Skeletal Muscle Atrophy Induced by Dexamethasone Is Attenuated by Amino Acid Complex Supplementation in Rats
Abstract
:1. Introduction
2. Subjects and Methods
2.1. In Vitro Experiments: Cytotoxicity of ACS by MTT Method
2.2. In Vivo Experiments
2.3. Statistical Analysis
3. Results
3.1. In Vitro Test: MTT Test (Cytotoxicity of Amino Acid Complex)
3.2. In Vivo Experiment: Body Weight
3.3. In Vivo Experiment: Changes in Blood Biochemistry
3.4. In Vivo Experiment: Exercise Capacity Test
3.5. In Vivo Experiment: Total Amount of Protein in Muscle Tissue
3.6. In Vivo Experiment: Histological Observation of Liver and Muscle Tissues
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Volpi, E.; Nazemi, R.; Fujita, S. Muscle tissue changes with aging. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Kalyani, R.R.; Corriere, M.; Ferrucci, L. Age-related and disease-related muscle loss: The effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2014, 2, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Sartori, R.; Romanello, V.; Sandri, M. Mechanisms of muscle atrophy and hypertrophy: Implications in health and disease. Nat. Commun. 2021, 12, 330. [Google Scholar] [CrossRef] [PubMed]
- Berardi, G.; Antonelli, G.; Colasanti, M.; Meniconi, R.; Guglielmo, N.; Laurenzi, A.; Ferretti, S.; Levi Sandri, G.B.; Spagnoli, A.; Moschetta, G.; et al. Association of Sarcopenia and Body Composition with Short-term Outcomes After Liver Resection for Malignant Tumors. JAMA Surg. 2020, 155, e203336. [Google Scholar] [CrossRef]
- Baird, M.F.; Graham, S.M.; Baker, J.S.; Bickerstaff, G.F. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J. Nutr. Metab. 2012, 2012, 960363. [Google Scholar] [CrossRef]
- Vainshtein, A.; Sandri, M. Signaling Pathways That Control Muscle Mass. Int. J. Mol. Sci. 2020, 21, 4759. [Google Scholar] [CrossRef]
- Sakata, Y.; Okamoto, T.; Oshio, K.; Nakamura, H.; Iwamoto, H.; Namba, K.; Takeda, Y.; Yoshizawa, F. Dietary supplementation with shiikuwasha extract attenuates dexamethasone-induced skeletal muscle atrophy in aged rats. Springerplus 2016, 5, 816. [Google Scholar] [CrossRef]
- Ma, K.; Mallidis, C.; Bhasin, S.; Mahabadi, V.; Artaza, J.; Gonzalez-Cadavid, N.; Arias, J.; Salehian, B. Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am. J. Physiol. -Endocrinol. Metab. 2003, 285, E363–E371. [Google Scholar]
- Bohe, J.; Low, A.; Wolfe, R.R.; Rennie, M.J. Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: A dose-response study. J. Physiol. 2003, 552, 315–324. [Google Scholar] [CrossRef]
- Volpi, E.; Mittendorfer, B.; Wolf, S.E.; Wolfe, R.R. Oral amino acids stimulate muscle protein anabolism in the elderly despite higher first-pass splanchnic extraction. Am. J. Physiol. -Endocrinol. Metab. 1999, 277, E513–E520. [Google Scholar]
- Campbell, W.W.; Crim, M.C.; Young, V.R.; Joseph, L.J.; Evans, W.J. Effects of resistance training and dietary protein intake on protein metabolism in older adults. Am. J. Physiol. 1995, 268, E1143–E1153. [Google Scholar] [CrossRef] [PubMed]
- Solerte, S.B.; Gazzaruso, C.; Bonacasa, R.; Rondanelli, M.; Zamboni, M.; Basso, C.; Locatelli, E.; Schifino, N.; Giustina, A.; Fioravanti, M. Nutritional supplements with oral amino acid mixtures increases whole-body lean mass and insulin sensitivity in elderly subjects with sarcopenia. Am. J. Cardiol. 2008, 101, S69–S77. [Google Scholar]
- Fiatarone, M.A.; O’Neill, E.F.; Ryan, N.D.; Clements, K.M.; Solares, G.R.; Nelson, M.E.; Roberts, S.B.; Kehayias, J.J.; Lipsitz, L.A.; Evans, W.J. Exercise training and nutritional supplementation for physical frailty in very elderly people. N. Engl. J. Med. 1994, 330, 1769–1775. [Google Scholar] [PubMed]
- Welle, S.; Thornton, C.A. High-protein meals do not enhance myofibrillar synthesis after resistance exercise in 62-to 75-yr-old men and women. Am. J. Physiol. -Endocrinol. Metab. 1998, 274, E677–E683. [Google Scholar]
- Lenk, K.; Schuler, G.; Adams, V. Skeletal muscle wasting in cachexia and sarcopenia: Molecular pathophysiology and impact of exercise training. J. Cachexia Sarcopenia Muscle 2010, 1, 9–21. [Google Scholar]
- Schakman, O.; Kalista, S.; Barbe, C.; Loumaye, A.; Thissen, J.P. Glucocorticoid-induced skeletal muscle atrophy. Int. J. Biochem. Cell Biol. 2013, 45, 2163–2172. [Google Scholar] [CrossRef]
- Schakman, O.; Gilson, H.; Thissen, J.P. Mechanisms of glucocorticoid-induced myopathy. J. Endocrinol. 2008, 197, 1–10. [Google Scholar] [CrossRef]
- Volpi, E.; Mittendorfer, B.; Rasmussen, B.B.; Wolfe, R.R. The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. J. Clin. Endocrinol. Metab. 2000, 85, 4481–4490. [Google Scholar]
- Volpi, E.; Kobayashi, H.; Sheffield-Moore, M.; Mittendorfer, B.; Wolfe, R.R. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am. J. Clin. Nutr. 2003, 78, 250–258. [Google Scholar]
- Paddon-Jones, D.; Sheffield-Moore, M.; Katsanos, C.S.; Zhang, X.J.; Wolfe, R.R. Differential stimulation of muscle protein synthesis in elderly humans following isocaloric ingestion of amino acids or whey protein. Exp. Gerontol. 2006, 41, 215–219. [Google Scholar] [CrossRef]
- Paddon-Jones, D.; Børsheim, E.; Wolfe, R.R. Potential ergogenic effects of arginine and creatine supplementation. J. Nutr. 2004, 134, 2888S–2894S. [Google Scholar] [PubMed]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc. 2018, 2018, pdb.prot095505. [Google Scholar]
- Jhuo, C.F.; Hsieh, S.K.; Chen, W.Y.; Tzen, J.T.C. Attenuation of Skeletal Muscle Atrophy Induced by Dexamethasone in Rats by Teaghrelin Supplementation. Molecules 2023, 28, 688. [Google Scholar] [CrossRef] [PubMed]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar]
- Sakhuja, P. Pathology of alcoholic liver disease, can it be differentiated from nonalcoholic steatohepatitis? World J. Gastroenterol. WJG 2014, 20, 16474. [Google Scholar]
- Fujita, S.; Volpi, E. Amino acids and muscle loss with aging. J. Nutr. 2006, 136, 277S–280S. [Google Scholar]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar]
- Landi, F.; Liperoti, R.; Fusco, D.; Mastropaolo, S.; Quattrociocchi, D.; Proia, A.; Tosato, M.; Bernabei, R.; Onder, G. Sarcopenia and mortality among older nursing home residents. J. Am. Med. Dir. Assoc. 2012, 13, 121–126. [Google Scholar]
- Yu, S.C.; Khow, K.S.; Jadczak, A.D.; Visvanathan, R. Clinical screening tools for sarcopenia and its management. Curr. Gerontol. Geriatr. Res. 2016, 2016, 5978523. [Google Scholar]
- Cruz-Jentoft, A.J.; Kiesswetter, E.; Drey, M.; Sieber, C.C. Nutrition, frailty, and sarcopenia. Aging Clin. Exp. Res. 2017, 29, 43–48. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Uchida, K.; Jeong, S.; Yamaga, M. Effects of nutritional supplements on muscle mass and activities of daily living in elderly rehabilitation patients with decreased muscle mass: A randomized controlled trial. J.Nutr. Health Aging 2016, 20, 185–191. [Google Scholar] [PubMed]
- Naseeb, M.A.; Volpe, S.L. Protein and exercise in the prevention of sarcopenia and aging. Nutr. Res. 2017, 40, 1–20. [Google Scholar] [PubMed]
- Bauer, J.M.; Verlaan, S.; Bautmans, I.; Brandt, K.; Donini, L.M.; Maggio, M.; McMurdo, M.E.; Mets, T.; Seal, C.; Wijers, S.L. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: A randomized, double-blind, placebo-controlled trial. J. Am. Med. Dir. Assoc. 2015, 16, 740–747. [Google Scholar] [PubMed]
- Walker, D.K.; Dickinson, J.M.; Timmerman, K.L.; Drummond, M.J.; Reidy, P.T.; Fry, C.S.; Gundermann, D.M.; Rasmussen, B.B. Exercise, amino acids, and aging in the control of human muscle protein synthesis. Med. Sci. Sports Exerc. 2011, 43, 2249–2258. [Google Scholar] [CrossRef]
- D’Antona, G.; Pellegrino, M.A.; Adami, R.; Rossi, R.; Carlizzi, C.N.; Canepari, M.; Saltin, B.; Bottinelli, R. The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J. Physiol. 2003, 552, 499–511. [Google Scholar]
- Pansarasa, O.; Flati, V.; Corsetti, G.; Brocca, L.; Pasini, E.; D’Antona, G. Oral amino acid supplementation counteracts age-induced sarcopenia in elderly rats. Am. J. Cardiol. 2008, 101, S35–S41. [Google Scholar]
- Burd, N.A.; Gorissen, S.H.; Van Loon, L.J. Anabolic resistance of muscle protein synthesis with aging. Exerc. Sport Sci. Rev. 2013, 41, 169–173. [Google Scholar] [CrossRef]
- Maykish, A.; Sikalidis, A.K. Utilization of hydroxyl-methyl butyrate, leucine, glutamine and arginine supplementation in nutritional management of sarcopenia—Implications and clinical considerations for type 2 diabetes mellitus risk modulation. J. Pers. Med. 2020, 10, 19. [Google Scholar] [CrossRef]
Groups (n = 5) | Normal Control | Positive Control | Dexa Only | ACS Groups | Dexa + LF | |||
---|---|---|---|---|---|---|---|---|
Parameters | Dexa+ACS (H) | Dexa+ACS (M) | Dexa+ACS(L) | |||||
AST (IU/L) | 108.3 ± 20.07 | 146.0 ± 22.12 | 133.64 ± 26.93 | 111.80 ± 17.74 | 200.04 ± 28.44 ** | 144.02 ± 30.64 | 98.12 ± 16.22 | |
ALT (IU/L) | 41.72 ± 8.05 | 39.06 ± 9.52 | 38.78 ± 5.10 | 38.18 ± 9.67 | 40.44 ± 6.60 | 42.04 ± 10.20 | 44.36 ± 8.00 | |
AST/ALT | 2.68 ± 0.76 | 3.96 ± 1.26 | 3.43 ± 0.30 | 2.99 ± 0.39 | 5.05 ± 1.09 * | 3.50 ± 0.69 | 2.25 ± 0.44 | |
ALP (IU/L) | 589.56 ± 266.3 | 574.00 ± 227.69 | 572.88 ± 236.27 | 645.46 ± 222.78 | 721.46 ± 350.87 | 563.00 ± 130.91 | 599.08 ± 04.98 | |
LDH (IU/L) | 741.18 ± 464.0 | 702.70 ± 263.06 | 670.34 ± 232.76 | 857.88 ± 317.14 | 575.18 ± 70.99 | 492.50 ± 216.13 | 356.80 ± 38.54 | |
CK (IU/L) | 499.8 ± 228.08 | 712.92 ± 118.24 | 652.98 ± 107.39 | 576.98 ± 176.22 | 839.42 ± 100.69 | 561.72 ± 148.17 | 291.70 ± 66.00 ** | |
GLU (mg/dL) | 197.30 ± 56.34 | 161.08 ± 33.33 | 148.16 ± 36.18 | 177.36 ± 22.34 | 150.04 ± 37.07 | 198.70 ± 166.83 | 184.40 ± 29.71 | |
T-Chol (mg/dL) | 59.24 ± 14.08 | 56.82 ± 15.93 | 59.88 ± 11.16 | 61.94 ± 8.81 | 50.62 ± 11.09 | 57.30 ± 9.96 | 63.74 ± 7.58 | |
TG (mg/dL) | 53.48 ± 35.31 | 55.80 ± 13.96 | 48.70 ± 14.14 | 60.16 ± 14.09 | 64.44 ± 38.65 | 70.44 ± 41.68 | 60.68 ± 15.10 | |
T-Pro (g/dL) | 6.41 ± 0.61 | 6.25 ± 0.75 | 6.63 ± 0.39 | 6.46 ± 0.20 | 6.48 ± 0.43 | 6.79 ± 0.52 | 6.79 ± 0.29 | |
Alb (g/dL) | 2.58 ± 0.28 | 2.66 ± 0.24 | 2.75 ± 0.12 | 2.67 ± 0.18 | 2.70 ± 0.15 | 2.72 ± 0.31 | 2.77 ± 0.10 | |
T-Bil (mg/dL) | 0.14 ± 0.02 | 0.14 ± 0.01 | 0.15 ± 0.02 | 0.15 ± 0.01 | 0.15 ± 0.01 | 0.14 ± 0.02 | 0.15 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.-J.; Kim, H.-J.; Kim, H.; Nam, H.; Nam, K.-S.; Kim, I.; Kang, R.; Hwang, I.; Kang, J.-S. Skeletal Muscle Atrophy Induced by Dexamethasone Is Attenuated by Amino Acid Complex Supplementation in Rats. Life 2025, 15, 517. https://doi.org/10.3390/life15040517
Lim S-J, Kim H-J, Kim H, Nam H, Nam K-S, Kim I, Kang R, Hwang I, Kang J-S. Skeletal Muscle Atrophy Induced by Dexamethasone Is Attenuated by Amino Acid Complex Supplementation in Rats. Life. 2025; 15(4):517. https://doi.org/10.3390/life15040517
Chicago/Turabian StyleLim, So-Jung, Hyun-Jin Kim, Hansik Kim, Heesoo Nam, Kyung-Soo Nam, Inho Kim, Ryun Kang, Inyoung Hwang, and Ju-Seop Kang. 2025. "Skeletal Muscle Atrophy Induced by Dexamethasone Is Attenuated by Amino Acid Complex Supplementation in Rats" Life 15, no. 4: 517. https://doi.org/10.3390/life15040517
APA StyleLim, S.-J., Kim, H.-J., Kim, H., Nam, H., Nam, K.-S., Kim, I., Kang, R., Hwang, I., & Kang, J.-S. (2025). Skeletal Muscle Atrophy Induced by Dexamethasone Is Attenuated by Amino Acid Complex Supplementation in Rats. Life, 15(4), 517. https://doi.org/10.3390/life15040517