Epigenetic Modulation Directs Recovery Post LASIK and SMILE Surgery: An Experimental Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject Collection
2.2. Refractive Surgery on Donor Corneas
2.3. Sample Processing and Infinium 850 K Methylation Array
3. Statistical Analysis
3.1. Volcano Plot
3.2. Heirarchial Cluster Analysis and CpG Methylation Differences
3.3. Pathway Analysis
3.4. Gene Pathway Network
4. Results
4.1. DNA Methylation Signatures Post LASIK and SMILE Surgery
4.2. Hypomethylated Genes Involved in Adaptive Immunity, Cell Migration, Transcription, and Protein Binding Across SMILE and LASIK
4.3. Hypermethylated Genes Associated with Extracellular Matrix Organization and Inflammatory Response
4.4. Significantly Methylated Genes Highlighting Vital Biological Pathways Post SMILE and LASIK Surgeries
4.5. Discovery of DNA-Methylated CpG Islands Linked to the Process of Wound Healing over a Span of 3 Days and 2 Weeks in Both SMILE and LASIK Procedures
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Alkozi, H.A.; Franco, R.; Pintor, J.J. Epigenetics in the eye: An overview of the most relevant ocular diseases. Front. Genet. 2017, 8, 144. [Google Scholar] [CrossRef] [PubMed]
- Sanfilippo, P.G.; Hewitt, A.W.; Hammond, C.J.; Mackey, D.A. The heritability of ocular traits. Surv. Ophthalmol. 2010, 55, 561–583. [Google Scholar] [CrossRef]
- Bonnin, N.; Belville, C.; Chiambaretta, F.; Sapin, V.; Blanchon, L. DNA methyl transferases are differentially expressed in the human anterior eye segment. Acta Ophthalmol. 2014, 92, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Peek, R.; Niessen, R.W.; Schoenmakers, J.G.; Lubsen, N.H. DNA methylation as a regulatory mechanism in rat γ-crystallin gene expression. Nucleic Acids Res. 1991, 19, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Hoang, T.V.; Horowitz, E.R.; Chaffee, B.R.; Qi, P.; Flake, R.E.; Bruney, D.G.; Rasor, B.J.; Rosalez, S.E.; Wagner, B.D.; Robinson, M.L. Lens development requires DNMT1 but takes place normally in the absence of both DNMT3A and DNMT3B activity. Epigenetics 2016, 12, 27–40. [Google Scholar] [CrossRef]
- Wolf, L.; Harrison, W.; Huang, J.; Xie, Q.; Xiao, N.; Sun, J.; Kong, L.; Lachke, S.A.; Kuracha, M.R.; Govindarajan, V.; et al. Histone posttranslational modifications and cell fate determination: Lens induction requires the lysine acetyltransferases CBP and p300. Nucleic Acids Res. 2013, 41, 10199–10214. [Google Scholar] [CrossRef]
- He, S.; Limi, S.; McGreal, R.S.; Xie, Q.; Brennan, L.A.; Kantorow, W.L.; Kokavec, J.; Majumdar, R.; Hou, H., Jr.; Edelmann, W.; et al. Chromatin remodeling enzyme Snf2h regulates embryonic lens differentiation and denucleation. Development 2016, 143, 1937–1947. [Google Scholar] [CrossRef]
- Drewry, M.; Helwa, I.; Allingham, R.R.; Hauser, M.A.; Liu, Y. miRNA profile in three different normal human ocular tissues by miRNA-Seq. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3731–3739. [Google Scholar] [CrossRef]
- Ryan, D.G.; Oliveira-Fernandes, M.; Lavker, R.M. MicroRNAs of the mammalian eye display distinct and overlapping tissue specificity. Mol. Vis. 2006, 12, 1175–1184. [Google Scholar] [PubMed]
- Voyias, P.D.; Patel, A.; Arasaradnam, R.P. Chapter 10—Epigenetic Biomarkers of Disease. In Medical Epigenetics; Tollefsbol, T.O., Ed.; Karger Publishers: Basel, Switzerland, 2016; Volume 159, p. 176. [Google Scholar]
- Wang, T.; Chuffart, F.; Bourova-Flin Wang, J.; Mi, J.; Rousseaux, S.; Khochbin, S.E. Histone variants: Critical determinants in tumor heterogeneity. Front. Med. 2019, 13, 289–297. [Google Scholar] [CrossRef]
- Wang, Y.; Guan, H. The role of DNA methylation in lens development and cataract formation. Cell. Mol. Neurobiol. 2017, 37, 979–984. [Google Scholar] [CrossRef] [PubMed]
- Khuc, E.; Bainer, R.; Wolf, M.; Clay, S.M.; Weisenberger, D.J.; Kemmer, J.; Weaver, V.M.; Hwang, D.G.; Chan, M.F. Comprehensive characterization of DNA methylation changes in Fuchs endothelial corneal dystrophy. PLoS ONE 2017, 12, e0175112. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Sobrin, L. Genetics of diabetic retinopathy. Curr. Diabetes Rep. 2014, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hammond, C.J.; Snieder, H.; Gilbert, C.E.; Spector, T.D. Genes and environment in refractive error: The twin eye study. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1232–1236. [Google Scholar]
- Zhang, W.; Song, M.; Qu, J.; Liu, G.H. Epigenetic modifications in cardiovascular aging and diseases. Circ. Res. 2018, 123, 773–786. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.; Groop, L. Epigenetics: A molecular link between environmental factors and type 2 diabetes. Diabetes 2009, 58, 2718–2725. [Google Scholar] [CrossRef] [PubMed]
- Grazioli, E.; Dimauro, I.; Mercatelli, N.; Wang, G.; Pitsiladis, Y.; Di Luigi, L.; Caporossi, D. Physical activity in the prevention of human diseases: Role of epigenetic modifications. BMC Genom. 2017, 18, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Jing, X.; Yang, S.; Peng, D.; Dong, J.; Li, L.; Reinach, P.S.; Yan, D. DNA methylation regulates corneal epithelial wound healing by targeting miR-200a and CDKN2B. Investig. Ophthalmol. Vis. Sci. 2019, 60, 650–660. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Tittle, R.K.; Sze, R.; Ng, A.; Nuckels, R.J.; Swartz, M.E.; Anderson, R.M.; Bosch, J.; Stainier, D.Y.; Eberhart, J.K.; Gross, J.M. Uhrf1 and Dnmt1 are required for development and maintenance of the zebrafish lens. Dev. Biol. 2011, 350, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Klok, E.J.; van Genesen, S.T.; Civil, A.; Schoenmakers, J.G.; Lubsen, N.H. Regulation of expression within a gene family: The CASE OF the rat γB-and γD-crystallin promoters. J. Biol. Chem. 1998, 273, 17206–17215. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, Y.; Zhang, G.; Zhou, J.; Yang, L.; Guan, H. Expression and methylation of DNA repair genes in lens epithelium cells of age-related cataract. Mutat. Res. 2014, 766, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, G.; Kang, L.; Guan, H. Expression profiling of DNA methylation and transcriptional repression associated genes in lens epithelium cells of age-related cataract. Cell. Mol. Neurobiol. 2017, 37, 537–543. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, F.S.; McNally, S.A.; Clark, A.F.; O’Brien, C.J.; Wallace, D.M. Increased global DNA methylation and decreased TGFβ1 promoter methylation in glaucomatous lamina cribrosa cells. J. Glaucoma 2016, 25, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Hamill, C.E.; Schmedt, T.; Jurkunas, U. Fuchs endothelial cornea dystrophy: A review of the genetics behind disease development. Semin. Ophthalmol. 2013, 28, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Afshari, N.A.; Li, Y.J.; Pericak-Vance, M.A.; Gregory, S.; Klintworth, G.K. Genome-wide linkage scan in Fuchs endothelial corneal dystrophy. Investig. Ophthalmol. Vis. Sci. 2009, 50, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.G.; Baylin, S.B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 2003, 349, 2042–2054. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.S.; Power, B.E.; Molloy, P.L. DNA hypomethylation and human diseases. Biochim. Biophys. Acta 2007, 1775, 138–162. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Ma, H.; Butler, M.R.; Ding, X.Q. Potential contribution of ryanodine receptor 2 upregulation to cGMP/PKG signaling-induced cone degeneration in cyclic nucleotide-gated channel deficiency. FASEB J. 2020, 34, 6335. [Google Scholar] [CrossRef]
- Woodward, A.M.; Mauris, J.; Argüeso, P. Binding of transmembrane mucins to galectin-3 limits herpesvirus 1 infection of human corneal keratinocytes. J. Virol. 2013, 87, 5841–5847. [Google Scholar] [CrossRef] [PubMed]
- Ricciuto, J.; Heimer, S.R.; Gilmore, M.S.; Argüeso, P. Cell surface O-glycans limit Staphylococcus aureus adherence to corneal epithelial cells. Infect. Immun. 2008, 76, 5215–5220. [Google Scholar] [CrossRef]
- Zieske, J.D.; Gipson, I.K. Protein synthesis during corneal epithelial wound healing. Investig. Ophthalmol. Vis. Sci. 1986, 27, 1–7. [Google Scholar]
- Dong, Z.; Zhou, X.; Wu, J.; Zhang, Z.; Li, T.; Zhou, Z.; Zhang, S.; Li, G. Small incision lenticule extraction (SMILE) and femtosecond laser LASIK: Comparison of corneal wound healing and inflammation. Br. J. Ophthalmol. 2013, 98, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Stramer, B.M.; Austin, J.S.; Roberts, A.B.; Fini, M.E. Selective reduction of fibrotic markers in repairing corneas of mice deficient in Smad3. J. Cell. Physiol. 2005, 203, 226–232. [Google Scholar] [CrossRef]
- Khamar, P.; Nishtala, K.; Shetty, R.; Panigrahi, T.; Shetty, K.; Pahuja, N.; Deshpande, V.; Ghosh, A. Early biological responses in ocular tissue after SMILE and LASIK surgery. Exp. Eye Res. 2020, 192, 107936. [Google Scholar] [CrossRef]
- Gurha, P.; Chen, X.; Lombardi, R.; Willerson, J.T.; Marian, A.J. Knockdown of plakophilin 2 downregulates miR-184 through CpG hypermethylation and suppression of the E2F1 pathway and leads to enhanced adipogenesis in vitro. Circ. Res. 2016, 119, 731–750. [Google Scholar] [CrossRef]
- Lujambio, A.; Calin, G.A.; Villanueva, A.; Ropero, S.; Sánchez-Céspedes, M.; Blanco, D.; Montuenga, L.M.; Rossi, S.; Nicoloso, M.S.; Faller, W.J.; et al. A microRNA DNA methylation signature for human cancer metastasis. Proc. Natl. Acad. Sci. USA 2008, 105, 13556–13561. [Google Scholar] [CrossRef]
- Ying, Z.; Li, Y.; Wu, J.; Zhu, X.; Yang, Y.; Tian, H.; Li, W.; Hu, B.; Cheng, S.Y.; Li, M. Loss of miR-204 expression enhances glioma migration and stem cell-like phenotype. Cancer Res. 2013, 73, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Manabe, T.; Park, H.; Minami, T. Calcineurin-nuclear factor for activated T cells (NFAT) signaling in pathophysiology of wound healing. Inflamm. Regen. 2021, 41, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Long, H.K.; King, H.W.; Patient, R.K.; Odom, D.T.; Klose, R.J. Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved. Nucleic Acids Res. 2016, 44, 6693–6706. [Google Scholar] [CrossRef]
- Yang, X.; Lay, F.; Han, H.; Jones, P.A. Targeting DNA methylation for epigenetic therapy. Trends Pharmacol. Sci. 2010, 31, 536–546. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shetty, R.; Khamar, P.; Kannan, R.; Thacker, P.; Kumar, N.R.; Ghosh, A.; Deshpande, V. Epigenetic Modulation Directs Recovery Post LASIK and SMILE Surgery: An Experimental Study. Life 2025, 15, 246. https://doi.org/10.3390/life15020246
Shetty R, Khamar P, Kannan R, Thacker P, Kumar NR, Ghosh A, Deshpande V. Epigenetic Modulation Directs Recovery Post LASIK and SMILE Surgery: An Experimental Study. Life. 2025; 15(2):246. https://doi.org/10.3390/life15020246
Chicago/Turabian StyleShetty, Rohit, Pooja Khamar, Ramaraj Kannan, Puja Thacker, Nimisha Rajiv Kumar, Arkasubhra Ghosh, and Vrushali Deshpande. 2025. "Epigenetic Modulation Directs Recovery Post LASIK and SMILE Surgery: An Experimental Study" Life 15, no. 2: 246. https://doi.org/10.3390/life15020246
APA StyleShetty, R., Khamar, P., Kannan, R., Thacker, P., Kumar, N. R., Ghosh, A., & Deshpande, V. (2025). Epigenetic Modulation Directs Recovery Post LASIK and SMILE Surgery: An Experimental Study. Life, 15(2), 246. https://doi.org/10.3390/life15020246