neoadjuvant chemotherapy for locally advanced breast cancer. Ann. Surg. Oncol. 2015, 22, 1111–1117. [Google Scholar] [CrossRef]
- Kuerer, H.M.; Rauch, G.M.; Krishnamurthy, S.; Adrada, B.E.; Caudle, A.S.; DeSnyder, S.M.; Black, D.M.; Santiago, L.; Hobbs, B.P.; Lucci, A., Jr.; et al. A Clinical Feasibility Trial for Identification of Exceptional Responders in Whom Breast Cancer Surgery Can Be Eliminated Following Neoadjuvant Systemic Therapy. Ann. Surg. 2018, 267, 946–951. [Google Scholar] [CrossRef]
- Heil, J.; Pfob, A.; Sinn, H.P.; Rauch, G.; Bach, P.; Thomas, B.; Schaefgen, B.; Kuemmel, S.; Reimer, T.; Hahn, M.; et al. Diagnosing Pathologic Complete Response in the Breast After Neoadjuvant Systemic Treatment of Breast Cancer Patients by Minimal Invasive Biopsy. Ann. Surg. 2022, 275, 576–581. [Google Scholar] [CrossRef]
- Kim, Y.S.; Chang, J.M.; Moon, H.G.; Lee, J.; Shin, S.U.; Moon, W.K. Residual Mammographic Microcalcifications and Enhancing Lesions on MRI After Neoadjuvant Systemic Chemotherapy for Locally Advanced Breast Cancer: Correlation with Histopathologic Residual Tumor Size. Ann. Surg. Oncol. 2016, 23, 1135–1142. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Y.; Mao, F.; Lin, Y.; Zhang, X.; Shen, S.; Sun, Q. The Diagnostic Performance of Minimally Invasive Biopsy in Predicting Breast Pathological Complete Response After Neoadjuvant Systemic Therapy in Breast Cancer: A Meta-Analysis. Front. Oncol. 2020, 10, 933. [Google Scholar] [CrossRef]
- Pfob, A.; Sidey-Gibbons, C.; Rauch, G.; Thomas, B.; Schaefgen, B.; Kuemmel, S.; Reimer, T.; Hahn, M.; Thill, M.; Blohmer, J.U.; et al. Intelligent Vacuum-Assisted Biopsy to Identify Breast Cancer Patients With Pathologic Complete Response (ypT0 and ypN0) After Neoadjuvant Systemic Treatment for Omission of Breast and Axillary Surgery. J. Clin. Oncol. 2022, 40, 1903–1915. [Google Scholar] [CrossRef] [PubMed]
- Kuerer, H.M.; Smith, B.D.; Krishnamurthy, S.; Yang, W.T.; Valero, V.; Shen, Y.; Lin, H.; Lucci, A.; Boughey, J.C.; White, R.L.; et al. Exceptional Responders Clinical Trials Group. Eliminating breast surgery for invasive breast cancer in exceptional responders to neoadjuvant systemic therapy: A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2022, 12, 1517–1524. [Google Scholar] [CrossRef]
- Jung, J.J.; Cheun, J.H.; Kim, S.Y.; Koh, J.; Ryu, J.M.; Yoo, T.K.; Shin, H.C.; Ahn, S.G.; Park, S.; Lim, W.; et al. Omission of Breast Surgery in Predicted Pathologic Complete Response after Neoadjuvant Systemic Therapy: A Multicenter, Single-Arm, Non-inferiority Trial. J. Breast Cancer 2024, 27, 61–71. [Google Scholar] [CrossRef]
Overall n = 204 (100%) | TNBC n = 38 (18.6%) | HER2+ n = 46 (22.6%) | HR+/HER2+ n = 30 (14.7%) | HR+/HER2− n = 90 (44.1%) | ||
---|---|---|---|---|---|---|
Age, (median) | 45 (26–86) | 45 (28–74) | 46 (29–71) | 44 (26–64) | 45 (26–86) | |
Clinical tumor stage | T1 | 11 (5.4) | 2 (5.3) | 5 (10.9) | 2 (6.7) | 2 (2.2) |
T2 | 149 (73.1) | 29 (76.3) | 34 (73.9) | 15 (50) | 71 (78.9) | |
T3 | 26 (12.7) | 3 (7.9) | 6 (13.1) | 11 (36.6) | 6 (6.7) | |
T4 | 18 (8.8) | 4 (10.5) | 1 (2.1) | 2 (6.7) | 11 (12.2) | |
Clinical nodal status | N0 | 3 (7.8) | 0 | 1 (2.2) | 0 | 2 (2.2) |
N+ | 201 (92.2) | 38 (100) | 45(97.8) | 30 (100) | 88 (97.8) | |
NST | 4 (AC + T) | 117 (57.4) | 25 (65.8) | 22 (47.8) | 16 (53.3) | 54 (60) |
6 TAC | 13 (6.4) | 2 (5.3) | 1 (2.2) | 0 | 10 (11.1) | |
Other | 74 (36.2) | 11 (28.9) | 23 (50) | 14 (46.7) | 26 (28.9) | |
Initial tumor size on imaging, mm (median) | 32 (18–80) | 30 (18–45) | 27 (20–46) | 41 (20–65) | 32 (18–80) | |
Tumor histology | IDC | 159 (77.9) | 30 (78.9) | 35 (76.1) | 26 (86.6) | 68 (75.6) |
ILC | 19 (9.3) | 1 (2.6) | 5 (10.8) | 2 (6.7) | 11 (12.2) | |
Mixt | 7 (3.4) | 1 (2.6) | 0 | 0 | 6 (6.7) | |
Other | 19 (9.4) | 6 (15.9) | 6 (13.1) | 2 (6.7) | 5 (5.6) | |
Ki-67 | ≤20 | 72 (35.3) | 2 (5.3) | 14 (30.4) | 9 (30) | 47 (52.2) |
>20–50 | 82 (40.2) | 13 (15.9) | 22 (26.8) | 11 (13.4) | 36 (43.9) | |
>50 | 50 (24.5) | 23 (46) | 10(20) | 10 (20) | 7 (14) | |
Grade | 1 | 27 (13.2) | 0 | 4 (8.8) | 1 (3.3) | 22 (24.4) |
2 | 113 (55.4) | 19 (50) | 21 (45.6) | 18 (60) | 55 (61.2) | |
3 | 64 (31.4) | 19 (50) | 21 (45.6) | 11 (36.7) | 13 (14.4) | |
LVI | None | 96 (51.5) | 18 (21.1) | 20 (43.5) | 14 (46.7) | 44 (48.9) |
Present | 108 (48.5) | 20 (78.9) | 26 (56.5) | 16 (53.3) | 46 (51.1) | |
MF on surgical specimen | Yes | 29 (14.2) | 3 (7.9) | 2 (4.4) | 4 (13.39 | 20 (22.2) |
No | 175 (85.8) | 35 8 (92.1) | 44 (95.6) | 26 (86.7) | 70 (77.8) | |
rCR | 99 (48.5) | 25 (65.8) | 34 (73.9) | 22 (73.3) | 18 (20) | |
rPR | 105 (51.5) | 13 (34.2) | 12 (26.1) | 8 (26.7) | 72 (80) |
Total n = 204 (%) | TNBC n = 38 (%) | HER2+ n = 46 (%) | HR+/HER2+ n = 30 (%) | HR+/HER2− n = 90 (%) | |
---|---|---|---|---|---|
In surgical specimen | |||||
No residual disease (ypT0 = pCR) | 69 (33.8) | 18 (47.4) | 27 (58.7) | 17 (56.7) | 7 (7.8) |
Residual disease | 135 (66.2) | 20 (52.6) | 19 (41.3) | 13 (43.3) | 83 (92.2) |
Residual in situ disease (ypTis) | 6 (2.9) | 0 | 4 (8.7) | 1 (3.3) | 1 (1.1) |
Residual invasive disease | 129 (63.3) | 20 (52.6) | 15 (32.6) | 12 (40) | 82 (91.1) |
ypT1mic | 15 (7.4) | 3 (7.9) | 5 (10.8) | 2 (6.7) | 5 (5.6) |
ypT1a | 17 (8.3) | 4 (10.5) | 3 (6.5) | 1 (3.3) | 9 (10) |
ypT1b | 17 (8.3) | 2 (5.3) | 3 (6.5) | 3 (10) | 9 (10) |
ypT1c | 31 (15.2) | 2 (5.3) | 2 (4.4) | 2 (6.7) | 25 (27.7) |
ypT2+ | 49 (24.1) | 9 (23.6) | 2 (4.4) | 4 (13.3) | 34 (37.8) |
In UGBx | |||||
No residual disease, pCR | 83 (40.7) | 19 (50) | 29 (63.1) | 18 (60) | 17 (18.9) |
Residual disease | 121 (59.3) | 19 (50) | 17 (36.9) | 12 (40) | 73 (81.1) |
Residual in situ disease | 11 (5.4) | 1 (2.6) | 5 (10.8) | 3 (10) | 2 (2.2) |
Residual invasive disease | 110 (53.9) | 18 (47.4) | 12 (26.1) | 9 (30) | 71 (78.9) |
True negative cases, (n) | 68 | 18 | 26 | 17 | 7 |
True positive cases, (n) | 120 | 19 | 16 | 12 | 73 |
False negative cases, (n) | 15 | 1 | 3 | 1 | 10 |
False positive cases, (n) | 1 | 0 | 1 | 0 | 0 |
FNR, % | 11.1 | 5 | 15.8 | 7.7 | 12.1 |
Sensitivity, % | 88.9 | 95 | 84.2 | 92.3 | 87.9 |
PPV, % | 99.2 | 100 | 94.1 | 100 | 100 |
NPV, % | 81.9 | 94.7 | 89.7 | 94.4 | 41.2 |
Specificity, % | 98.6 | 100 | 96.3 | 100 | 100 |
Accuracy, % | 92.2 | 97.4 | 91.3 | 96.7 | 88.9 |
Patient | Subtype | Clinical Stage and Tumor Size on MRI, mm | Grade | Histopathology in Surgical Specimen | Ki-67 | Number of Cores, (n) | rCR |
---|---|---|---|---|---|---|---|
Patient 1 | TNBC | T2N1, 42 * | 2 | 1.5 mm, IDC | 80 | 6 | present |
Patient 2 | Her2+ | T2N1, 25 * | 3 | 1 mm, IDC | 20 | 6 | present |
Patient 3 | Her2+ | T2N1, 34 * | 3 | 1 mm, IDC | 50 | 6 | present |
Patient 4 | Her2+ | T3N1, 53 * | 2 | 1 mm, IDC | 50 | 6 | present |
Patient 5 | HR+/Her2+ | T2N1, 35 * | 2 | 1 mm, IDC | 40 | 7 | present |
Patient 6 | HR+/Her2− | T1N1, 18 | 1 | 5 mm, IDC | 3 | 6 | present |
Patient 7 | HR+/Her2− | T2N1, 22 | 2 | 1 mm, IDC | 22 | 5 | present |
Patient 9 | HR+/Her2− | T2N1, 25 | 2 | 10 mm, IDC | 25 | 5 | none |
Patient 8 | HR+/Her2− | T2N1, 22 | 2 | 5 mm, ILC | 12 | 5 | none |
Patient 10 | HR+/Her2− | T2N1, 25 | 2 | 10 mm, IDC | 25 | 4 | none |
Patient 11 | HR+/Her2− | T2N1, 28 * | 2 | 1 mm, IDC | 50 | 6 | present |
Patient 12 | HR+/Her2− | T2N2, 22 * | 2 | 1.2 mm, IDC | 50 | 4 | present |
Patient 13 | HR+/Her2− | T2N2, 25 * | 2 | 5 mm, ILC | 10 | 6 | present |
Patient 14 | HR+/Her2− | T3N1, 55 | 2 | 10 mm, IDC | 25 | 4 | none |
Patient 15 | HR+/Her2− | T3N1, 55 | 2 | 12 mm, IDC | 60 | 4 | none |
Overall n = 99 | TNBC n = 25 | HER2+ n = 34 | HR+/HER2+ n = 22 | HR+/HER2− n = 18 | |
---|---|---|---|---|---|
pCR | 68 (68.7) | 18 (72) | 26 (76.5) | 17 (77.3) | 7 (38.9) |
Residual in situ disease | 4 (4.1) | 0 | 3 (8.8) | 1 (4.5) | 0 |
Residual invasive disease | 27 (27.2) | 7 (28) | 5 (14.7) | 4 (18.2) | 11 (61.1) |
True negative | 68 (68.7) | 18 (72) | 26 (76.5) | 17 (77.3) | 7 (38.9) |
True positive | 23 (23.2) | 6 (24) | 5 (14.7) | 4 (18.2) | 8 (44.4) |
False negative | 8 (8.1) | 1 (4) | 3 (8.8) | 1 (4.5) | 3 (16.6) |
False positive | 0 | 0 | 0 | 0 | 0 |
FNR, % | 25.8 | 14.3 | 37.5 | 20 | 27.2 |
Sensitivity, % | 74.2 | 85.7 | 62.5 | 80 | 72.8 |
PPV, % | 100 | 100 | 100 | 100 | 100 |
NPV, % | 89.3 | 94.7 | 89.7 | 94.4 | 70 |
Specificity, % | 100 | 100 | 100 | 100 | 100 |
Accuracy, % | 92.1 | 96 | 91.2 | 95.5 | 83.3 |
Primary Analysis | Subgroup Analysis | |||
---|---|---|---|---|
Overall Group, n = 204 | Residual Disease in Tru-Cut Bx (n = 121) | No Residual Disease in Tru-Cut Bx (n = 83) | Residual Disease in Tru-Cut Bx OR rPR (n = 128) | No Residual Disease in Tru-Cut Bx AND rCR (n = 76) |
No residual disease in surgical specimen (n = 69) | 1 (FP) | 68 (TN) | 1 (FP) | 68 (TN) |
Residual disease in surgical specimen (n = 135) | 120 (TP) | 15 (FN) | 127 (TP) | 8 (FN) |
FNR, (%) | 11.1 | 5.9 | ||
NPV, (%) | 81.9 | 89.5 | ||
PPV, (%) | 99.2 | 99.2 | ||
Specificity, (%) | 98.6 | 98.6 | ||
Sensitivity, (%) | 88.9 | 94.1 | ||
Accuracy, (%) | 92.2 | 95.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilic, B.; Bademler, S.; Ilhan, B.; Kizildag Yirgin, I.; Yilmaz, R.; Bayram, A.; Karanlik, H. Is It Possible to Accurately Evaluate the Tumor Bed After Neoadjuvant Chemotherapy Using a 14G Tru-Cut Biopsy? Life 2025, 15, 604. https://doi.org/10.3390/life15040604
Kilic B, Bademler S, Ilhan B, Kizildag Yirgin I, Yilmaz R, Bayram A, Karanlik H. Is It Possible to Accurately Evaluate the Tumor Bed After Neoadjuvant Chemotherapy Using a 14G Tru-Cut Biopsy? Life. 2025; 15(4):604. https://doi.org/10.3390/life15040604
Chicago/Turabian StyleKilic, Berkay, Suleyman Bademler, Burak Ilhan, Inci Kizildag Yirgin, Ravza Yilmaz, Aysel Bayram, and Hasan Karanlik. 2025. "Is It Possible to Accurately Evaluate the Tumor Bed After Neoadjuvant Chemotherapy Using a 14G Tru-Cut Biopsy?" Life 15, no. 4: 604. https://doi.org/10.3390/life15040604
APA StyleKilic, B., Bademler, S., Ilhan, B., Kizildag Yirgin, I., Yilmaz, R., Bayram, A., & Karanlik, H. (2025). Is It Possible to Accurately Evaluate the Tumor Bed After Neoadjuvant Chemotherapy Using a 14G Tru-Cut Biopsy? Life, 15(4), 604. https://doi.org/10.3390/life15040604