Performance Prediction Criteria Based on Yearling Training Cycle Data for World-Class Athletes’ Tiny 1000-Meter Kayak Teams: A Case Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Subject
2.2. Research Design
2.3. Training Monitoring
2.4. Variables and Testing Procedures
2.5. Statistical Tools
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calleja-González, J.; Mallo, J.; Cos, F.; Sampaio, J.; Jones, M.T.; Marqués-Jiménez, D.; Mielgo-Ayuso, J.; Freitas, T.T.; Alcaraz, P.E.; Vilamitjana, J.; et al. A commentary of factors related to player availability and its influence on performance in elite team sports. Fr. Sports Act. Living 2023, 4, 1077934. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.; Fletcher, D.; Arnold, R.; McEwan, D. Exploring perceptions of performance support team effectiveness in elite sport. Sport Mant. Rev. 2024, 27, 300–321. [Google Scholar] [CrossRef]
- Yasin, S.N.; Ma’mun, A.; Rusdiana, A.; Abdullah, A.G.; Nur, L. The talent identification of kayak athletes: A research-based on analytic hierarchy process. J. Hum. Sport Exerc. 2020, 8, 395–402. [Google Scholar] [CrossRef]
- Dadelo, S.; Turskis, Z.; Zavadskas, E.K.; Dadeliene, R. Multi-criteria assessment and ranking system of sport team formation based on objective-measured values of criteria set. Expert. Syst. Appl. 2014, 41, 6106–6113. [Google Scholar] [CrossRef]
- Cox, R.W. The Science of Canoeing: A Guide for Competitors and Coaches to Understanding and Improving Performance in Sprint and Marathon Kayaking; Coxburn Press: Frodscham, UK, 1992. [Google Scholar]
- Chase, A.W.; Hobbs, N. Ultimate Guide to Trail Running: Everything You Need to Know about Equipment, Finding Trails, Nutrition, Hill Strategy, Racing, Avoiding Injury, Training, Weather, and Safety; Rowman & Littlefield: Lanham, MA, USA, 2023. [Google Scholar]
- Wang, X.; Zhao, L. Comparative analysis of cardiorespiratory fitness, bio-motor abilities, and body composition indicators among sprint kayakers of different age groups and expertise levels. Front. Physiol. 2023, 14, 1259152. [Google Scholar] [CrossRef] [PubMed]
- Legge, N.; Slattery, D.K.; O’Meara, D.D.; McCleave, D.E.; Young, D.; Crichton, S.; Watsford, P.M. Physical and technical attributes associated on-water rowing performance in junior and elite rowers. J. Clin. Exerc. Physiol. 2024, 13 (Suppl. S2), 405. [Google Scholar] [CrossRef]
- Torkildsen, J. Efficiency of Elastic Resistance Bands and Conventional Barbells: A Comparison of Force Profiles. Master’s Thesis, CopyCat, Oslo, Norway, 2023. [Google Scholar]
- Romagnoli, C.; Edriss, S.; Caprioli, L.; Ghelardini, L.; Cariati, I.; Alashram, A.; Lanotte, N.; Boatto, P.; Padua, E.; Bonaiuto, V.; et al. K2 crew performance: A preliminary investigation of kinetic parameters in preferred and inverted positions among sub-elite kayakers. Front. Physiol. 2024, 15, 1498111. [Google Scholar] [CrossRef]
- Washif, J.A.; Farooq, A.; Krug, I.; Pyne, D.B.; Verhagen, E.; Taylor, L.; Wong, D.P.; Mujika, I.; Cortis, C.; Haddad, M.; et al. Training during the COVID-19 lockdown: Knowledge, beliefs, and practices of 12,526 athletes from 142 countries and six continents. Sports Med. 2022, 52, 933–948. [Google Scholar] [CrossRef]
- Sordi, A.F.; Silva, B.F.; Silva, B.G.; Marques, D.C.; Ramos, I.M.; Camilo, M.L.; Mota, J.; Valdés-Badilla, P.; Peres, S.B.; Branco, B.H. Comparison between measured and predicted resting metabolic rate equations in cross-training practitioners. Int. J. Environ. Res. Public. Health 2024, 21, 891. [Google Scholar] [CrossRef]
- Cruz, M.I.; Sarmento, H.; Amaro, A.M.; Roseiro, L.; Gomes, B.B. Advancements in Performance Monitoring: A Systematic Review of Sensor Technologies in Rowing and Canoeing Biomechanics. Sports 2024, 12, 254. [Google Scholar] [CrossRef]
- Connor, M.; Beato, M.; O’Neill, M. Adaptive athlete training plan generation: An intelligent control systems approach. J. Sci. Med. Sport 2022, 25, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, N.A.; Newman, T. Developing the Athlete: An Applied Sport Science Roadmap for Optimizing Performance; Human Kinetics: Champaign, IL, USA, 2024. [Google Scholar]
- Dadeliene, R.; Dadelo, S.; Pozniak, N.; Sakalauskas, L. Analysis of top kayakers’ training-intensity distribution and physiological adaptation based on structural modelling. Ann. Oper. Res. 2020, 289, 195–210. [Google Scholar] [CrossRef]
- Krylovas, A.; Kosareva, N.; Dadelienė, R.; Dadelo, S. Evaluation of elite athletes training management efficiency based on multiple criteria measure of conditioning using fewer data. Mathematics 2020, 8, 66. [Google Scholar] [CrossRef]
- Bishop, D.; Bonetti, D.; Dawson, B. The influence of pacing strategy on VO2 and supramaximal kayak performance. Med. Sci. Sports Exerc. 2002, 34, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Gallo, G.; Mateo-March, M.; Gotti, D.; Faelli, E.; Ruggeri, P.; Codella, R.; Filipas, L. How do world class top 5 Giro d’Italia finishers train? A qualitative multiple case study. Scand. J. Med. Sci. Sports 2022, 32, 1738–1746. [Google Scholar] [CrossRef] [PubMed]
- Sheykhlouvand, M.; Arazi, H.; Astorino, T.A.; Suzuki, K. Effects of a new form of resistance-type high-intensity interval training on cardiac structure, hemodynamics, and physiological and performance adaptations in well-trained kayak sprint athletes. Front. Physiol. 2022, 13, 850768. [Google Scholar] [CrossRef] [PubMed]
- Tabata, I. Tabata training: One of the most energetically effective high-intensity intermittent training methods. J. Physiol. Sci. 2019, 69, 559–572. [Google Scholar] [CrossRef] [PubMed]
- Turnes, T.; de Aguiar, R.A.; Cruz, R.S.; Caputo, F. Interval training in the boundaries of severe domain: Effects on aerobic parameters. Eur. J. Appl. Physiol. 2016, 116, 161–169. [Google Scholar] [CrossRef]
- Benítez-Flores, S.; Medeiros, A.R.; Voltarelli, F.A.; Iglesias-Soler, E.; Doma, K.; Simões, H.G.; Rosa, T.S.; Boullosa, D.A. Combined effects of very short “all out” efforts during sprint and resistance training on physical and physiological adaptations after 2 weeks of training. Eur. J. Appl. Physiol. 2019, 1, 1337–1351. [Google Scholar] [CrossRef] [PubMed]
- Solli, G.S.; Tønnessen, E.; Sandbakk, Ø. Block vs. traditional periodization of HIT: Two different paths to success for the world’s best cross-country skier. Front. Physiol. 2019, 10, 375. [Google Scholar] [CrossRef] [PubMed]
- Tønnessen, E.; Sylta, Ø.; Haugen, T.A.; Hem, E.; Svendsen, I.S.; Seiler, S. The road to gold: Training and peaking characteristics in the year prior to a gold medal endurance performance. PLoS ONE. 2014, 9, e101796. [Google Scholar] [CrossRef] [PubMed]
- Rees, T.; Hardy, L.; Güllich, A.; Abernethy, B.; Côté, J.; Woodman, T.; Montgomery, H.; Laing, S.; Warr, C. The great British medalists project: A review of current knowledge on the development of the world’s best sporting talent. Sports Med. 2016, 46, 1041–1058. [Google Scholar] [CrossRef] [PubMed]
- Zinner, C.; Matzka, M.; Leppich, R.; Kounev, S.; Holmberg, H.C.; Sperlich, B. The impact of the German strategy for containment of coronavirus SARS-CoV-2 on training characteristics, physical activity and sleep of highly trained kayakers and canoeists: A retrospective observational study. Front. Sports Act. Living 2020, 2, 579830. [Google Scholar] [CrossRef] [PubMed]
- Du, G.; Tao, T. Effects of a paddling-based high-intensity interval training prescribed using anaerobic speed reserve on sprint kayak performance. Front. Physiol. 2023, 4, 1077172. [Google Scholar] [CrossRef] [PubMed]
- Busta, J.; Hellebrand, J.; Kinkorová, I.; Duchoňová, A.; Hybská, T.; Sánchez, C.C.; Vajda, M. Body morphology and handgrip strength parameters of the female canoe slalom paddlers. Front. Physiol. 2024, 15, 1343341. [Google Scholar] [CrossRef]
- Sperlich, B.; Matzka, M.; Holmberg, H.C. The proportional distribution of training by elite endurance athletes at different intensities during different phases of the season. Front. Sports Act. Living 2023, 5, 1258585. [Google Scholar] [CrossRef] [PubMed]
- Seiler, S. What is best practice for training intensity and duration distribution in endurance athletes? Int. J. Sports Physiol. Perform. 2010, 5, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Möhr, M.; Johnsen, D. Tables for evaluation of body weight of adult men and women by their optimal weight. Z. Fur Arztl. Fortbild. 1972, 66, 1052–1064. [Google Scholar]
- Norton, K.; Olds, T. (Eds.) Anthropometrica: A Textbook of Body Measurement for Sports and Health Courses; UNSW Press: Sydney, Australia, 1996. [Google Scholar]
- Quanjer, P.H.; Tammeling, G.J.; Cotes, J.E.; Pedersen, O.F.; Peslin, R.; Yernault, J.C. Lung volumes and forced ventilatory flows. Eur. J. Respir. Med. 1993, 6 (Suppl. 16), 5–40. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.N.; Bishop, C.; Marshall, G.; Read, P. How to monitor training load and mode using sRPE. Prof. Strength. Cond. 2015, 39, 15–20. [Google Scholar] [CrossRef]
- Lebedev, M.A. Research methods of basic postural control mechanisms. Systems of Information Transmission and Processing, Institute for the Problems of Information Transmission. USSR Acad. Sci. Mosc. 1988, 2, 64–67. [Google Scholar]
- MacDougall, J.D.; Wenger, H.A.; Green, H.J. Physiological testing of the high-performance athlete. Med. Sci. Sports Exerc. 1993, 25, 305. [Google Scholar] [CrossRef]
- Hofmann, P.; Tschakert, G. Special needs to prescribe exercise intensity for scientific studies. Cardiol. Res. Pract. 2011, 1, 209302. [Google Scholar] [CrossRef]
- Fleming, N.; Donne, B.; Fletcher, D.; Mahony, N. A biomechanical assessment of ergometer task specificity in elite flatwater kayakers. J. Sports Sci. Med. 2012, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- McGuigan, H.E.; Hassmén, P.; Rosic, N.; Stevens, C.J. Monitoring of training in high-performance athletes: What do practitioners do. J. Sport Exerc. Sci. 2021, 5, 121–129. [Google Scholar] [CrossRef]
- Brockway, K.S.; Ayres, L.; Shoemaker, M.J. Putting it all together: An evidence-based guide to high-Intensity interval exercise prescription for patients with complex comorbidities. Card. Phys. Ther. J. 2023, 34, 152–163. [Google Scholar] [CrossRef]
- Jones, M.J.; Peeling, P. A comparison of laboratory-based kayak testing protocols. Int. J. Sports Physiol. Perform. 2014, 9, 346–351. [Google Scholar] [CrossRef] [PubMed]
- García-Pallarés, J.; García-Fernández, M.; Sánchez-Medina, L.; Izquierdo, M. Performance changes in world-class kayakers following two different training periodization models. Eur. J. Appl. Physiol. 2010, 110, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, K.M.; Karlsen, T.; Sandbakk, Ø.; James, P.E.; Tjønna, A.E. Sport-specific physiological adaptations in highly trained endurance athletes. Med. Sci. Sports Exerc. 2015, 47, 2150–2157. [Google Scholar] [CrossRef] [PubMed]
- Michael, J.S.; Rooney, K.B.; Smith, R. The metabolic demands of kayaking: A review. J. Sports Sci. Med. 2008, 7, 1–7. [Google Scholar] [PubMed]
- Otter-Kaufmann, L.; Hilfiker, R.; Ziltener, J.L.; Allet, L. Which physiological parameters are associated with rowing performance. Swiss Sports Exerc. Med. 2020, 68, 41–48. [Google Scholar] [CrossRef]
- Nekriošius, R.; Dadelienė, R.; Balčiūnas, E.; Milašius, K. Peculiarities of aerobic development in kayak rowers preparing for 1000 m event. Balt. J. Sport Health Sci. 2013, 30, 3. [Google Scholar] [CrossRef]
- Lee, J.; Zhang, X.L. Physiological determinants of VO2max and the methods to evaluate it: A critical review. Sci. Sports 2021, 36, 259–271. [Google Scholar] [CrossRef]
- Noakes, T.D. Maximal oxygen uptake:” classical” versus” contemporary” viewpoints: A rebuttal. Med. Sci. Sports Exerc. 1998, 30, 1381–1398. [Google Scholar]
- Daniels, J.A.; Daniels, N.A. Running economy of elite male and elite female runners. Med. Sci. Sports Exerc. 1992, 24, 483–489. [Google Scholar] [CrossRef]
- Paulauskas, R.; Nekriošius, R.; Dadelienė, R.; Sousa, A.; Figueira, B. Muscle oxygenation measured with near-infrared spectroscopy following different intermittent training protocols in a world-class kayaker—A case study. Sensors 2022, 22, 8238. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, K. Load dynamics, recovery and adaptation for better sporting events. J. Adv. Sport Phys. Edu. 2022, 5, 180–190. [Google Scholar] [CrossRef]
- Bullock, N.; Bonetti, D.; Wolford, S.; Peeling, P. Protocols for the physiological assessment of sprint kayak athletes. In Physiological Tests For Elite Athletes, 2nd ed.; Gore, C.J., Ed.; Human Kinetics: Champaign, IL, USA, 2012. [Google Scholar]
- Ranković, G.; Mutavdžić, V.; Toskić, D.; Preljević, A.; Kocić, M.; Nedin-Ranković, G.; Damjanović, N. Aerobic capacity as an indicator in different kinds of sports. Bosn. J. Basic. Med. Sc. 2010, 10, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.; Choudhary, P.K. Physiological insights into elite sprint paddlers: Unravelling performance dynamics and training implications. Phys. Ed. Theory Met. 2023, 23, 825–832. [Google Scholar] [CrossRef]
- Fekete, M. Periodized strength training for sprint kayaking/canoeing. Strength. Cond. J. 1998, 20, 8–12. [Google Scholar] [CrossRef]
- Bartolomei, S.; Zaniboni, F.; Verzieri, N.; Hoffman, J.R. New perspectives in resistance training periodization: Mixed session vs. Block periodized programs in trained men. J. Strength. Cond. Res. 2023, 37, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Anyadike-Danes, K.; Donath, L.; Kiely, J. Coaches’ perceptions of common planning concepts within training theory: An international survey. Sports Med.-Open 2023, 9, 109. [Google Scholar] [CrossRef] [PubMed]
- Bompa, T.O.; Buzzichelli, C. Periodization-: Theory and Methodology of Training; Human kinetics: Champaign, IL, USA, 2019. [Google Scholar]
- Zentgraf, K.; Raab, M. Excellence and expert performance in sports: What do we know and where are we going? J. Hum. Sport Exerc. 2023, 21, 766–786. [Google Scholar] [CrossRef]
- Sandford, G.N.; Laursen, P.B.; Buchheit, M. Anaerobic speed/power reserve and sport performance: Scientific basis, current applications and future directions. Sports Med. 2021, 51, 2017–2028. [Google Scholar] [CrossRef] [PubMed]
HIT Zones | HRmax |
---|---|
1 | <60% |
2 | 60–69% |
3 | 70–79% |
4 | 80–90% |
5 | >90% |
Macrocycles | I | II | Transitory | Workload (total) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycles | Preparatory General | Preparatory Specific | Competitor | Preparatory | Competitor | |||||||||
Mesocycles | November | December | January | February | March | April | May | June | July | August | September | October | ||
Number of training days (n) | 20 | 22 | 22 | 20 | 22 | 21 | 22 | 22 | 22 | 22 | 16 | 16 | 247 | |
Number of training sessions (n) | 22 | 26 | 28 | 32 | 34 | 36 | 34 | 34 | 34 | 28 | 16 | 15 | 239 | |
Training time (h) | In the hall | 24 | 26 | 30 | 25 | 25 | 21 | 20 | 20 | 16 | 20 | 10 | 6 | 243 |
Rowing | 28 | 36 | 40 | 40 | 45 | 56 | 45 | 40 | 40 | 40 | 20 | 18 | 448 | |
Total training time (h) | 52 | 62 | 70 | 65 | 70 | 77 | 65 | 60 | 56 | 60 | 30 | 24 | 691 | |
Rowing (km) | 252 | - | - | 121 | 383 | 536 | 515 | 560 | 463 | 415 | 180 | 270 | 3695 | |
Number of competitions (n) | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 1 | 9 | ||
Starts (n) | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 3 | 4 | 6 | 2 | 22 | ||
Tests (n) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 12 |
Macrocycles | I | II | Transitory | Workload (total) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycles | Preparatory General | Preparatory Specific | Competitory | Preparatory | Competitory | |||||||||
Mezocycles | November | December | January | February | March | April | May | June | July | August | September | October | ||
HIT Zones % of kayaking performance time | 1 | 10 | 16 | 16 | 22 | 23 | 20 | 27 | 29 | 21 | 20 | 36 | 21 | 17.0 |
2 | 24 | 13 | 20 | 27 | 23 | 18 | 21 | 18 | 20 | 28 | 22 | 21 | 19.5 | |
3 | 40 | 42 | 36 | 22 | 25 | 30 | 25 | 27 | 27 | 28 | 29 | 32 | 30.25 | |
4 | 24 | 26 | 25 | 25 | 25 | 28 | 23 | 22 | 28 | 28 | 12 | 23 | 24.00 | |
5 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 1 | 2 | 3.25 |
Week Days | Training Content |
---|---|
I | 1. Workout 1. Warm-up: 20 min 2. Interval training: (a) 5 × (20 min, speed 60 s, La 4–6 mmol/L), rest breaks 5 min (b) Exercises: 10 × 15 s, rest break 2–3 min 4. Recovery exercises: 10–15 min |
2. Workout 1. Warm-up: 10 min 2. Exercises: (5 × 15–20 s) × 5, rest breaks 1–2 min 3. Rowing for 30 min (make a maximal powerful rower) 4. Recovery exercises: 10 min | |
II | 1. Warm-up: 20 min 2. Repeated training (200 m with start, competition pace × 4, rest breaks 1 min, La 11–13 mmol/L) × 4, rest breaks 15–20 min 3. Steady rowing for recovery: 20–30 min 4. Recovery exercises: 10–15 min |
III | Recovery–supercompensation. |
IV | 1. Workout 1. Warm-up: 20 min 2. Repeated training (2 km, La 5–6 mmol/L) × 4, rest breaks 5–8 min 3. Exercises: 10 × 15 s, rest breaks 2 min 4. Recovery exercises: 10–15 min |
2. Workout 1. Warm-up: 10 min 2. Exercises: (5 × 20–30 s) × 5, rest breaks 1–2 min 3. Rowing for 5 min × 6 (make maximal powerful rower), rest breaks 6 min 4. Recovery exercises: 10–15 min | |
V | 1. Warm-up: 20–30 min (perform accelerations) 2. Repeated-control training (500 m × 2, rest breaks 3 min, La 8–10 mmol/L, rest breaks 15 min + 1 km, La 10–12 mmol/L) rest 20 min and 500 m × 2, rest breaks 3 min, La 10–12 mmol/L 3. Rowing for recovery: 20 min 4. Recovery exercises: 15 min |
VI | 1. Warm-up: 20 min 2. Interval training (20 min max fast 60 s, La 4–5 mmol/L) × 3, rest breaks 5 min 3. Exercises: (5 × 30–40 s) × 5, rest breaks 1 and 3 min 4. Recovery exercises: 10 min |
VII | Recovery–supercompensation |
Data | Month | BM, kg | Hand Grip, (R, L), kg | VLC | MM, kg | FM, kg | PRT, mls | FOM t/10 s | HR Rest b/min | Hb g/L | Ht % | HR, t/min CIL | VO2max mL·min−1·kg−1 | WC, W, CIL | HR t/min VT2 | VO2 mL·min−1·kg−1 VT2 | WC, W, VT2 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Athlete A | |||||||||||||||||||
First macrocycle | General prep. | 11 | 89.3 | 73 | 71 | 7.5 | 48.3 | 7.7 | 155 | 86 | 48 | 134 | 39 | 182 | 57.2 | 320 | 165 | 41.7 | 220 |
12 | 87.5 | 70 | 68 | 7.7 | 47.5 | 7.1 | 165 | 80 | 48 | 158 | 46 | 181 | 60.9 | 320 | 164 | 43.5 | 200 | ||
Specific prep. | 1 | 88.0 | 68 | 66 | 7.5 | 48.0 | 7.3 | 151 | 81 | 46 | 163 | 48 | 183 | 62.2 | 340 | 170 | 51.9 | 240 | |
2 | 88.0 | 68 | 70 | 7.7 | 47.1 | 7.4 | 150 | 80 | 48 | 157 | 48 | 180 | 60.1 | 300 | 168 | 42.8 | 200 | ||
3 | 87.5 | 70 | 71 | 7.6 | 47.1 | 7.2 | 157 | 77 | 48 | 164 | 48 | 183 | 60.7 | 320 | 165 | 42.0 | 220 | ||
4 | 88.0 | 69 | 71 | 7.5 | 47.4 | 7.8 | 149 | 82 | 44 | 156 | 45 | 187 | 57.7 | 320 | 164 | 41.1 | 200 | ||
Competition | 5 | 88.5 | 69 | 65 | 7.6 | 46.7 | 6.8 | 155 | 82 | 44 | 167 | 49 | 184 | 61.8 | 320 | 166 | 49.5 | 200 | |
Second macrocycle | Preparation | 6 | 86.5 | 70 | 70 | 7.6 | 47.3 | 7.1 | 167 | 79 | 40 | 145 | 42 | 185 | 57.8 | 320 | 171 | 50.7 | 260 |
7 | 89.0 | 68 | 68 | 7.5 | 49.1 | 7.6 | 162 | 79 | 52 | 145 | 42 | 184 | 64.0 | 320 | 169 | 50.8 | 240 | ||
Competition | 8 | 88.5 | 71 | 66 | 7.6 | 48.1 | 7.7 | 154 | 80 | 48 | 165 | 48 | 181 | 62.0 | 320 | 162 | 44.2 | 220 | |
Transitory | 9 | 89.6 | 71 | 68 | 7.5 | 49.1 | 7.6 | 155 | 83 | 60 | 154 | 48 | 192 | 68.6 | 340 | 183 | 54.7 | 240 | |
10 | 89.0 | 72 | 72 | 7.6 | 48.3 | 7.6 | 155 | 81 | 52 | 161 | 53 | 185 | 58.8 | 320 | 165 | 43.6 | 220 | ||
88.28 | 69.92 | 68.83 | 7.58 | 47.83 | 7.41 | 156.25 | 80.83 | 48.17 | 155.75 | 46.33 | 183.92 | 60.98 | 321.67 | 167.67 | 46.38 | 221.67 | |||
SD | 0.88 | 1.62 | 2.33 | 0.08 | 0.78 | 0.31 | 5.69 | 2.29 | 5.01 | 9.88 | 3.80 | 3.23 | 3.18 | 10.30 | 5.53 | 4.77 | 19.92 | ||
V | 1.00 | 2.32 | 3.38 | 1.00 | 1.63 | 4.17 | 3.64 | 2.83 | 10.39 | 6.34 | 8.20 | 1.76 | 5.21 | 3.20 | 3.30 | 10.28 | 8.99 | ||
Athlete B | |||||||||||||||||||
First macrocycle | General prep. | 11 | 84.5 | 72 | 76 | 6.2 | 47.0 | 6.8 | 162 | 104 | 48 | 162 | 47 | 198 | 62.7 | 320 | 184 | 51.2 | 220 |
12 | 84.0 | 89 | 81 | 6.3 | 46.2 | 6.6 | 161 | 90 | 56 | 180 | 50 | 202 | 55.7 | 320 | 192 | 45.8 | 200 | ||
Specific prep. | 1 | 84.0 | 90 | 82 | 6.2 | 46.3 | 6.7 | 156 | 95 | 60 | 171 | 47 | 199 | 53.4 | 320 | 184 | 44.4 | 200 | |
2 | 85.5 | 83 | 80 | 6.3 | 47.7 | 7.7 | 155 | 93 | 60 | 170 | 50 | 196 | 64.8 | 320 | 183 | 50.3 | 220 | ||
3 | 83.0 | 84 | 74 | 6.3 | 45.7 | 6.4 | 151 | 90 | 48 | 179 | 52 | 196 | 64.3 | 300 | 180 | 47.8 | 220 | ||
4 | 84.5 | 82 | 79 | 6.2 | 46.7 | 7.2 | 151 | 85 | 52 | 175 | 51 | 204 | 63.4 | 320 | 180 | 43.2 | 180 | ||
Competition | 5 | 83.0 | 90 | 81 | 6.3 | 47.4 | 7.8 | 154 | 90 | 52 | 163 | 48 | 206 | 62.2 | 320 | 190 | 48.2 | 200 | |
Second macrocycle | Preparation | 6 | 84.5 | 76 | 76 | 6.3 | 47.1 | 7.2 | 158 | 92 | 52 | 167 | 49 | 202 | 59.1 | 320 | 196 | 53.2 | 260 |
7 | 83.5 | 76 | 74 | 6.3 | 46.1 | 6.8 | 155 | 85 | 52 | 163 | 48 | 193 | 63.9 | 320 | 184 | 55.6 | 240 | ||
Competition | 8 | 83.2 | 70 | 70 | 6.4 | 46.9 | 7.0 | 161 | 105 | 52 | 173 | 50 | 204 | 69.4 | 320 | 197 | 60.9 | 240 | |
Transitory | 9 | 84.0 | 72 | 62 | 6.5 | 47.0 | 6.5 | 159 | 95 | 52 | 180 | 53 | 179 | 58.5 | 340 | 159 | 41.1 | 220 | |
10 | 84.5 | 71 | 74 | 6.4 | 47.2 | 6.7 | 168 | 78 | 52 | 177 | 54 | 189 | 65.1 | 320 | 179 | 47.1 | 200 | ||
84.02 | 79.58 | 75.75 | 6.31 | 46.78 | 6.95 | 157.58 | 91.83 | 53.00 | 171.67 | 49.92 | 197.33 | 61.88 | 320.00 | 184.00 | 49.07 | 216.67 | |||
SD | 0.75 | 7.68 | 5.67 | 0.09 | 0.59 | 0.45 | 4.94 | 7.61 | 3.86 | 6.76 | 2.27 | 7.62 | 4.45 | 8.53 | 9.98 | 5.58 | 22.29 | ||
V | 0.89 | 9.65 | 7.49 | 1.43 | 1.26 | 6.45 | 3.14 | 8.29 | 7.29 | 3.94 | 4.56 | 3.86 | 7.19 | 2.67 | 5.42 | 11.37 | 10.29 | ||
d | 4.27 | 9.67 | 6.92 | 1.27 | 1.06 | 0.46 | 1.33 | 11.00 | 4.83 | 15.92 | 3.58 | 13.42 | 0.89 | 1.67 | 16.33 | 2.69 | 5.00 | ||
t | 12.80 | 4.27 | 3.91 | 37.37 | 3.75 | 2.92 | 0.61 | 4.79 | 2.65 | 4.61 | 2.80 | 5.62 | 0.56 | 0.43 | 4.96 | 1.27 | 0.58 | ||
p | <0.001 | <0.01 | <0.01 | <0.001 | <0.01 | <0.05 | - | <0.001 | <0.05 | <0.001 | <0.05 | <0.001 | - | - | <0.001 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dadelo, S.; Nekriošius, R.; Dadelienė, R. Performance Prediction Criteria Based on Yearling Training Cycle Data for World-Class Athletes’ Tiny 1000-Meter Kayak Teams: A Case Study. Life 2025, 15, 476. https://doi.org/10.3390/life15030476
Dadelo S, Nekriošius R, Dadelienė R. Performance Prediction Criteria Based on Yearling Training Cycle Data for World-Class Athletes’ Tiny 1000-Meter Kayak Teams: A Case Study. Life. 2025; 15(3):476. https://doi.org/10.3390/life15030476
Chicago/Turabian StyleDadelo, Stanislav, Ričardas Nekriošius, and Rūta Dadelienė. 2025. "Performance Prediction Criteria Based on Yearling Training Cycle Data for World-Class Athletes’ Tiny 1000-Meter Kayak Teams: A Case Study" Life 15, no. 3: 476. https://doi.org/10.3390/life15030476
APA StyleDadelo, S., Nekriošius, R., & Dadelienė, R. (2025). Performance Prediction Criteria Based on Yearling Training Cycle Data for World-Class Athletes’ Tiny 1000-Meter Kayak Teams: A Case Study. Life, 15(3), 476. https://doi.org/10.3390/life15030476