Effects of Different Doses of Caffeine on Endurance Exercise Performance in the Heat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Procedure
2.4. Statistical Analysis
3. Results
3.1. Effects of Caffeine Ingestion on Endurance Exercise Performance in the Heat
3.2. Effects of Caffeine Ingestion on Respiratory Function During Endurance Exercise in the Heat
3.2.1. Pulmonary Ventilation (VE)
3.2.2. Tidal Volume (TV)
3.2.3. Breathing Frequency (BF)
3.2.4. Respiratory Exchange Ratio (RER)
3.2.5. Oxygen Consumption (VO2)
3.2.6. End-Tidal Partial Pressure of Oxygen (PetO2)
3.2.7. End-Tidal Partial Pressure of Carbon Dioxide (PetCO2)
3.3. Effects of Caffeine Ingestion on HR in the Heat
3.4. Effects of Caffeine Ingestion on RPE in the Heat
4. Discussion
4.1. Effects of Different Doses of Caffeine on Endurance Exercise Performance in the Heat
4.2. Effects of Different Doses of Caffeine on Respiratory Function During Endurance Exercise in the Heat
4.3. Effects of Different Doses of Caffeine on Aerobic Capacity in the Heat
4.4. Effects of Different Doses of Caffeine on Subjective Fatigue Perception During Endurance Exercise in the Heat
4.5. Strength and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Billat, L.V. Interval training for performance: A scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: Aerobic interval training. Sports Med. 2001, 31, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Strasser, B.; Schobersberger, W. Evidence for resistance training as a treatment therapy in obesity. J. Obes. 2011, 2011, 482564. [Google Scholar] [CrossRef]
- Périard, J.D.; Racinais, S.; Sawka, M.N. Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. S1), 20–38. [Google Scholar] [CrossRef] [PubMed]
- Cheung, S.S.; Sleivert, G.G. Multiple triggers for hyperthermic fatigue and exhaustion. Exerc. Sport. Sci. Rev. 2004, 32, 100–106. [Google Scholar] [CrossRef]
- Goldstein, E.R.; Ziegenfuss, T.; Kalman, D.; Kreider, R.; Campbell, B.; Wilborn, C.; Taylor, L.; Willoughby, D.; Stout, J.; Graves, B.S.; et al. International society of sports nutrition position stand: Caffeine and performance. J. Int. Soc. Sports Nutr. 2010, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Tyler, C.J.; Reeve, T.; Hodges, G.J.; Cheung, S.S. The Effects of Heat Adaptation on Physiology, Perception and Exercise Performance in the Heat: A Meta-Analysis. Sports Med. 2016, 46, 1699–1724. [Google Scholar] [CrossRef]
- Casadio, J.R.; Kilding, A.E.; Cotter, J.D.; Laursen, P.B. From Lab to Real World: Heat Acclimation Considerations for Elite Athletes. Sports Med. 2017, 47, 1467–1476. [Google Scholar] [CrossRef]
- Ganio, M.S.; Johnson, E.C.; Klau, J.F.; Anderson, J.M.; Casa, D.J.; Maresh, C.M.; Volek, J.S.; Armstrong, L.E. Effect of ambient temperature on caffeine ergogenicity during endurance exercise. Eur. J. Appl. Physiol. 2011, 111, 1135–1146. [Google Scholar] [CrossRef]
- Duncan, M.J.; Stanley, M.; Parkhouse, N.; Cook, K.; Smith, M. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur. J. Sport. Sci. 2013, 13, 392–399. [Google Scholar] [CrossRef]
- Fett, C.A.; Aquino, N.M.; Brandão, C.F.; de Araújo Cavalcanti, J.D.; Fett, W.C. Performance of muscle strength and fatigue tolerance in young trained women supplemented with caffeine. J. Sports Med. Phys. Fitness 2018, 58, 249–255. [Google Scholar] [CrossRef]
- Beaumont, R.E.; James, L.J. Effect of a moderate caffeine dose on endurance cycle performance and thermoregulation during prolonged exercise in the heat. J. Sci. Med. Sport. 2017, 20, 1024–1028. [Google Scholar] [CrossRef] [PubMed]
- Ganio, M.S.; Johnson, E.C.; Lopez, R.M.; Stearns, R.L.; Emmanuel, H.; Anderson, J.M.; Casa, D.J.; Maresh, C.M.; Volek, J.S.; Armstrong, L.E. Caffeine lowers muscle pain during exercise in hot but not cool environments. Physiol. Behav. 2011, 102, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, N.T.; Trilk, J.L.; Singhal, A.; O’Connor, P.J.; Cureton, K.J. Ergogenic effects of low doses of caffeine on cycling performance. Int. J. Sport. Nutr. Exerc. Metab. 2008, 18, 328–342. [Google Scholar] [CrossRef]
- Lei, T.H.; Qin, Q.; Girard, O.; Mündel, T.; Wang, R.; Guo, L.; Cao, Y. Caffeine intake enhances peak oxygen uptake and performance during high-intensity cycling exercise in moderate hypoxia. Eur. J. Appl. Physiol. 2024, 124, 537–549. [Google Scholar] [CrossRef]
- Ball, D. Contrasting effects of heat stress on neuromuscular performance. Exp. Physiol. 2021, 106, 2328–2334. [Google Scholar] [CrossRef] [PubMed]
- Le, T.T.; Bryant, J.A.; Ting, A.E.; Ho, P.Y.; Su, B.; Teo, R.C.C.; Gan, J.S.J.; Chung, Y.C.; O’Regan, D.P.; Cook, S.A.; et al. Assessing exercise cardiac reserve using real-time cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2017, 19, 7. [Google Scholar] [CrossRef]
- Barreto, G.; Loureiro, L.M.R.; Reis, C.E.G.; Saunders, B. Effects of caffeine chewing gum supplementation on exercise performance: A systematic review and meta-analysis. Eur. J. Sport. Sci. 2023, 23, 714–725. [Google Scholar] [CrossRef]
- Goulet, E.D. Effect of exercise-induced dehydration on endurance performance: Evaluating the impact of exercise protocols on outcomes using a meta-analytic procedure. Br. J. Sports Med. 2013, 47, 679–686. [Google Scholar] [CrossRef]
- Jones, L.; Johnstone, I.; Day, C.; Le Marquer, S.; Hulton, A.T. The Dose-Effects of Caffeine on Lower Body Maximal Strength, Muscular Endurance, and Rating of Perceived Exertion in Strength-Trained Females. Nutrients 2021, 13, 3342. [Google Scholar] [CrossRef]
- Peel, J.S.; McNarry, M.A.; Heffernan, S.M.; Nevola, V.R.; Kilduff, L.P.; Waldron, M. The Effect of Dietary Supplements on Endurance Exercise Performance and Core Temperature in Hot Environments: A Meta-analysis and Meta-regression. Sports Med. 2021, 51, 2351–2371. [Google Scholar] [CrossRef]
- Mclellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef]
- Grgic, J.; Venier, S.; Mikulic, P. Examining the Effects of Caffeine on Isokinetic Strength, Power, and Endurance. J. Funct. Morphol. Kinesiol. 2022, 7, 71. [Google Scholar] [CrossRef]
- Ganio, M.S.; Klau, J.F.; Casa, D.J.; Armstrong, L.E.; Maresh, C.M. Effect of caffeine on sport-specific endurance performance: A systematic review. J. Strength. Cond. Res. 2009, 23, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Estevez, E.; Mora-Rodriguez, R. Caffeine effects on short-term performance during prolonged exercise in the heat. Med. Sci. Sports Exerc. 2008, 40, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Marinho, A.H.; Cristina-Souza, G.; Santos, P.S.; Santos-Mariano, A.C.; Rodacki, A.; De-Oliveira, F.R.; Bertuzzi, R.; Lima-Silva, A.E. Caffeine alters the breathing pattern during high-intensity whole-body exercise in healthy men. Eur. J. Appl. Physiol. 2022, 122, 1497–1507. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.E. Drive to the human respiratory muscles. Respir. Physiol. Neurobiol. 2007, 159, 115–126. [Google Scholar] [CrossRef]
- Butler, J.E.; Gandevia, S.C. The output from human inspiratory motoneurone pools. J. Physiol. 2008, 586, 1257–1264. [Google Scholar] [CrossRef]
- Nicks, C.R.; Martin, E.H. Effects of caffeine on inspiratory muscle function. Eur. J. Sport. Sci. 2020, 20, 813–818. [Google Scholar] [CrossRef]
- Sheel, A.W.; Romer, L.M. Ventilation and respiratory mechanics. Compr. Physiol. 2012, 2, 1093–1142. [Google Scholar]
- Williams, J.S.; O’keefe, K.A.; Ferris, L.T. Inspiratory muscle fatigue following moderate-intensity exercise in the heat. J. Sports Sci. Med. 2005, 4, 239–247. [Google Scholar]
- Meeusen, R.; Roelands, B.; Spriet, L.L. Caffeine, exercise and the brain. Nestle Nutr. Instig. Workshop Ser. 2013, 76, 1–12. [Google Scholar]
- Milic-Emili, J.; Lucangelo, U.; Pesenti, A.; Zin, W.A. Basics of Respiratory Mechanics and Artificial Ventilation; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Chapman, R.F.; Mickleborough, T.D. The effects of caffeine on ventilation and pulmonary function during exercise: An often-overlooked response. Phys. Sportsmed. 2009, 37, 97–103. [Google Scholar] [CrossRef]
- D’Urzo, A.D.; Jhirad, R.; Jenne, H.; Avendano, M.A.; D’Costa, M.; Goldstein, R.S.; Rubenstein, I. Effect of caffeine on ventilatory responses to hypercapnia, hypoxia, and exercise in humans. J. Appl. Physiol 1990, 68, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.W.; Fredholm, B.B. Caffeine--an atypical drug of dependence. Drug Alcohol. Depend. 1998, 51, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Stadheim, H.K.; Stensrud, T.; Brage, S.; Jensen, J. Caffeine Increases Exercise Performance, Maximal Oxygen Uptake, and Oxygen Deficit in Elite Male Endurance Athletes. Med. Sci. Sports Exerc. 2021, 53, 2264–2273. [Google Scholar] [CrossRef] [PubMed]
- Brietzke, C.; Asano, R.Y.; De Russi de Lima, F.; Pinheiro, F.A.; Franco-Alvarenga Ugrinowitsch, C.; Pires, F.O. Caffeine effects on VO2max test outcomes investigated by a placebo perceived-as-caffeine design. Nutr. Health 2017, 23, 231–238. [Google Scholar] [CrossRef]
- Levine, B.D. VO2max: What do we know, and what do we still need to know? J. Physiol. 2008, 586, 25–34. [Google Scholar] [CrossRef]
- Kovacs, E.M.; Stegen, J.; Brouns, F. Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J. Appl. Physiol. 1998, 85, 709–715. [Google Scholar] [CrossRef]
- Graham, T.E. Caffeine and exercise: Metabolism, endurance and performance. Sports Med. 2001, 31, 785–807. [Google Scholar] [CrossRef]
- Ogawa, T.; Hayashi, K.; Ichinose, M.; Nishiyasu, T. Relationship between resting ventilatory chemosensitivity and maximal oxygen uptake in moderate hypobaric hypoxia. J. Appl. Physiol. 2007, 103, 1221–1226. [Google Scholar] [CrossRef]
- Duffin, J.; Mohan, R.M.; Vasiliou, P.; Stephenson, R.; Mahamed, S. A model of the chemoreflex control of breathing in humans: Model parameters measurement. Respir. Physiol. 2000, 120, 13–26. [Google Scholar] [CrossRef]
- Stadheim, H.K.; Nossum, E.M.; Olsen, R.; Spencer, M.; Jensen, J. Caffeine improves performance in double poling during acute exposure to 2000-m altitude. J. Appl. Physiol. 2015, 119, 1501–1509. [Google Scholar] [CrossRef]
- Plaskett, C.J.; Cafarelli, E. Caffeine increases endurance and attenuates force sensation during submaximal isometric contractions. J. Appl. Physiol. 2001, 91, 1535–1544. [Google Scholar] [CrossRef]
- Mccall, A.L.; Millington, W.R.; Wurtman, R.J. Blood-brain barrier transport of caffeine: Dose-related restriction of adenine transport. Life Sci. 1982, 31, 2709–2715. [Google Scholar] [CrossRef] [PubMed]
- Suvi, S.; Timpmann, S.; Tamm, M.; Aedma, M.; Kreegipuu, K.; Ööpik, V. Effects of caffeine on endurance capacity and psychological state in young females and males exercising in the heat. Appl. Physiol. Nutr. Metab. 2017, 42, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Adan, A.; Prat, G.; Fabbri, M.; Sànchez-Turet, M. Early effects of caffeinated and decaffeinated coffee on subjective state and gender differences. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 1698–1703. [Google Scholar] [CrossRef] [PubMed]
- Keogh, E.; Chaloner, N. The moderating effect of anxiety sensitivity on caffeine-induced hypoalgesia in healthy women. Psychopharmacology 2002, 164, 429–431. [Google Scholar] [CrossRef]
- Muñoz, A.; López-Samanes, Á.; Aguilar-Navarro, M.; Varillas-Delgado, D.; Rivilla-García, J.; Moreno-Pérez, V.; Del Coso, J. Effects of CYP1A2 and ADORA2A Genotypes on the Ergogenic Response to Caffeine in Professional Handball Players. Genes 2020, 11, 933. [Google Scholar] [CrossRef]
PLA | CAF3 | CAF6 | NE |
---|---|---|---|
245.61 ± 20.27 ## | 253.71 ± 18.49 #** | 263.00 ± 19.34 ** | 262.31 ± 18.48 |
Groups | PLA | CAF3 | CAF6 |
---|---|---|---|
VE | 116.6 ± 11.9 | 129.1 ± 11.2 * | 133.5 ± 11.5 ** |
TV | 2.41 ± 0.34 | 2.66 ± 0.37 ** | 2.75 ± 0.35 ** |
BF | 53.0 ± 5.44 | 53.2 ± 5.77 | 54.0 ± 6.69 |
RER | 1.16 ± 0.04 | 1.20 ± 0.05 * | 1.24 ± 0.06 ** |
VO2 | 3.21 ± 0.38 | 3.45 ± 0.30 * | 3.53 ± 0.29 ** |
PetO2 | 115.9 ± 4.34 | 118.8 ± 4.17 ** | 120.1 ± 4.52 ** |
PetCO2 | 34.7 ± 3.21 | 34.4 ± 3.57 | 33.3 ± 3.68 |
HR | 180.5 ± 7.4 | 186.4 ± 7.5 ** | 187.3 ± 7.6 ** |
RPE | 18.71 ± 1.27 | 18.30 ± 1.36 | 17.06 ± 1.40 *## |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Tao, X.; Dong, H.; Yang, J.; Liang, Y.; Lv, Y.; Yu, L. Effects of Different Doses of Caffeine on Endurance Exercise Performance in the Heat. Life 2025, 15, 478. https://doi.org/10.3390/life15030478
Wu W, Tao X, Dong H, Yang J, Liang Y, Lv Y, Yu L. Effects of Different Doses of Caffeine on Endurance Exercise Performance in the Heat. Life. 2025; 15(3):478. https://doi.org/10.3390/life15030478
Chicago/Turabian StyleWu, Weiliang, Xifeng Tao, Huiyu Dong, Juan Yang, Yin Liang, Yuanyuan Lv, and Laikang Yu. 2025. "Effects of Different Doses of Caffeine on Endurance Exercise Performance in the Heat" Life 15, no. 3: 478. https://doi.org/10.3390/life15030478
APA StyleWu, W., Tao, X., Dong, H., Yang, J., Liang, Y., Lv, Y., & Yu, L. (2025). Effects of Different Doses of Caffeine on Endurance Exercise Performance in the Heat. Life, 15(3), 478. https://doi.org/10.3390/life15030478