The Impact of a Western Diet and Resistance Training in a Rat Model of Mammary Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Experimental Design
2.3. Exercise Training
2.4. Animals’ Monitoring
2.5. Transthoracic Echocardiographic Study
2.6. Animals’ Euthanasia and Necropsy
2.7. Histopathology of Tumors
2.8. Statistical Analysis
3. Results
3.1. Animals’ Anthropometric Parameters
3.2. Maximal Carrying Load
3.3. Echocardiographic Examination: Morphological Parameters
3.4. Echocardiographic Examination: Functional Parameters
3.5. Visceral Adipose Tissue and Organs’ Relative Weight
3.6. Correlation Between Data
3.7. Histological Classification of Mammary Tumors
4. Discussion
4.1. Effects of Diet and Exercise on Anthropometric Parameters
4.2. Effects of Lifestyle on Mammary Cancer Development
4.3. Effects of Lifestyle on Heart Remodeling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
VAT | Visceral adipose tissue |
IVS | Interventricular septum |
LVPW | Ventricle posterior wall thickness |
EI | Eccentricity index |
CTR | Standard diet and sedentary |
CTR+MNU | Standard diet, sedentary and induced |
CTR+EX | Standard diet, sedentary and exercised |
CTR+MNU+EX | Standard diet, exercised and induced |
WD | Western diet |
WD+MNU | Western diet and induced |
WD+EX | Western diet and exercised |
WD+MNU+EX | Western diet, induced and exercised |
MNU | N-methyl-N-nitrosourea |
MCL | Maximal carrying load |
PWG | Ponderal weight gain |
BSA | Body surface area |
PLAX | Parasternal long-axis |
PSAX | Parasternal short-axis |
LVID | Left ventricle internal dimension |
Aod | Aorta diameter |
PAAT | Acceleration time of the pulmonary artery |
LA | Left atria |
RA | Right atria |
LVET | Left ventricle ejection time |
D1 | Left ventricle short-axis diameter parallel to the septum |
D2 | Left ventricle short-axis diameter perpendicular to the septum |
FS | Fractional shortening of the left ventricle |
SV | Stroke volume |
CO | Cardiac output |
EJ | Ejection fraction |
LV | Left ventricle mass |
EI | Eccentricity index |
S.D. | Standard deviation |
cis | Carcinoma in situ |
References
- WHO Global Cancer Observatory. World Cancer Report: International Agency for Research on Cancer; WHO Global Cancer Observatory: Lyon, France, 2022. [Google Scholar]
- Wiggs, M.P.; Beaudry, A.G.; Law, M.L. Cardiac Remodeling in Cancer-Induced Cachexia: Functional, Structural, and Metabolic Contributors. Cells 2022, 11, 1931. [Google Scholar] [CrossRef]
- Cherukuri, S.P.; Chikatimalla, R.; Dasaradhan, T.; Koneti, J.; Gadde, S.; Kalluru, R. Breast Cancer and the Cardiovascular Disease: A Narrative Review. Cureus 2022, 14, e27917. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Sulejczak, D.; Kleczkowska, P.; Bukowska-Ośko, I.; Kucia, M.; Popiel, M.; Wietrak, E.; Kramkowski, K.; Wrzosek, K.; Kaczyńska, K. Mitochondrial Oxidative Stress—A Causative Factor and Therapeutic Target in Many Diseases. Int. J. Mol. Sci. 2021, 22, 13384. [Google Scholar] [CrossRef] [PubMed]
- Zhazykbayeva, S.; Pabel, S.; Mügge, A.; Sossalla, S.; Hamdani, N. The Molecular Mechanisms Associated with the Physiological Responses to Inflammation and Oxidative Stress in Cardiovascular Diseases. Biophys. Rev. 2020, 12, 947–968. [Google Scholar] [CrossRef]
- Sharman, R.; Harris, Z.; Ernst, B.; Mussallem, D.; Larsen, A.; Gowin, K. Lifestyle Factors and Cancer: A Narrative Review. Mayo Clin. Proc. Innov. Qual. Outcomes 2024, 8, 166–183. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-B.; Pan, X.-F.; Chen, J.; Cao, A.; Zhang, Y.-G.; Xia, L.; Wang, J.; Li, H.; Liu, G.; Pan, A. Combined Lifestyle Factors, Incident Cancer, and Cancer Mortality: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Br. J. Cancer 2020, 122, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and Evolution of the Western Diet: Health Implications for the 21st Century. Am. J. Clin. Nutr. 2005, 81, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef] [PubMed]
- Statovci, D.; Aguilera, M.; MacSharry, J.; Melgar, S. The Impact of Western Diet and Nutrients on the Microbiota and Immune Response at Mucosal Interfaces. Front. Immunol. 2017, 8, 838. [Google Scholar] [CrossRef]
- Silva, J.; Duarte, J.A.; Oliveira, P.A. Realistic Aspects behind the Application of the Rat Model of Chemically-Induced Mammary Cancer: Practical Guidelines to Obtain the Best Results. Vet. World 2023, 16, 1222–1230. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.; Azevedo, T.; Aires, I.; Medeiros, C.; Neuparth, M.J.; Seixas, F.; Ferreira, R.; Faustino-Rocha, A.I.; Oliveira, P.A.; Duarte, J.A. Effects of Ladder-Climbing Exercise Training on Mammary Cancer: Data from a Rat Model Chemically-Induced. 2025; submitted. [Google Scholar]
- Padilha, C.S.; Borges, F.H.; Costa Mendes da Silva, L.E.; Frajacomo, F.T.T.; Jordao, A.A.; Duarte, J.A.; Cecchini, R.; Guarnier, F.A.; Deminice, R. Resistance Exercise Attenuates Skeletal Muscle Oxidative Stress, Systemic pro-Inflammatory State, and Cachexia in Walker-256 Tumor-Bearing Rats. Appl. Physiol. Nutr. Metab. 2017, 42, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Paiz, R.C.; Juárez-Flores, B.I.; Rivera, J.R.A.; Ortega, C.C.; Agüero, J.A.R.; Chávez, E.G.; Fuentes, Á. Glucose-Lowering Effect of Xoconostle (Opuntia Joconostle A. Web., Cactaceae) in Diabetic Rats. J. Med. Plants Res. 2010, 4, 2326–2333. [Google Scholar] [CrossRef]
- Li, P.; Yin, R.; Du, B.; Qin, C.; Li, B.; Chan, H.M.; Feng, X. Kinetics and Metabolism of Mercury in Rats Fed With Mercury Contaminated Rice Using Mass Balance and Mercury Isotope Approach. Sci. Total Environ. 2020, 736, 139687. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.; Azevedo, T.; Ginja, M.; Oliveira, P.A.; Duarte, J.A.; Faustino-Rocha, A.I. Realistic Aspects of Cardiac Ultrasound in Rats: Practical Tips for Improved Examination. J. Imaging 2024, 10, 219. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.M.O.; Moreira-Pais, A.; Neto, T.; Peixoto da Silva, S.; Oliveira, P.A.; Ferreira, R.; Mendes, J.; Bastos, M.M.S.M.; Lopes, C.; Casaca, F.; et al. Dimethylaminoparthenolide Reduces the Incidence of Dysplasia and Ameliorates a Wasting Syndrome in HPV16-Transgenic Mice. Drug Dev. Res. 2019, 80, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Russo, J.; Russo, I.H. Atlas and Histologic Classification of Tumors of the Rat Mammary Gland. J. Mammary Gland. Biol. Neoplasia 2000, 5, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Law, M.L. Cancer Cachexia: Pathophysiology and Association with Cancer-Related Pain. Front. Pain. Res. 2022, 3, 971295. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, L. Cancer Cachexia: Definition, Staging, and Emerging Treatments. Cancer Manag. Res. 2020, 12, 5597. [Google Scholar] [CrossRef]
- Laaksonen, K.; Nevalainen, T.; Haasio, K.; Kasanen, I.; Nieminen, P.; Voipio, H.-M. Food and Water Intake, Growth, and Adiposity of Sprague-Dawley Rats with Diet Board for 24 Months. Lab. Anim. 2013, 47, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, A.P.d.M.; Chiba, F.Y.; Astolphi, R.D.; de Oliveira da Mota, M.S.; Louzada, M.J.Q.; de Lima Coutinho Mattera, M.S.; Garbin, C.A.S.; Ervolino, E.; Tsosura, T.V.S.; Belardi, B.E.; et al. Effect of Resistance Training on Osteopenic Rat Bones in Neonatal Streptozotocin-Induced Diabetes: Analysis of GLUT4 Content and Biochemical, Biomechanical, Densitometric, and Microstructural Evaluation. Life Sci. 2021, 287, 120143. [Google Scholar] [CrossRef] [PubMed]
- de Alcantara Santos, R.; Guzzoni, V.; Silva, K.A.S.; Aragão, D.S.; de Paula Vieira, R.; Bertoncello, N.; Schor, N.; Aimbire, F.; Casarini, D.E.; Cunha, T.S. Resistance Exercise Shifts the Balance of Renin-Angiotensin System toward ACE2/Ang 1-7 Axis and Reduces Inflammation in the Kidney of Diabetic Rats. Life Sci. 2021, 287, 120058. [Google Scholar] [CrossRef] [PubMed]
- Shamsi, M.M.; Mahdavi, M.; Quinn, L.S.; Gharakhanlou, R.; Isanegad, A. Effect of Resistance Exercise Training on Expression of Hsp70 and Inflammatory Cytokines in Skeletal Muscle and Adipose Tissue of STZ-Induced Diabetic Rats. Cell Stress. Chaperones 2016, 21, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Neves, R.V.P.; Rosa, T.S.; Souza, M.K.; Oliveira, A.J.C.; Gomes, G.N.S.; Brixi, B.; Souza, L.H.R.; Deus, L.A.; Simões, H.G.; Stone, W.J.; et al. Dynamic, Not Isometric Resistance Training Improves Muscle Inflammation, Oxidative Stress and Hypertrophy in Rats. Front. Physiol. 2019, 10, 1–14. [Google Scholar] [CrossRef]
- Pimentel Neto, J.; Rocha, L.C.; Dos Santos Jacob, C.; Klein Barbosa, G.; Ciena, A.P. Postsynaptic Cleft Density Changes with Combined Exercise Protocols in an Experimental Model of Muscular Hypertrophy. Eur. J. Histochem. 2021, 65, 3274. [Google Scholar] [CrossRef]
- Vasilceac, F.A.; de Cássia Marqueti, R.; de Sousa Neto, I.V.; da Cunha Nascimento, D.; Carvalho de Souza, M.; Quaglioti Durigan, J.L.; Mattiello, S.M. Resistance Training Decreases Matrix Metalloproteinase-2 Activity in Quadriceps Tendon in a Rat Model of Osteoarthritis. Braz. J. Phys. Ther. 2021, 25, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Imbroisi Filho, R.; Ochioni, A.C.; Esteves, A.M.; Leandro, J.G.B.; Demaria, T.M.; Sola-Penna, M.; Zancan, P. Western Diet Leads to Aging-Related Tumorigenesis via Activation of the Inflammatory, UPR, and EMT Pathways. Cell Death Dis. 2021, 12, 643. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.-P.; Klingenberg, L.; Rosenkilde, M.; Gilbert, J.-A.; Tremblay, A.; Sjödin, A. Physical Activity Plays an Important Role in Body Weight Regulation. J. Obes. 2010, 2011, 360257. [Google Scholar] [CrossRef]
- Wolin, K.Y.; Carson, K.; Colditz, G.A. Obesity and Cancer. Oncologist 2010, 15, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Giovannucci, E.L. The Obesity Paradox in Cancer: Epidemiologic Insights and Perspectives. Curr. Nutr. Rep. 2019, 8, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Lennon, H.; Sperrin, M.; Badrick, E.; Renehan, A.G. The Obesity Paradox in Cancer: A Review. Curr. Oncol. Rep. 2016, 18, 56. [Google Scholar] [CrossRef]
- Kompella, P.; Vasquez, K.M. Obesity and Cancer: A Mechanistic Overview of Metabolic Changes in Obesity That Impact Genetic Instability. Mol. Carcinog. 2019, 58, 1531–1550. [Google Scholar] [CrossRef]
- Prieto-Hontoria, P.L.; Pérez-Matute, P.; Fernández-Galilea, M.; Bustos, M.; Martínez, J.A.; Moreno-Aliaga, M.J. Role of Obesity-Associated Dysfunctional Adipose Tissue in Cancer: A Molecular Nutrition Approach. Biochim. Biophys. Acta (BBA)-Bioenerg. 2011, 1807, 664–678. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, M.C.; Anglin, D.A.; Robinson, A.T.; Beck, D.T.; Roberts, M.D. Making the Case for Resistance Training in Improving Vascular Function and Skeletal Muscle Capillarization. Front. Physiol. 2024, 15, 1338507. [Google Scholar] [CrossRef]
- Tufail, M.; Jiang, C.-H.; Li, N. Altered Metabolism in Cancer: Insights into Energy Pathways and Therapeutic Targets. Mol. Cancer 2024, 23, 203. [Google Scholar] [CrossRef] [PubMed]
- Karlstaedt, A.; Moslehi, J.; de Boer, R.A. Cardio-Onco-Metabolism: Metabolic Remodelling in Cardiovascular Disease and Cancer. Nat. Rev. Cardiol. 2022, 19, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Maurya, S.K.; Carley, A.N.; Maurya, C.K.; Lewandowski, E.D. Western Diet Causes Heart Failure With Reduced Ejection Fraction and Metabolic Shifts After Diastolic Dysfunction and Novel Cardiac Lipid Derangements. JACC Basic. Transl. Sci. 2023, 8, 422–435. [Google Scholar] [CrossRef] [PubMed]
- Galvão, D.A.; Newton, R.U. Review of Exercise Intervention Studies in Cancer Patients. JCO J. Clin. Oncol. 2005, 23, 899–909. [Google Scholar] [CrossRef]
- Braith, R.W.; Stewart, K.J. Resistance Exercise Training. Circulation 2006, 113, 2642–2650. [Google Scholar] [CrossRef] [PubMed]
- Soares, L.L.; Leite, L.B.; Ervilha, L.O.G.; Pelozin, B.R.A.; Pereira, N.P.; da Silva, B.A.F.; Portes, A.M.O.; Drummond, F.R.; de Rezende, L.M.T.; Fernandes, T.; et al. Resistance Exercise Training Benefits Pulmonary, Cardiac, and Muscular Structure and Function in Rats with Stable Pulmonary Artery Hypertension. Life Sci. 2023, 332, 122128. [Google Scholar] [CrossRef]
- Sturgeon, K.M.; Ky, B.; Libonati, J.R.; Schmitz, K.H. The Effects of Exercise on Cardiovascular Outcomes before, during, and after Treatment for Breast Cancer. Breast Cancer Res. Treat. 2014, 143, 219–226. [Google Scholar] [CrossRef]
Parameter | Experimental Group (n) | |||||||
---|---|---|---|---|---|---|---|---|
CTR (n = 7) | CTR+MNU (n = 5) | EX (n = 7) | EX+MNU (n = 6) | WD (n = 7) | WD+MNU (n = 7) | WD+EX (n = 7) | WD+MNU+EX (n = 7) | |
PWG (%) | 48.35 ± 4.24 | 52.45 ± 2.46 | 50.85 ± 3.44 | 47.87 ± 5.58 | 52.63 ± 6.35 | 50.12 ± 4.68 | 52.85 ± 4.74 | 50.39 ± 2.18 |
BSA (cm2) | 388.23 ± 9.74 | 383.77 ± 28.61 | 401.13 ± 18.84 | 370.87 ± 29.00 | 398.66 ± 23.26 | 392.12 ± 22.23 | 396.13 ± 19.23 | 362.56 ± 27.94 |
Parameter | Experimental group (n) | |||||||
---|---|---|---|---|---|---|---|---|
CTR (n = 7) | CTR+MNU (n = 5) | EX (n = 7) | EX+MNU (n = 6) | WD (n = 7) | WD+MNU (n = 7) | WD+EX (n = 7) | WD+MNU+EX (n = 7) | |
IVSd (mm) | 0.85 ± 0.00 | 0.73 ± 0.03 | 0.89 ± 0.01 | 0.78 ± 0.01 | 1.03 ± 0.01 | 0.97 ± 0.02 a | 0.81 ± 0.01 | 0.80 ± 0.04 |
IVSs (mm) | 0.79 ± 0.05 | 0.74 ± 0.15 | 0.88 ± 0.21 | 0.82 ± 0.16 | 0.91 ± 0.21 | 1.05 ± 0.27 a | 0.86 ± 0.15 | 0.85 ± 0.31 |
LVIDd (mm) | 6.75 ± 1.15 | 6.04 ± 1.79 | 7.62 ± 0.87 b | 5.68 ± 0.90 | 6.45 ± 1.22 | 6.01 ± 1.15 | 7.15 ± 0.64 | 6.28 ± 2.15 |
LVIDs (mm) | 6.30 ± 1.17 | 5.39 ± 1.71 | 6.32 ± 1.02 b | 4.66 ± 1.22 | 5.62 ± 1.48 | 5.35 ± 1.15 | 6.14 ± 1.03 | 4.91 ± 1.53 |
LVPWd (mm) | 1.15 ± 1.15 | 1.03 ± 1.79 | 1.16 ± 0.87 | 1.16 ± 0.9 | 1.12 ± 1.22 | 1.36 ± 1.15 | 1.38 ± 0.64 | 1.05 ± 2.15 |
LVPWs (mm) | 1.31 ± 0.21 | 0.99 ± 0.32 | 1.03 ± 0.24 | 1.18 ± 0.32 | 1.01 ± 0.13 | 1.36 ± 0.29 a | 1.12 ± 0.16 | 1.06 ± 0.31 |
Aod (mm) | 1.38 ± 0.19 | 1.23 ± 0.16 | 1.62 ± 0.12 b | 1.30 ± 0.15 | 1.58 ± 0.16 | 1.61 ± 0.20 a | 1.49 ± 0.30 | 1.37 ± 0.48 |
LA (mm2) | 3.81 ± 0.40 | 3.78 ± 1.33 | 3.71 ± 0.62 | 3.92 ± 1.32 | 4.14 ± 0.98 | 5.33 ± 1.34 | 4.26 ± 1.21 | 4.08 ± 1.40 |
RA (mm2) | 3.68 ± 0.42 | 3.34 ± 0.81 | 4.04 ± 1.09 | 4.09 ± 1.23 | 4.33 ± 1.26 | 5.24 ± 1.52 | 4.00 ± 0.73 | 4.49 ± 2.48 |
D1(mm) | 7.52 ± 1.83 | 9.02 ± 0.61 | 6.69 ± 1.63 | 7.72 ± 1.24 | 6.99 ± 1.35 | 7.59 ± 1.03 | 8.03 ± 0.74 | 7.06 ± 2.27 |
D2 (mm) | 5.73 ± 0.81 | 7.18 ± 0.67 | 6.13 ± 1.24 | 6.97 ± 1.39 | 4.93 ± 0.77 c | 7.26 ± 1.22 | 5.33 ± 0.45 | 5.73 ± 2.22 |
LV mass (mg) | 310.81 ± 124.51 | 228.04 ± 126.82 | 399.48 ± 154.44 b | 231.64 ± 115.50 | 315.21 ± 120.71 | 306.72 ± 110.11 | 386.16 ± 122.19 | 298.90 ± 125.14 |
Parameter | Experimental Group (n) | |||||||
---|---|---|---|---|---|---|---|---|
CTR (n = 7) | CTR+MNU (n = 5) | EX (n = 7) | EX+MNU (n = 6) | WD (n = 7) | WD+MNU (n = 7) | WD+EX (n = 7) | WD+MNU+EX (n = 7) | |
EF (%) | 30.2 ± 32.55 | 46.23 ± 32.86 | 64.77 ± 23.85 | 68.27 ± 24.33 | 60.47 ± 19.89 | 44.89 ± 28.98 | 58.28 ± 26.10 | 73.07 ± 23.80 |
FS (%) | 6.65 ± 8.27 | 10.92 ± 9.49 | 16.89 ± 10.00 | 18.92 ± 11.47 | 13.78 ± 6.94 | 10.56 ± 9.75 | 14.52 ± 9.80 | 20.75 ± 8.16 |
SV (µL) | 4.85 ± 1.12 | 5.86 ± 0.94 | 4.47 ± 1.14 | 3.90 ± 0.44 | 4.93 ± 1.09 | 6.51 ± 2.03 | 4.49 ± 2.49 | 5.33 ± 0.99 |
CO (mL/min) | 1477.23 ± 445.56 | 1119.60 ± 652.73 | 1058.08 ± 246.25 | 1131.36 ± 353.73 | 1393.38 ± 420.07 | 1740.29 ± 953.14 | 1012.64 ± 634.84 | 1002.78 ± 425.33 |
EI | 1.31 ± 0.20 | 1.26 ± 0.11 | 1.11 ± 0.27 b | 1.13 ± 0.20 | 1.42 ± 0.17 a | 1.06 ± 0.19 | 1.52 ± 0.22 | 1.19 ± 0.40 |
LVET (s) | 0.07 ± 0.03 | 0.04 ± 0.04 a,c | 0.07 ± 0.01 | 0.06 ± 0.02 | 0.07 ± 0.01 | 0.08 ± 0.01 | 0.07 ± 0.01 | 0.07 ± 0.03 |
PAAT (cm/s) | 52.00 ± 4.24 | 53.25 ± 7.80 | 56.63 ± 9.80 | 46.00 ± 9.43 | 48.00 ± 5.81 | 47.00 ± 6.05 | 54.50 ± 5.07 | 53.67 ± 8.02 |
Experimental Group (n) | Organ Relative Weight (mg/g) | ||||
---|---|---|---|---|---|
Heart | VAT | Soleus Muscle | Gastrocnemius Muscle | Biceps Brachii Muscle | |
CTR (n = 7) | 2.87 ± 0.16 | 40.69 ± 7.69 | 0.74 ± 0.20 | 11.54 ± 0.86 | 1.00 ± 0.17 |
CTR+MNU (n = 5) | 2.84 ± 0.16 | 60.01 ± 11.49 | 0.72 ± 0.09 | 10.00 ± 3.76 | 0.92 ± 0.18 |
EX (n = 7) | 2.71 ± 0.23 | 38.88 ± 7.30 | 0.80 ± 0.08 | 12.16 ± 0.97 | 1.00 ± 0.12 |
EX+MNU (n = 6) | 2.90 ± 0.50 | 42.61 ± 15.68 | 0.78 ± 0.12 | 11.87 ± 0.88 | 1.01 ± 0.11 |
WD (n = 7) | 2.62 ± 0.19 | 53.86 ± 13.61 | 0.80 ± 0.03 | 11.80 ± 1.79 | 0.97 ± 0.09 |
WD+MNU (n = 7) | 2.80 ± 0.20 | 61.99 ± 12.60 a | 0.75 ± 0.06 | 11.30 ± 0.62 | 0.98 ± 0.04 |
WD+EX (n = 7) | 2.70 ± 0.20 a | 54.36 ± 16.51 | 0.80 ± 0.09 | 11.95 ± 0.69 | 0.96 ± 0.10 |
WD+MNU+EX (n = 7) | 3.24 ± 0.32 | 39.46 ± 17.01 | 0.76 ± 0.07 | 11.87 ± 0.64 | 0.90 ± 0.11 |
PWG | BSA | Relative VAT | LV mass | LVET | |
---|---|---|---|---|---|
PWG | - | 0.502 ** (p < 0.001) | 0.234 (p = 0.094) | −0.28 (p = 0.856) | −0.104 (p = 0.458) |
BSA | - | - | 0.349 * (p = 0.011) | 0.032 (p = 0.834) | 0.002 (p = 0.989) |
Relative VAT | - | - | - | −0.150 (p = 0.325) | −0.243 (p = 0.083) |
LV mass | - | - | - | - | 0.416 ** (p < 0.001) |
LVET | - | - | - | - | - |
Histological Classification | Experimental Group (n) | ||||
---|---|---|---|---|---|
CTR+MNU (n = 5) | EX+MNU (n = 6) | WD+MNU (n = 7) | WD+MNU+EX (n = 7) | ||
In situ | Ductal papillary | 0 | 0 | 0 | 4 |
Ductal solid and cribriform | 0 | 1 | 0 | 1 | |
Invasive | Papillary | 1 | 2 | 0 | 1 |
Cribriform | 4 | 3 | 3 | 9 | |
Tubular | 0 | 1 | 0 | 0 | |
Total number of tumors | 5 * | 7 | 3 * | 15 | |
Total number of animals with tumors | 3 | 4 | 2 | 5 | |
Incidence | 60% | 67% | 29% | 71% | |
Mean number of tumors per animal | 1.7 (5/3) | 1.8 (7/4) | 1.5 (3/2) | 3.0 (15/5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.; Azevedo, T.; Ferreira, R.; Neuparth, M.J.; Seixas, F.; Ginja, M.; Pires, M.J.; Faustino-Rocha, A.I.; Duarte, J.A.; Oliveira, P.A. The Impact of a Western Diet and Resistance Training in a Rat Model of Mammary Cancer. Life 2025, 15, 250. https://doi.org/10.3390/life15020250
Silva J, Azevedo T, Ferreira R, Neuparth MJ, Seixas F, Ginja M, Pires MJ, Faustino-Rocha AI, Duarte JA, Oliveira PA. The Impact of a Western Diet and Resistance Training in a Rat Model of Mammary Cancer. Life. 2025; 15(2):250. https://doi.org/10.3390/life15020250
Chicago/Turabian StyleSilva, Jessica, Tiago Azevedo, Rita Ferreira, Maria J. Neuparth, Fernanda Seixas, Mário Ginja, Maria J. Pires, Ana I. Faustino-Rocha, José Alberto Duarte, and Paula A. Oliveira. 2025. "The Impact of a Western Diet and Resistance Training in a Rat Model of Mammary Cancer" Life 15, no. 2: 250. https://doi.org/10.3390/life15020250
APA StyleSilva, J., Azevedo, T., Ferreira, R., Neuparth, M. J., Seixas, F., Ginja, M., Pires, M. J., Faustino-Rocha, A. I., Duarte, J. A., & Oliveira, P. A. (2025). The Impact of a Western Diet and Resistance Training in a Rat Model of Mammary Cancer. Life, 15(2), 250. https://doi.org/10.3390/life15020250