Insights from Lentil Germplasm Resources Leading to Crop Improvement Under Changing Climatic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Planting Conditions
2.2. Weather Data Collection
2.3. Agro-Morphological Data Collection
2.4. Statistical Analysis
3. Results
3.1. Weather Data
3.2. Agronomic Traits
3.3. Variation in Quantitative Traits
3.4. Heritability (H) Analysis
3.5. Pearson Correlation Matrix
3.6. Principal Component Analysis (PCA)
3.7. Cluster Analysis
3.7.1. Hierarchical Cluster Analysis
3.8. Harvest Index and Selection Score
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramsay, L.; Koh, C.S.; Kagale, S.; Gao, D.; Kaur, S.; Haile, T.; Gela, T.S.; Chen, L.-A.; Cao, Z.; Konkin, D.J. Genomic rearrangements have consequences for introgression breeding as revealed by genome assemblies of wild and cultivated lentil species. Biorxiv 2021, 2007–2021. [Google Scholar]
- Ahmad, N.S.; Moradi, N.; Rafaat, J.G.; Mohammed, D.J. Genetic variability and heritability estimates of agronomic traits in lentil (Lens culinaris Medik). Rom. Agric. Res. 2021, 38, 9–20. [Google Scholar]
- Akkati, V.R.; Chauhan, C.; Verma, S.; Mane, O. Exploring Genetic Variability Parameters for Yield and its Contributing Traits in Lentil (Lens culinaris L. Medik). J. Exp. Agric. Int. 2024, 46, 1–7. [Google Scholar] [CrossRef]
- Chaturvedi, H.P.; Rao, D.P.; Dey, S. Genetic variation in Lentil (Lens culinaris Medikus) genotypes. Indian J. Appl. Pure Bio. 2023, 38, 581–596. [Google Scholar]
- Hussain, S.A.; Iqbal, M.S.; Akbar, M.; Arshad, N.; Munir, S.; Ali, M.A.; Masood, H.; Ahmad, T.; Shaheen, N.; Tahir, A.; et al. Estimating genetic variability among diverse lentil collections through novel multivariate techniques. PLoS ONE 2022, 17, e0269177. [Google Scholar] [CrossRef]
- Hussan, S.; Khuroo, N.S.; Lone, A.A.; Dar, Z.A.; Dar, S.A.; Dar, E.A. Genetic variability and diversity for various agro morphological traits in lentil (Lens culinaris M.). J. Pharmacogn. Phytochem. 2018, 7, 2468–2471. [Google Scholar]
- Joshi, M.; Timilsena, Y.; Adhikari, B. Global production, processing and utilization of lentil: A review. J. Integr. Agric. 2017, 16, 2898–2913. [Google Scholar] [CrossRef]
- Khatun, H.; Emi, F.R.; Rahman, M.M.; Hasan, A.K.; Hossain, M.A.; Hossain, M.A. Phenotypic and genetic variability and genetic divergence in lentil (Lens culinaris Medik.) germplasm. Funct. Plant Breed. J. 2022, 4. Available online: http://159.89.122.252/fpbj/index.php/fpbj/article/view/139 (accessed on 5 September 2024). [CrossRef]
- Meena, J.K.; Singh, A.; Dikshit, H.K.; Mishra, G.P.; Aski, M.; Srinivasa, N.; Gupta, S.; Singh, D.; Tripathi, A. Screening of Lentil (Lens culinaris Medikus sub sp. culinaris) Germplasm against Fusarium Wilt (Fusarium oxysporum f. sp. lentis). Int. J. Curr. Microbiol. App. Sci 2017, 6, 2533–2541. [Google Scholar]
- Roy, A.; Sarkar, A.; Roy, S.K.; Debnath, M.K. Genetic Variability and Character Association Study for Yield and Attributing Traits in Lentil (Lens culinaris Medikus.) under Terai Agro-climatic Conditions of West Bengal. Int. J. Plant Soil Sci. 2022, 34, 714–721. [Google Scholar] [CrossRef]
- Takele, E.; Mekbib, F.; Mekonnen, F. Genetic variability and characters association for yield, yield attributing traits and protein content of lentil (Lens culinaris Medikus) genotype in Ethiopia. CABI Agric. Biosci. 2022, 3, 9. [Google Scholar] [CrossRef]
- Kumar, J.; Gupta, D.S.; Kumar, S.; Gupta, S.; Singh, N.P. Current Knowledge on Genetic Biofortification in Lentil. J. Agric. Food Chem. 2016, 64, 6383–6396. [Google Scholar] [CrossRef] [PubMed]
- Faris, M.A.-I.E.; Takruri, H.R.; Issa, A.Y. Role of lentil (Lens culinaris L.) in human health and nutrition: A review. Mediterr. J. Nutr. Metab. 2013, 20, 291–294. [Google Scholar] [CrossRef]
- Migliozzi, M.; Thavarajah, D.; Thavarajah, P.; Smith, P. Lentil and kale: Complementary nutrient-rich whole food sources to combat micronutrient and calorie malnutrition. Nutrients 2015, 7, 9285–9298. [Google Scholar] [CrossRef] [PubMed]
- Smýkal, P.; Coyne, C.J.; Ambrose, M.J.; Maxted, N.; Schaefer, H.; Blair, M.W.; Berger, J.; Greene, S.L.; Nelson, M.N.; Besharat, N.; et al. Legume Crops Phylogeny and Genetic Diversity for Science and Breeding. Crit. Rev. Plant Sci. 2015, 34, 43–104. [Google Scholar] [CrossRef]
- Bilal, M.; Jamil, M.; Ali, A.; Ilyas, M.K.; Ghafoor, A. Multivariate analysis of genetic diversity in lentil (Lens culinaris) germplasm. Fresenius Environ. Bull. 2018, 27, 2151–2159. [Google Scholar]
- Pandey, S.; Bhatore, A. Genetic diversity analysis for quantitative traits in indigenous germplasm of lentil in Madhya Pradesh. J. Pharmacogn. Phytochem. 2018, 7, 279–283. [Google Scholar]
- Sorecha, E.M.; Daba, N.A. Evaluation of Lentil Genotypes ( Lens culinaris Medikus ) for Growth and Yield Performances across Climate Conditions of Central Highlands of Ethiopia. Turk. J. Agric.—Food Sci. Technol. 2018, 6, 1575–1581. [Google Scholar] [CrossRef]
- Ahamed, K.; Akhter, B.; Islam, M.; Humaun, M.; Alam, M. Morphological characterization and genetic diversity in lentil (Lens culinaris medikus ssp. Culinaris) germplasm. Int. J. Agric. Res. Innov. Technol. 2014, 4, 70–76. [Google Scholar] [CrossRef]
- Mitache, M.; Baidani, A.; Bencharki, B.; Idrissi, O. Exploring genetic variability under extended photoperiod in lentil (Lens culinaris Medik): Vegetative and phenological differentiation according to genetic material’s origins. Plant Methods 2024, 20, 9. [Google Scholar] [CrossRef]
- Muhammad, R.; Sadia, K.; Aqsa, T.; Masood, Q.; Muhammad, S.S.; Busharat, H.; Gulfam, R. Characterization and correlation analysis of economically important parameters of lentil exotic germplasm. J. Plant Breed. Crop Sci. 2018, 10, 319–323. [Google Scholar] [CrossRef]
- Ministry of National Food Security & Research, Economic Wing. Crops Area & Production (District Wise) 2022–2023; Government of Pakistan: Isalambad, Pakistan, 2024. Available online: https://mnfsr.gov.pk/SiteImage/Downloads/Crops%20Area%20AND%20Production%20by%202022-23.pdf (accessed on 10 October 2024).
- Sajjad, M.; Akhtar, K.P.; Ullah, N.; Asghar, M.J. Incidence, Characterization and Pathogenicity of Seed-Borne Fungi of Lentil (Lens culinaris L.) in Pakistan. Ceylon J. Sci. 2024, 53. [Google Scholar]
- Nourin, A.; Kiran, A.; Kaukab, S.; Rehman, A.; Saeed, M.S. Evaluation of Lentil Genepool for Yield and Some Yield Related Attributes. Univers. J. Agric. Res. 2019, 7, 32–62. [Google Scholar] [CrossRef]
- Qasim, M.; Mehmood, I.; Hassan, S.; Abbas, M.; Saeed, R. Factors Affecting Lentil Acreage in the Pothwar Region of Pakistan’s Punjab. Res. J. Econ. Bus. ICT 2013, 8. [Google Scholar]
- Tahir, A.; Ilyas, M.K.; Sardar, M.M.; Pouya, A.K.; Rasouli, F.; Bibi, A.; Jabeen, Z.; Sajjad, M.; Siddiqui, S.U.; Ghafoor, A. Selection criteria for yield potential in a large collection of Vigna radiata (L.) accessions. Euphytica 2020, 216, 138. [Google Scholar]
- Adem, A.; Tesso, B. Phenotypic Characterization and Assessment of Genetic Diversity for Agro-Morphological Traits of Ethiopian Chickpea (Cicer arietinum L.) landraces. Black Sea J. Agric. 2019, 2, 146–155. [Google Scholar]
- Ahmed, A.A.; Abdel-Wahab, E.I.; Ghareeb, Z.E.; Ashrei, A.A. Morphological characterization and agronomic traits of some lupine genotypes. Egypt. J. Agric. Res. 2023, 101, 477–496. [Google Scholar]
- Ghafoor, A.; Zubair, M.; Malik, B.A.; Iqbal, S.M. Evaluation of selected germplasm of mungbean (Vigna radiata (L.) Wilczek). Pak. J. Bot. 1992, 24, 112–118. [Google Scholar]
- Ghafoor, A.; Sharif, A.; Ahmad, Z.; Zahid, M.A.; Rabbani, M.A. Genetic diversity in blackgram (Vigna mungo L. Hepper). Field Crops Res. 2001, 69, 183–190. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Hussain, S.A.; Arshad, N.; Munir, S.; Ali, M.A.; Masood, H.; Ghafoor, A. Exploring new sources of viral resistance in cowpea germplasm and its elaboration through multivariate analysis. Legume Res.-Int. J. 2021, 44, 673–678. [Google Scholar]
- Kidaha, M.L.; Kariuki, W.; Rimberia, F.K.; Wekesa, R.K. Evaluation of morphological diversity of tamarind (Tamarindus indica) accessions from Eastern parts of Kenya. J. Hortic. For. 2019, 11, 1–7. [Google Scholar]
- Nisar, M.; Ghafoor, A.; Ahmad, H.; Khan, M.R.; Qureshi, A.S.; Ali, H.; Islam, M. Evaluation of genetic diversity of pea germplasm through phenotypic trait analysis. Pak. J. Bot. 2008, 40, 2081–2086. [Google Scholar]
- Sayed, M.R.I.; Alshallash, K.S.; Safhi, F.A.; Alatawi, A.; ALshamrani, S.M.; Dessoky, E.S.; Althobaiti, A.T.; Althaqafi, M.M.; Gharib, H.S.; Shafie, W.W.M. Genetic diversity, analysis of some agro-morphological and quality traits and utilization of plant resources of alfalfa. Genes 2022, 13, 1521. [Google Scholar] [CrossRef] [PubMed]
- Sher, A.; Kashıf, M.; Sattar, A.; Qayyum, A.; Ul-Allah, S.; Nawaz, A.; Manaf, A. Characterization of peanut (Arachis hypogaea L.) germplasm for morphological and quality traits in an arid environment. Turk. J. Field Crops 2019, 24, 132–137. [Google Scholar]
- Singh, T.; Radotra, S.; Deb, D. Evaluation of white clover (Trifolium repens L.) germplasm for different agro-morphological traits diversity in Mid-Himalayan region. Legume Res.-Int. J. 2021, 44, 766–772. [Google Scholar]
- Vaz, D.D.C.; Morais, O.P.D.; Peixoto, N. Agro-morphological characterization and genetic divergence assessment in bush snap bean genotypes. Pesqui. Agropecu. Trop. 2017, 47, 134–144. [Google Scholar] [CrossRef]
- Gaad, D.; Laouar, M.; Gaboun, F.; Abdelguerfi, A. Collection and agro morphological characterization of Algerian accessions of lentil (Lens culinaris). Biodiversitas J. Biol. Divers. 2018, 19, 183–193. [Google Scholar] [CrossRef]
- Mohammed, N.A.; Refay, Y.A.; Migdadi, H.M.; Al-Somain, B.H.; Muharram, A.A.; Al-Selwey, W.A.; Abdela, K.A.; Alghamdi, S.S.; Farooq, M. Agro-morphological characterization of lentil genotypes in dry environments. Int. J. Agric. Biol. 2019, 22, 1320–1330. [Google Scholar]
- Pouresmael, M.; Zahravi, M.; Ghanbari, A.A. Evaluation and characterization of ICARDAelite germplasm of lentil. Iran. J. Genet. Plant Breed. 2018, 7, 9–23. [Google Scholar]
- Rahimi, M.H.; Houshmand, S.; Khadambashi, M.; Ghasemi Siani, N. Study of genetic diversity and relationships between agronomic traits in lentil. Iran. J. Pulses Res. 2018, 9, 100–113. [Google Scholar]
- Singh, M.; Kumar, S.; Basandrai, A.K.; Basandrai, D.; Malhotra, N.; Saxena, D.R.; Gupta, D.; Sarker, A.; Singh, K. Evaluation and identification of wild lentil accessions for enhancing genetic gains of cultivated varieties. PLoS ONE 2020, 15, e0229554. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, K.; Kumari, J.; Gore, P.G.; Mishra, D.C.; Singh, A.K.; Mishra, G.P.; Gayacharan, C.; Dikshit, H.K.; Singh, N.; Semwal, D.P. Agro-morphological characterization of lentil germplasm of Indian national genebank and development of a core set for efficient utilization in lentil improvement programs. Front. Plant Sci. 2022, 12, 751429. [Google Scholar]
- Sultana, T.; Nadeem, S.; Fatima, Z.; Ghafoor, A. Identification of elite pure-lines from local lentil germplasm using diversity index based on quantitative traits. Pak. J. Bot. 2010, 42, 2249–2256. [Google Scholar]
- International Board for Plant Genetic Resources (IBPGR); International Center for Agricultural Research in the Dry Areas (ICARDA). Lentil Descriptors; Bioversity: Rome, Italy, 1985. [Google Scholar]
- Popat, R.; Patel, R.; Parmar, D. Variability: Genetic variability analysis for plant breeding research. R Package Version 2020, 3, 144–151. [Google Scholar]
- Sarkar, M.; Kundagrami, S. Multivariate analysis in some genotypes of mungbean [Vigna radiata (L.) Wilczek] on the basis of agronomic traits of two consecutive growing cycles. Legume Res.-Int. J. 2016, 39, 523–527. [Google Scholar]
- Dugassa, A.; Legesse, H.; Geleta, N. Genetic Variability, Yield and Yield Associations of Lentil (Lens culinaris Medic.) Genotypes Grown at Gitilo Najo, Western Ethiopia. Sci. Technol. Arts Res. J. 2015, 3, 10. [Google Scholar] [CrossRef]
- Fikiru, E.; Tesfaye, K.; Bekele, E. Genetic diversity and population structure of Ethiopian lentil (Lens culinaris Medikus) landraces as revealed by ISSR marker. Afr. J. Biotechnol. 2007, 6, 1460–1468. [Google Scholar]
- Hussain, N.; Yaqoob, M.; Rashid, A. Genetic competition among lentil (Lens culinaris) candidate lines for yield and yield components under rainfed conditions. J. Agric. Res. 2014, 52, 53–66. [Google Scholar]
- Asghar, M.J.; Abbas, G.; Shah, T.M.; Atta, B.M. Study of genetic diversity in some local and exotic lentil (Lens culinaris medik) genotypes. Pak. J. Bot. 2010, 42, 2681–2690. [Google Scholar]
- Sultana, T.; Ghafoor, A.; Ashraf, M. Genetic divergence in lentil germplasm for botanical descriptors in relation with geographic origin. Pak. J. Bot. 2005, 37, 61–69. [Google Scholar]
- Ullah, J.; Shah, A.H.; Nisar, M.; Khan, W.; Khan, U.; Khan, J.; Ahmad, H. Biochemical characterization of lentil germplasm for genetic diversity. Plant Cell. Biotechnol. Mol. Biol. 2016, 17, 7–13. [Google Scholar]
- Sita, K.; Sehgal, A.; Kumar, J.; Kumar, S.; Singh, S.; Siddique, K.H.M.; Nayyar, H. Identification of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Front. Plant Sci. 2017, 8, 744. [Google Scholar]
- Covell, S.; Ellis, R.H.; Roberts, E.H.; Summerfield, R.J. The influence of temperature on seed germination rate in grain legumes: I. A comparison of chickpea, lentil, soyabean and cowpea at constant temperatures. J. Exp. Bot. 1986, 37, 705–715. [Google Scholar] [CrossRef]
- Summerfield, R.J.; Roberts, E.H.; Erskine, W.; Ellis, R.H. Effects of Temperature and Photoperiod on Flowering in Lentils (Lens culinaris Medic.). Ann. Bot. 1985, 56, 659–671. [Google Scholar] [CrossRef]
- Baxevanos, D.; Kargiotidou, A.; Noulas, C.; Kouderi, A.M.; Aggelakoudi, M.; Petsoulas, C.; Tigka, E.; Mavromatis, A.; Tokatlidis, I.; Beslemes, D.; et al. Lentil Cultivar Evaluation in Diverse Organic Mediterranean Environments. Agronomy 2024, 14, 790. [Google Scholar] [CrossRef]
- Erskine, W.; El Ashkar, F. Rainfall and temperature effects on lentil (Lens culinaris) seed yield in Mediterranean environments. J. Agric. Sci. 1993, 121, 347–354. [Google Scholar]
- Bejiga, G.; Anbessa, Y. Waterlogging tolerance in lentil. LENS Newsl. 1995, 22, 8–10. [Google Scholar]
- Jayasundara, H.P.S.; Thomson, B.D.; Tang, C. Responses of cool season grain legumes to soil abiotic stresses. Adv. Agron. 1997, 63, 77–151. [Google Scholar]
- Gautam, D.; Dhakal, S.C.; Kattel, R.R.; Khanal, N.P. Nepalese lentil: Possible forthcoming transition from the top exportable to the most importable legume. Russ. J. Agric. Socio-Econ. Sci. 2022, 125, 122–137. [Google Scholar]
- Paudel, G.P.; Devkota, M.; Keil, A.; McDonald, A.J. Climate and landscape mediate patterns of low lentil productivity in Nepal. PLoS ONE 2020, 15, e0231377. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Ghafoor, A.; Abbasi, F.M.; Qureshi, A.S.; Ahmad, H. Study of nutritional characteristics, mineral nutrients and agro-biodiversity in black cumin (Nigella sativa L.) genotypes from Pakistan. Afr. J. Biotechnol. 2011, 10, 14757–14766. [Google Scholar] [CrossRef]
- Rasheed, M.; Jilani, G.; Shah, I.A.; Najeeb, U.; Iqbal, T. Improved lentil production by utilizing genetic variability in response to phosphorus fertilization. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2010, 60, 485–493. [Google Scholar] [CrossRef]
- Aghili, P.; Imani, A.A.; Shahbazi, H.; Alaei, Y. Study of correlation and relationships between seed yield and yield components in Lentil (Lens culinaris Medik). Ann. Biol. Res. 2012, 3, 5042–5045. [Google Scholar]
- Paliya, S.; Saxena, A.; Tikle, A.N.; Singh, M.; Tilwari, A. Genetic divergence and character association of seed yield and component traits of lentil (Lens culinaris M.). Adv. Biores. 2015, 6, 53–59. [Google Scholar]
- Al-saady, N.A.B.; Nadaf, S.K.; Al-lawati, A.H.; Al-hinai, S.A. Genetic Diversity of Indigenous Mungbean (Vigna radiata L. Wilczek) Germplasm Collection in Oman. Agric. For. Fish. 2018, 7, 113–120. [Google Scholar]
- Jeberson, M.S.; Shashidhar, K.S.; Wani, S.H.; Singh, A.K. Multivariate analysis in Mungbean (Vigna radiata L. Wilczek) for Genetic Diversity under Acidic Soils of Manipur, India. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 760–769. [Google Scholar] [CrossRef]
- Abo-Hegazy, S.R.E.; Selim, T.; El-Emam, E.A.A. Correlation and path coefficient analysis of yield and some yield components in lentil. Egypt. J. Plant Breed. 2012, 16, 147–159. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Akbar, M.; Akhtar, S.; Fatima, S.; Ghafoor, A. Multivariate analysis and its application for characterizing cowpea landraces. Legume Res.-Int. J. 2021, 44, 1–7. [Google Scholar] [CrossRef]
- Shrestha, J.; Subedi, S. Improving crop productivity through sustainable intensification. S. Asian Res. J. Agric. Fish. 2019, 1, 8–11. [Google Scholar] [CrossRef]
- Sharma, R.; Chaudhary, L.; Kumar, M.; Yadav, R.; Devi, U.; Kumar, V. Phenotypic diversity analysis of Lens culinaris Medik. accessions for selection of superior genotypes. Sustainability 2022, 14, 5982. [Google Scholar] [CrossRef]
- Hay, R.K.M. Harvest index: A review of its use in plant breeding and crop physiology. Ann. Appl. Biol. 1995, 126, 197–216. [Google Scholar] [CrossRef]
- Tayade, R.; Kulkarni, K.P.; Jo, H.; Song, J.T.; Lee, J.-D. Insight into the prospects for the improvement of seed starch in legume—A review. Front. Plant Sci. 2019, 10, 1213. [Google Scholar] [CrossRef] [PubMed]
Traits | 2018–2019 | 2019–2020 | 2020–2021 | |||
---|---|---|---|---|---|---|
Frequency | Percent | Frequency | Percent | Frequency | Percent | |
Leaf Pubescence (LP) | ||||||
0 Absent | 1 | 0.2 | ||||
3 Slight | 199 | 30.6 | 74 | 11.4 | 201 | 30.8 |
7 Dense | 452 | 69.4 | 577 | 88.6 | 449 | 69 |
Leaflet Size (LS) | ||||||
3 Small | 241 | 37 | 337 | 51.8 | 301 | 46.2 |
5 Medium | 236 | 36.3 | 114 | 17.5 | 232 | 35.6 |
7 Large | 174 | 26.7 | 200 | 30.7 | 118 | 18.1 |
Growth Habit (GH) | ||||||
1 Erect | 49 | 7.5 | 9 | 1.4 | 58 | 8.9 |
2 Semi-Erect | 212 | 32.6 | 236 | 36.3 | 220 | 33.8 |
3 Spreading | 390 | 59.9 | 406 | 62.4 | 373 | 57.3 |
Tendril Length (TL) | ||||||
1 Rudimentary | 191 | 29.3 | 157 | 24.1 | 213 | 32.7 |
2 Prominent | 460 | 70.7 | 494 | 75.9 | 438 | 67.3 |
Leaf Color (LC) | ||||||
1 Light Green | 432 | 66.4 | 441 | 67.7 | 436 | 67 |
2 Dark Green | 219 | 33.6 | 210 | 32.3 | 215 | 33 |
Stem Color (CS) 1 Green 2 Brown | 626 25 | 96.2 3.8 | 626 25 | 96.2 3.8 | 626 25 | 96.2 3.8 |
Flower Color (FC) | ||||||
1 White | ||||||
2 White with blue veins | 651 | 100 | 651 | 100 | 651 | 100 |
Pod Pigmentation | ||||||
+ Present | 62 | 9.5 | 62 | 9.5 | 33 | 5.4 |
0 Absent | 589 | 90.5 | 589 | 90.5 | 618 | 94.6 |
Year/ Trait | 2018–2019 | 2019–2020 | 2020–2021 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SE | Min | Max | V (n) | SD | Mean ± SE | Min | Max | V (n) | SD | Mean ± SE | Min | Max | V (n) | SD | |
FPP | 2.67 ± 0.020 | 1 | 4 | 0.263 | 0.513 | 2.66 ± 0.020 | 1 | 4 | 0.268 | 0.517 | 2.56 ± 0.021 | 1 | 4 | 0.284 | 0.533 |
PH (cm) | 38.56 ± 0.286 | 19 | 85 | 53.413 | 7.308 | 34.11 ± 0.268 | 15 | 80 | 46.743 | 6.837 | 29.9 ± 0.23 | 14.0 | 79.33 | 53.7 | 7.32 |
LPH (cm) | 13.40 ± 0.18 | 4.95 | 37.8 | 21.267 | 4.61 | 11.21 ± 0.188 | 2 | 34 | 20.04 | 4.8 | 13.61 ± 0.18 | 3.90 | 30.50 | 21.432 | 4.62 |
NB | 6.88 ± 0.0618 | 3.33 | 12.19 | 2.49 | 1.58 | 5.35 ± 0.059 | 2 | 10.50 | 2.28 | 1.51 | 5.91 ± 0.63 | 2 | 11.02 | 2.57 | 1.60 |
NP | 52.96 ± 0.824 | 10.36 | 160.77 | 442.62 | 21.03 | 46.87 ± 0.821 | 4.33 | 151.50 | 439.57 | 20.97 | 41.58 ± 0.82 | 1.43 | 125.57 | 433.2 | 20.8 |
DF | 104.80 ± 0.29 | 91.63 | 150.00 | 55.68 | 7.46 | 110.45 ± 0.30 | 89.73 | 151 | 58.57 | 7.65 | 116.55 ± 0.36 | 94.0 | 150 | 87.64 | 9.36 |
DM | 161.58 ± 0.24 | 157 | 201 | 36.21 | 6.01 | 163.12 ± 0.536 | 150 | 202 | 186.87 | 13.67 | 170.368 ± 0.49 | 156.3 | 201.02 | 162.5 | 12.74 |
PW (g) | 1.59 ± 0.33 | 0.124 | 6.06 | 0.72 | 0.85 | 1.44 ± 0.032 | 0.08 | 5.73 | 0.652 | 0.808 | 1.28 ± 0.030 | 0.057 | 5.39 | 0.595 | 0.77 |
BY (g/m2) | 188.75 ± 4.12 | 32 | 755 | 11,069.6 | 105.28 | 168.83 ± 4.21 | 29 | 748 | 11,543.65 | 107.4 | 198.8 ± 4.10 | 35 | 713 | 104.7 | 104.7 |
SPP | 1.70 ± 0.009 | 1.00 | 2.1 | 0.059 | 0.24 | 1.78 ± 0.016 | 1 | 2 | 0.174 | 0.417 | 1.69 ± 0.011 | 0.86 | 2.14 | 0.075 | 0.27 |
100 SW (g) | 2.37 ± 0.027 | 1 | 6 | 0.478 | 0.691 | 2.36 ± 0.027 | 0.47 | 7 | 0.470 | 0.685 | 2.30 ± 0.026 | 1 | 5 | 0.651 | 0.425 |
SY (g/m2) | 49.73 ± 1.12 | 1 | 195 | 819.01 | 28.618 | 44.24 ± 1.06 | 1 | 183 | 732.86 | 27.07 | 52.97 ± 1.19 | 1 | 213 | 927.5 | 30.45 |
HI % | 28.69 ± 0.521 | 1 | 72 | 176.91 | 13.301 | 29.02 ± 0.524 | 1 | 75 | 178.60 | 13.4 | 28.82 ± 0.53 | 1 | 84 | 179.5 | 13.40 |
Traits | Accession Number |
---|---|
FPP | 5942, 6022, 17746, 38792, 5829, 36736, 5947, 5878, 5909, 6056, 5864, 5793 |
PH | 3803, 34684, 5713, 5702, 5823, 38795, 5698, 6046, 5693, 5858 |
LPH | 34684, 5950, 38788, 6033, 6031, 17759, 17757, 17788, 17758, 6030, 6026 |
NB | 38503, 17743, 5886, 5536, 17745, 6056, 17780, 5542, 38796, 5469 |
NP | 5930, 5884, 5791, 5542, 5865, 5942, 17749, 36719, 5793, 6032 |
DF | 5562, 5988, 6052, 38797, 38800, 5484, 5472, 5459, 5489, 5650, 5639, 6008, 5999 |
DM | 5476, 5468, 5466, 5470, 5500, 5483, 5521, 5469, 5498, 5477, 5482, 5488, 5486, 5475, 5502 |
PW | 5930, 5865, 34709, 6057, 5888, 6032, 17794, 5884, 17749, 5793 |
BY | 5878, 5879, 5865, 5793, 5798, 6056, 6032, 5868, 3803, 5930 |
SPP | 34705, 5914, 38793, 5827, 5919, 6123, 5737, 17751, 5959, 6006 |
100 SW | 6129, 34714, 5878, 38797, 6055, 5819, 38795, 6063, 5822, 38800 |
SY | 5930, 6057, 5865, 34709, 5542, 5884,17794, 34693,5888, 5944 |
HI | 5576, 5721, 5750, 5713, 5458, 5726, 6046, 5690, 17742, 5696 |
Trait | Year | Phenotypic Variance (σ2p) | Genotypic Variance (σ2g) | Environmental Variance (σ2e) | Mean ± SE | Heritability h2 | Phenotypic Coefficient of Variation (PCV %) | Genetic Coefficient of Variation (GCV%) | Genetic Advance (GA) | GA % |
---|---|---|---|---|---|---|---|---|---|---|
FPP | 2018–2019 | 0.26 | 0.26 | 0.0006 | 2.6653 ± 0.0136 | 0.99 | 19.27 | 19.25 | 1.06 | 39.60 |
2019–2020 | 0.27 | 0.27 | 0.0005 | 2.6608 ± 0.0135 | 0.99 | 19.46 | 19.44 | 1.06 | 40.01 | |
2020–2021 | 0.28 | 0.28 | 0.0005 | 2.5594 ± 0.0135 | 0.99 | 20.81 | 20.80 | 1.10 | 42.80 | |
PH | 2018–2019 | 60.32 | 54.78 | 5.5321 | 38.7336 ± 1.3580 | 0.90 | 20.05 | 19.11 | 14.53 | 37.52 |
2019–2020 | 53.25 | 47.66 | 5.5864 | 34.0989 ± 1.3646 | 0.89 | 21.40 | 20.25 | 13.45 | 39.46 | |
2020–2021 | 66.61 | 61.19 | 5.4258 | 30.3371 ± 1.3448 | 0.91 | 26.90 | 25.78 | 15.44 | 50.91 | |
LPH | 2018–2019 | 19.74 | 18.38 | 1.361 | 13.2851 ± 0.6735 | 0.93 | 33.44 | 32.27 | 8.52 | 64.14 |
2019–2020 | 22.04 | 20.66 | 1.3798 | 11.0667 ± 0.6782 | 0.93 | 42.43 | 41.08 | 9.07 | 81.93 | |
2020–2021 | 21.30 | 19.89 | 1.4024 | 13.5151 ± 0.6837 | 0.93 | 34.14 | 33.00 | 8.88 | 65.71 | |
NB | 2018–2019 | 3.10 | 2.88 | 0.2261 | 7.0447 ± 0.2745 | 0.92 | 25.01 | 24.08 | 3.37 | 47.77 |
2019–2020 | 2.44 | 2.22 | 0.22 | 5.3472 ± 0.2708 | 0.90 | 29.22 | 27.87 | 2.93 | 54.77 | |
2020–2021 | 5.96 | 5.74 | 0.2262 | 6.3529 ± 0.2746 | 0.96 | 38.44 | 37.70 | 4.84 | 76.18 | |
NP | 2018–2019 | 465.77 | 451.23 | 14.5366 | 53.7914 ± 2.2013 | 0.96 | 40.12 | 39.49 | 43.07 | 80.07 |
2019–2020 | 550.59 | 469.80 | 80.7856 | 49.0025 ± 5.1893 | 0.85 | 47.88 | 44.23 | 41.24 | 84.17 | |
2020–2021 | 485.21 | 441.66 | 43.5437 | 42.9633 ± 3.8098 | 0.91 | 51.27 | 48.92 | 41.30 | 96.14 | |
DF | 2018–2019 | 54.00 | 41.24 | 12.7595 | 104.5947 ± 2.0623 | 0.76 | 7.03 | 6.14 | 11.56 | 11.05 |
2019–2020 | 80.75 | 67.51 | 13.239 | 110.368 ± 2.1007 | 0.83 | 8.14 | 7.44 | 15.48 | 14.02 | |
2020–2021 | 100.12 | 88.51 | 11.6121 | 116.4414 ± 1.9674 | 0.88 | 8.59 | 8.08 | 18.22 | 15.65 | |
DM | 2018–2019 | 58.96 | 36.87 | 22.0839 | 161.5991 ± 2.7132 | 0.62 | 4.75 | 3.76 | 9.89 | 6.12 |
2019–2020 | 202.14 | 178.67 | 23.4662 | 163.0762 ± 2.7968 | 0.88 | 8.72 | 8.20 | 25.89 | 15.87 | |
2020–2021 | 187.22 | 165.42 | 21.7979 | 170.3887 ± 2.6955 | 0.88 | 8.03 | 7.55 | 24.90 | 14.62 | |
PW | 2018–2019 | 0.69 | 0.63 | 0.0593 | 1.665 ± 0.1405 | 0.91 | 49.83 | 47.63 | 1.56 | 93.80 |
2019–2020 | 0.66 | 0.60 | 0.0586 | 1.4613 ± 0.1398 | 0.91 | 55.57 | 53.04 | 1.52 | 104.29 | |
2020–2021 | 0.60 | 0.54 | 0.0589 | 1.3258 ± 0.1401 | 0.90 | 58.44 | 55.50 | 1.44 | 108.57 | |
BY | 2018–2019 | 10,149.05 | 10,136.03 | 13.0189 | 188.2911 ± 2.0832 | 0.99 | 53.50 | 53.47 | 207.26 | 110.08 |
2019–2020 | 11,548.86 | 11,536.57 | 12.294 | 168.8572 ± 2.0244 | 0.99 | 63.64 | 63.61 | 221.14 | 130.96 | |
2020–2021 | 11,973.50 | 11,960.99 | 12.508 | 206.7712 ± 2.0419 | 0.99 | 52.92 | 52.89 | 225.18 | 108.90 | |
SPP | 2018–2019 | 0.06 | 0.06 | 0.0039 | 1.7058 ± 0.0360 | 0.93 | 14.745 | 14.29 | 0.49 | 28.51 |
2019–2020 | 0.08 | 0.07 | 0.008 | 1.6502 ± 0.0523 | 0.89 | 16.85 | 15.938 | 0.51 | 31.03 | |
2020–2021 | 0.08 | 0.08 | 0.0066 | 1.6918 ± 0.0468 | 0.91 | 16.95 | 16.25 | 0.54 | 32.11 | |
100 SW | 2018–2019 | 0.49 | 0.48 | 0.0144 | 2.3247 ± 0.0693 | 0.97 | 30.13 | 29.68 | 1.40 | 60.24 |
2019–2020 | 0.50 | 0.44 | 0.0571 | 2.3693 ± 0.1379 | 0.88 | 29.75 | 27.98 | 1.28 | 54.23 | |
2020–2021 | 0.50 | 0.45 | 0.0547 | 2.2936 ± 0.1351 | 0.89 | 30.85 | 29.12 | 1.30 | 56.62 | |
SY | 2018–2019 | 780.96 | 759.52 | 21.44 | 50.6665 ± 2.6736 | 0.97 | 55.16 | 54.39 | 55.99 | 110.50 |
2019–2020 | 774.59 | 747.16 | 27.4264 | 45.5362 ± 3.0236 | 0.96 | 61.12 | 60.03 | 55.30 | 121.45 | |
2020–2021 | 1117.37 | 1069.90 | 47.47 | 57.2186 ± 3.9777 | 0.95 | 58.42 | 57.17 | 65.93 | 115.23 | |
HI | 2018–2019 | 185.39 | 172.14 | 13.2491 | 29.2559 ± 2.1015 | 0.92 | 46.54 | 44.85 | 26.04 | 89.02 |
2019–2020 | 183.92 | 169.76 | 14.16 | 29.6306 ± 2.1723 | 0.92 | 45.77 | 43.97 | 25.79 | 87.03 | |
2020–2021 | 196.40 | 176.87 | 19.53 | 29.7697 ± 2.5517 | 0.90 | 47.08 | 44.67 | 26.00 | 87.33 |
FPP | PH | LPH | NB | NP | DF | DM | PW | BY | SPP | 100 SW | SY | HI% | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SY | 2018–2019 | −0.041 | 0.079 * | −0.107 ** | 0.055 | 0.668 ** | −0.051 | −0.055 | 0.842 ** | 0.540 ** | 0.067 | −0.011 | 1 | 0.529 ** |
2019–2020 | −0.023 | 0.140 ** | −0.077 * | 0.335 ** | 0.767 ** | −0.021 | −0.032 | 0.928 ** | 0.603 ** | 0.022 | 0.105 ** | 1 | 0.431 ** | |
2020–2021 | −0.043 | 0.165 ** | −0.097 * | 0.061 | 0.554 ** | −0.084 * | −0.120 ** | 0.719 ** | 0.539 ** | 0.046 | −0.062 | 1 | 0.537 ** |
(a) | ||||||||||||||||
Principal Component | Eigenvalue | % of Variance σ² | Cumulative σ² | FPP | PH | LPH | NB | NP | DF | DM | PW | BY | SPP | 100 SW | SY | HI |
PC1 | 3.207 | 24.671 | 24.671 | 0.215 | 0.098 | 0.227 | 0.300 | 0.831 | 0.120 | 0.293 | 0.865 | 0.862 | −0.191 | 0.301 | 0.775 | 0.014 |
PC2 | 2.936 | 22.587 | 47.259 | 0.405 | 0.051 | 0.636 | 0.205 | −0.284 | 0.424 | 0.692 | −0.393 | 0.203 | −0.503 | 0.530 | −0.51 | −0.77 |
PC3 | 1.143 | 8.790 | 56.048 | 0.222 | 0.865 | 0.406 | 0.05 | −0.117 | −0.178 | −0.042 | −0.015 | −0.056 | 0.318 | −0.067 | 0.042 | 0.142 |
PC4 | 1.105 | 8.499 | 64.547 | 0.267 | −0.159 | −0.001 | 0.329 | 0.003 | 0.629 | 0.271 | −0.003 | −0.117 | 0.379 | −0.494 | 0.032 | 0.169 |
PC5 | 1.041 | 8.004 | 72.551 | −0.219 | 0.244 | −0.141 | −0.628 | −0.145 | 0.480 | 0.318 | 0.058 | −0.075 | −0.078 | 0.228 | 0.182 | 0.259 |
(b) | ||||||||||||||||
PC1 | 3.724 | 28.649 | 28.649 | 0.238 | 0.119 | 0.300 | 0.639 | 0.795 | 0.210 | 0.466 | 0.804 | 0.915 | −0.156 | 0.395 | 0.754 | −0.168 |
PC2 | 2.959 | 22.765 | 51.415 | 0.402 | −0.054 | 0.647 | 0.096 | −0.424 | 0.389 | 0.744 | −0.529 | 0.097 | −0.304 | 0.391 | −0.576 | −0.786 |
PC3 | 1.196 | 9.199 | 60.614 | 0.408 | 0.810 | 0.384 | −0.246 | −0.054 | 0.022 | −0.055 | 0.020 | −0.046 | 0.332 | −0.096 | 0.077 | 0.176 |
PC4 | 1.122 | 8.631 | 69.245 | 0.273 | −0.344 | 0.008 | 0.320 | 0.096 | 0.356 | 0.054 | −0.035 | −0.037 | 0.621 | −0.541 | −0.060 | −0.062 |
(c) | ||||||||||||||||
PC1 | 3.023 | 23.258 | 23.258 | 0.100 | 0.266 | 0.092 | 0.250 | 0.851 | 0.118 | 0.189 | 0.898 | 0.772 | −0.117 | 0.175 | 0.795 | 0.146 |
PC2 | 2.773 | 21.331 | 44.589 | 0.379 | −0.052 | 0.479 | 0.145 | −0.117 | 0.515 | 0.828 | −0.216 | 0.336 | −0.405 | 0.567 | −0.403 | −0.777 |
PC3 | 1.048 | 8.061 | 52.650 | −0.167 | 0.758 | 0.458 | −0.295 | −0.088 | −0.052 | −0.079 | −0.027 | −0.159 | −0.205 | 0.188 | 0.009 | 0.170 |
PC4 | 1.038 | 7.984 | 60.634 | 0.697 | 0.042 | 0.036 | −0.354 | −0.047 | 0.462 | 0.045 | 0.008 | −0.121 | 0.264 | −0.154 | 0.103 | 0.297 |
Traits | Year | HI% Range | ||||||
---|---|---|---|---|---|---|---|---|
<10 | 10.1–15 | 15.1–20 | 20.1–25 | 25.1–30 | 30.1–35 | >35 | ||
FPP | 2018–2019 | 2.75 ± 0.08 | 2.98 ± 0.06 | 2.73 ± 0.056 | 2.73 ± 0.05 | 2.62 ± 0.05 | 2.65 ± 0.06 | 2.54 ± 0.03 |
2019–2020 | 2.78 ± 0.08 | 2.95 ± 0.07 | 2.72 ± 0.06 | 2.76 ± 0.05 | 2.64 ± 0.05 | 2.55 ± 0.06 | 2.54 ± 0.03 | |
2020–2021 | 2.58 ± 0.08 | 2.79 ± 0.09 | 2.67 ± 0.06 | 2.69 ± 0.05 | 2.48 ± 0.05 | 2.52 ± 0.07 | 2.47 ± 0.03 | |
PH | 2018–2019 | 38.75 ± 0.92 | 37.45 ± 0.78 | 38.54 ± 0.67 | 38.14 ± 0.64 | 37.61 ± 0.55 | 37.72 ± 0.67 | 38.58 ± 0.36 |
2019–2020 | 33.32 ± 1.07 | 33.38 ± 0.66 | 33.78 ± 0.63 | 33.25 ± 0.55 | 33.45 ± 0.48 | 33.56 ± 0.59 | 34.13 ± 0.32 | |
2020–2021 | 30.46 ± 0.87 | 29.42 ± 0.86 | 29.48 ± 0.67 | 28.99 ± 0.56 | 29.77 ± 0.58 | 29.41 ± 0.67 | 30.7 ± 0.37 | |
LPH | 2018–2019 | 6.04 ± 0.62 | 16.11 ± 0.50 | 14.49 ± 0.58 | 13.73 ± 0.40 | 12.56 ± 0.45 | 12.11 ± 0.51 | 11.74 ± 0.19 |
2019–2020 | 14.36 ± 0.67 | 14.14 ± 0.58 | 12.69 ± 0.58 | 11.7 ± 0.41 | 10.69 ± 0.49 | 10.05 ± 0.54 | 9.13 ± 0.2 | |
2020–2021 | 15.2 ± 0.64 | 15.67 ± 0.56 | 14.45 ± 0.62 | 13.69 ± 0.43 | 13.01 ± 0.45 | 12.2 ± 0.58 | 12.64 ± 0.23 | |
NB | 2018–2019 | 7.20 ± 0.23 | 7.37 ± 0.24 | 6.88 ± 0.17 | 7.17 ± 0.17 | 6.75 ± 0.17 | 6.65 ± 0.19 | 6.7 ± 0.10 |
2019–2020 | 5.65 ± 0.24 | 6.03 ± 0.23 | 5.58 ± 0.16 | 5.57 ± 0.15 | 5.5 ± 0.17 | 5.3 ± 0.19 | 4.89 ± 0.09 | |
2020–2021 | 6.15 ± 0.23 | 6.24 ± 0.23 | 5.92 ± 0.18 | 6.02 ± 0.17 | 5.94 ± 0.18 | 5.79 ± 0.22 | 5.73 ± 0.1 | |
NP | 2018–2019 | 38.86 ± 2.32 | 53.51 ± 3.25 | 50.57 ± 2.22 | 56.79 ± 2.71 | 54.06 ± 2.32 | 55.55 ± 2.1 | 54.40 ± 1.30 |
2019–2020 | 32.55 ± 2.55 | 46.01 ± 2.97 | 43.42 ± 2.22 | 51.89 ± 2.68 | 47.96 ± 2.39 | 49 ± 2.13 | 48.23 ± 1.26 | |
2020–2021 | 28.42 ± 2.36 | 41.6 ± 3.12 | 38.92 ± 2.18 | 44.07 ± 2.6 | 42.18 ± 2.32 | 43.9 ± 2.11 | 43.73 ± 1.32 | |
DF | 2018–2019 | 107.20 ± 1.23 | 105.39 ± 1.04 | 105.69 ± 0.94 | 104.32 ± 0.63 | 104.60 ± 0.64 | 103.99 ± 0.84 | 103.36 ± 0.29 |
2019–2020 | 112.76 ± 1.33 | 112.52 ± 0.87 | 111.76 ± 0.94 | 110.73 ± 0.66 | 110.62 ± 0.76 | 108.94 ± 0.92 | 108.62 ± 0.39 | |
2020–2021 | 118.49 ± 1.5 | 120.04 ± 0.99 | 118.88 ± 1.13 | 117.72 ± 0.89 | 116.45 ± 0.99 | 114.79 ± 1.12 | 114.09 ± 0.54 | |
DM | 2018–2019 | 162.96 ± 0.54 | 162.90 ± 0.53 | 163.35 ± 0.41 | 161.9 ± 0.39 | 161.03 ± 0.39 | 160.4 ± 0.45 | 159.36 ± 0.16 |
2019–2020 | 173.09 ± 1.71 | 175.08 ± 1.29 | 171.69 ± 1.32 | 167.22 ± 1.39 | 162.04 ± 1.39 | 157.92 ± 1.33 | 154.46 ± 0.48 | |
2020–2021 | 179.64 ± 1.53 | 181.9 ± 1.34 | 178.17 ± 1.29 | 174.65 ± 1.35 | 168.66 ± 1.31 | 166.4 ± 1.37 | 162.4 ± 0.45 | |
PW | 2018–2019 | 0.79 ± 0.075 | 1.31 ± 0.11 | 1.36 ± 0.08 | 1.55 ± 0.09 | 1.7 ± 0.10 | 1.78 ± 0.08 | 1.86 ± 0.05 |
2019–2020 | 0.69 ± 0.07 | 1.11 ± 0.1 | 1.2 ± 0.08 | 1.44 ± 0.09 | 1.54 ± 0.1 | 1.56 ± 0.08 | 1.67 ± 0.05 | |
2020–2021 | 0.59 ± 0.06 | 1.04 ± 0.1 | 1.08 ± 0.08 | 1.26 ± 0.09 | 1.35 ± 0.09 | 1.44 ± 0.08 | 1.51 ± 0.05 | |
BY | 2018–2019 | 227.33 ± 17.13 | 260.40 ± 20.02 | 215.82 ± 12.92 | 206.78 ± 13.02 | 187.59 ± 10.93 | 170.58 ± 8.6 | 150.69 ± 4.16 |
2019–2020 | 208.43 ± 20.81 | 244.46 ± 18.37 | 195.37 ± 13.78 | 190.96 ± 12.98 | 167.38 ± 11.27 | 149.09 ± 8.56 | 129.33 ± 4.03 | |
2020–2021 | 236.79 ± 16.61 | 259.29 ± 19.09 | 225.59 ± 12.51 | 221.53 ± 12.89 | 203.9 ± 11.02 | 180.4 ± 9.76 | 160.37 ± 4.55 | |
SPP | 2018–2019 | 1.57 ± 0.03 | 1.59 ± 0.04 | 1.63 ± 0.03 | 1.66 ± 0.03 | 1.73 ± 0.03 | 1.71 ± 0.03 | 1.79 ± 0.01 |
2019–2020 | 1.47 ± 0.04 | 1.56 ± 0.04 | 1.58 ± 0.03 | 1.61 ± 0.03 | 1.67 ± 0.03 | 1.66 ± 0.03 | 1.73 ± 0.02 | |
2020–2021 | 1.59 ± 0.04 | 1.61 ± 0.04 | 1.64 ± 0.03 | 1.65 ± 0.03 | 1.7 ± 0.03 | 1.69 ± 0.03 | 1.75 ± 0.02 | |
100 SW | 2018–2019 | 2.60 ± 0.1 | 2.66 ± 0.10 | 2.74 ± 0.09 | 2.43 ± 0.07 | 2.30 ± 0.07 | 2.15 ± 0.06 | 2.02 ± 0.03 |
2019–2020 | 2.63 ± 0.12 | 2.67 ± 0.1 | 2.76 ± 0.09 | 2.45 ± 0.07 | 2.41 ± 0.07 | 2.15 ± 0.06 | 2.1 ± 0.03 | |
2020–2021 | 2.55 ± 0.1 | 2.57 ± 0.1 | 2.68 ± 0.09 | 2.42 ± 0.07 | 2.24 ± 0.07 | 2.11 ± 0.06 | 2.03 ± 0.03 | |
SY | 2018–2019 | 15.72 ± 1.45 | 33.15 ± 2.72 | 37.81 ± 2.30 | 46.71 ± 2.86 | 51.22 ± 2.96 | 55.69 ± 2.75 | 65.15 ± 1.84 |
2019–2020 | 13.88 ± 1.63 | 30.73 ± 2.48 | 34.34 ± 2.45 | 43.17 ± 2.85 | 45.82 ± 3.07 | 48.62 ± 2.77 | 55.86 ± 1.73 | |
2020–2021 | 16.6 ± 1.44 | 33.24 ± 2.66 | 39.53 ± 2.27 | 50.07 ± 2.87 | 55.61 ± 3 | 58.48 ± 3.07 | 69.44 ± 2.02 | |
no. of accessions | 2018–2019 | 53 | 56 | 81 | 83 | 90 | 66 | 222 |
2019–2020 | 45 | 62 | 78 | 83 | 91 | 65 | 227 | |
2020–2021 | 52 | 56 | 79 | 84 | 90 | 65 | 225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sardar, M.M.; Tahir, A.T.; Ali, S.; Ayub, J.; Ali, J.; Kausar, F.; Yasmin, T.; Jabeen, Z.; Ilyas, M.K. Insights from Lentil Germplasm Resources Leading to Crop Improvement Under Changing Climatic Conditions. Life 2025, 15, 561. https://doi.org/10.3390/life15040561
Sardar MM, Tahir AT, Ali S, Ayub J, Ali J, Kausar F, Yasmin T, Jabeen Z, Ilyas MK. Insights from Lentil Germplasm Resources Leading to Crop Improvement Under Changing Climatic Conditions. Life. 2025; 15(4):561. https://doi.org/10.3390/life15040561
Chicago/Turabian StyleSardar, Muhammad Muddassir, Ayesha T. Tahir, Sabir Ali, Javeria Ayub, Jaffer Ali, Farzana Kausar, Tayyaba Yasmin, Zahra Jabeen, and Muhammad Kashif Ilyas. 2025. "Insights from Lentil Germplasm Resources Leading to Crop Improvement Under Changing Climatic Conditions" Life 15, no. 4: 561. https://doi.org/10.3390/life15040561
APA StyleSardar, M. M., Tahir, A. T., Ali, S., Ayub, J., Ali, J., Kausar, F., Yasmin, T., Jabeen, Z., & Ilyas, M. K. (2025). Insights from Lentil Germplasm Resources Leading to Crop Improvement Under Changing Climatic Conditions. Life, 15(4), 561. https://doi.org/10.3390/life15040561