Genomics in Epidemiology and Disease Surveillance: An Exploratory Analysis
Abstract
1. Introduction
2. Materials and Methods
3. Genomic Surveillance and Transmission Dynamics of Infectious Diseases
4. Genomics in Determinants of Drug Resistance
5. Role of Genomics in Epidemiological Surveillance
6. Advances in Genomic Epidemiology and Pathogen Surveillance
7. Challenges in Genomic Epidemiology
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global Trends in Emerging Infectious Diseases. Nature 2008, 451. [Google Scholar] [CrossRef] [PubMed]
- Nwadiugwu, M.C.; Monteiro, N. Applied Genomics for Identification of Virulent Biothreats and for Disease Outbreak Surveillance. Postgrad. Med. J. 2023, 99, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Gardy, J.L. Stopping Outbreaks with Real-Time Genomic Epidemiology. Genome Med. 2014, 6, 104. [Google Scholar] [CrossRef]
- Gardy, J.L.; Loman, N.J. Towards a Genomics-Informed, Real-Time, Global Pathogen Surveillance System. Nat. Rev. Genet. 2018, 19, 9–20. [Google Scholar] [CrossRef]
- Popovich, K.J.; Snitkin, E.S. Whole Genome Sequencing—Implications for Infection Prevention and Outbreak Investigations. Curr. Infect. Dis. Rep. 2017, 19, 15. [Google Scholar] [CrossRef]
- Biek, R.; Pybus, O.G.; Lloyd-Smith, J.O.; Didelot, X. Measurably Evolving Pathogens in the Genomic Era. Trends Ecol. Evol. 2015, 30, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, G.L.; MacCannell, D.R.; Taylor, J.; Carleton, H.A.; Neuhaus, E.B.; Bradbury, R.S.; Posey, J.E.; Gwinn, M. Pathogen Genomics in Public Health. N. Engl. J. Med. 2019, 381, 2569. [Google Scholar] [CrossRef]
- Black, A.; MacCannell, D.R.; Sibley, T.R.; Bedford, T. Ten Recommendations for Supporting Open Pathogen Genomic Analysis in Public Health. Nat. Med. 2020, 26, 832–841. [Google Scholar] [CrossRef]
- Vashisht, V.; Vashisht, A.; Mondal, A.K.; Farmaha, J.; Alptekin, A.; Singh, H.; Ahluwalia, P.; Srinivas, A.; Kolhe, R. Genomics for Emerging Pathogen Identification and Monitoring: Prospects and Obstacles. BioMedInformatics 2023, 3, 1145–1177. [Google Scholar] [CrossRef]
- Hilt, E.E.; Ferrieri, P. Next Generation and Other Sequencing Technologies in Diagnostic Microbiology and Infectious Diseases. Genes 2022, 13, 1566. [Google Scholar] [CrossRef]
- MacCannell, D. Next Generation Sequencing in Clinical and Public Health Microbiology. Clin. Microbiol. Newsl. 2016, 38, 169–176. [Google Scholar] [CrossRef]
- Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Emerging Infectious Diseases of Wildlife—Threats to Biodiversity and Human Health. Science 2000, 287, 443–449. [Google Scholar] [CrossRef]
- Morens, D.M.; Folkers, G.K.; Fauci, A.S. The Challenge of Emerging and Re-Emerging Infectious Diseases. Nature 2004, 430, 242–249. [Google Scholar] [CrossRef]
- Wilson, B.A.; Garud, N.R.; Feder, A.F.; Assaf, Z.J.; Pennings, P.S. The Population Genetics of Drug Resistance Evolution in Natural Populations of Viral, Bacterial and Eukaryotic Pathogens. Mol. Ecol. 2015, 25, 42. [Google Scholar] [CrossRef]
- Morse, S.S. Factors in the Emergence of Infectious Diseases. Emerg. Infect. Dis. 1995, 1, 7. [Google Scholar] [CrossRef]
- Huang, W.; Guo, Y.; Lysen, C.; Wang, Y.; Tang, K.; Seabolt, M.H.; Yang, F.; Cebelinski, E.; Gonzalez-Moreno, O.; Hou, T.; et al. Multiple Introductions and Recombination Events Underlie the Emergence of a Hyper-Transmissible Cryptosporidium Hominis Subtype in the USA. Cell Host Microbe 2023, 31, 112–123.e4. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, W.L.; Amato, R.; van der Pluijm, R.W.; Jacob, C.G.; Quang, H.H.; Thuy-Nhien, N.T.; Hien, T.T.; Hongvanthong, B.; Chindavongsa, K.; Mayxay, M.; et al. Evolution and Expansion of Multidrug-Resistant Malaria in Southeast Asia: A Genomic Epidemiology Study. Lancet Infect. Dis. 2019, 19, 943–951. [Google Scholar] [CrossRef]
- Tessema, S.K.; Raman, J.; Duffy, C.W.; Ishengoma, D.S.; Amambua-Ngwa, A.; Greenhouse, B. Applying Next-Generation Sequencing to Track Falciparum Malaria in Sub-Saharan Africa. Malar. J. 2019, 18, 268. [Google Scholar] [CrossRef] [PubMed]
- Neafsey, D.E.; Taylor, A.R.; MacInnis, B.L. Advances and Opportunities in Malaria Population Genomics. Nat. Rev. Genet. 2021, 22, 502–517. [Google Scholar] [CrossRef] [PubMed]
- Adam, I.; Alam, M.S.; Alemu, S.; Amaratunga, C.; Amato, R.; Andrianaranjaka, V.; Anstey, N.M.; Aseffa, A.; Ashley, E.; Assefa, A.; et al. An Open Dataset of Plasmodium Vivax Genome Variation in 1,895 Worldwide Samples. Wellcome Open Res. 2022, 7, 136. [Google Scholar] [CrossRef]
- Brashear, A.M.; Fan, Q.; Hu, Y.; Li, Y.; Zhao, Y.; Wang, Z.; Cao, Y.; Miao, J.; Barry, A.; Cui, L. Population Genomics Identifies a Distinct Plasmodium vivax Population on the China-Myanmar Border of Southeast Asia. PLoS Negl. Trop. Dis. 2020, 14, e0008506. [Google Scholar] [CrossRef]
- Divis, P.C.S.; Duffy, C.W.; Kadir, K.A.; Singh, B.; Conway, D.J. Genome-Wide Mosaicism in Divergence between Zoonotic Malaria Parasite Subpopulations with Separate Sympatric Transmission Cycles. Mol. Ecol. 2018, 27, 860–870. [Google Scholar] [CrossRef]
- Daron, J.; Boissière, A.; Boundenga, L.; Ngoubangoye, B.; Houze, S.; Arnathau, C.; Sidobre, C.; Trape, J.F.; Durand, P.; Renaud, F.; et al. Population Genomic Evidence of Plasmodium vivax Southeast Asian Origin. Sci. Adv. 2021, 7, eabc3713. [Google Scholar] [CrossRef]
- Trimarsanto, H.; Amato, R.; Pearson, R.D.; Sutanto, E.; Noviyanti, R.; Trianty, L.; Marfurt, J.; Pava, Z.; Echeverry, D.F.; Lopera-Mesa, T.M.; et al. A Molecular Barcode and Web-Based Data Analysis Tool to Identify Imported Plasmodium vivax Malaria. Commun. Biol. 2022, 5, 1411. [Google Scholar] [CrossRef]
- Guzman, M.G.; Harris, E. Dengue. Lancet 2015, 385, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Zerfu, B.; Kassa, T.; Legesse, M. Epidemiology, Biology, Pathogenesis, Clinical Manifestations, and Diagnosis of Dengue Virus Infection, and Its Trend in Ethiopia: A Comprehensive Literature Review. Trop. Med. Health 2023, 51, 11. [Google Scholar] [CrossRef] [PubMed]
- Gainor, E.M.; Harris, E.; Labeaud, A.D. Uncovering the Burden of Dengue in Africa: Considerations on Magnitude, Misdiagnosis, and Ancestry. Viruses 2022, 14, 233. [Google Scholar] [CrossRef]
- Napit, R.; Elong Ngono, A.; Mihindukulasuriya, K.A.; Pradhan, A.; Khadka, B.; Shrestha, S.; Droit, L.; Paredes, A.; Karki, L.; Khatiwada, R.; et al. Dengue Virus Surveillance in Nepal Yields the First On-Site Whole Genome Sequences of Isolates from the 2022 Outbreak. BMC Genom. 2024, 25, 998. [Google Scholar] [CrossRef]
- Hadfield, J.; Brito, A.F.; Swetnam, D.M.; Vogels, C.B.F.; Tokarz, R.E.; Andersen, K.G.; Smith, R.C.; Bedford, T.; Grubaugh, N.D. Twenty Years of West Nile Virus Spread and Evolution in the Americas Visualized by Nextstrain. PLoS Pathog. 2019, 15, e1008042. [Google Scholar] [CrossRef]
- Schneider, J.; Bachmann, F.; Choi, M.; Kurvits, L.; Schmidt, M.L.; Bergfeld, L.; Meier, I.; Zuchowski, M.; Werber, D.; Hofmann, J.; et al. Autochthonous West Nile Virus Infection in Germany: Increasing Numbers and a Rare Encephalitis Case in a Kidney Transplant Recipient. Transbound. Emerg. Dis. 2021, 69, 221. [Google Scholar] [CrossRef] [PubMed]
- Vlaskamp, D.R.M.; Thijsen, S.F.T.; Reimerink, J.; Hilkens, P.; Bouvy, W.H.; Bantjes, S.E.; Vlaminckx, B.J.M.; Zaaijer, H.; van den Kerkhof, H.H.T.C.; Raven, S.F.H.; et al. First Autochthonous Human West Nile Virus Infections in the Netherlands, July to August 2020. Eurosurveillance 2020, 25, 2001904. [Google Scholar] [CrossRef]
- Koch, R.T.; Erazo, D.; Folly, A.J.; Johnson, N.; Dellicour, S.; Grubaugh, N.D.; Vogels, C.B.F. Genomic Epidemiology of West Nile Virus in Europe. One Health 2024, 18, 100664. [Google Scholar] [CrossRef]
- Coppens, J.; Xavier, B.B.; Vlaeminck, J.; Larsen, J.; Lammens, C.; Van Puyvelde, S.; Goossens, H.; Larsen, A.R.; Malhotra-Kumar, S. Genomic Analysis of Methicillin-Resistant Staphylococcus Aureus Clonal Complex 239 Isolated from Danish Patients with and without an International Travel History. Front. Microbiol. 2022, 13, 1016829. [Google Scholar] [CrossRef]
- Sharma, C.; Kumar, N.; Pandey, R.; Meis, J.F.; Chowdhary, A. Whole Genome Sequencing of Emerging Multidrug Resistant Candida Auris Isolates in India Demonstrates Low Genetic Variation. New Microbes New Infect. 2016, 13, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Nicolas-Chanoine, M.H.; Bertrand, X.; Madec, J.Y. Escherichia Coli ST131, an Intriguing Clonal Group. Clin. Microbiol. Rev. 2014, 27, 543. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.M.; Hauton, C.; van Aerle, R.; Martinez-Urtaza, J. Eco-Evolutionary Drivers of Vibrio Parahaemolyticus Sequence Type 3 Expansion: Retrospective Machine Learning Approach. JMIR Bioinform. Biotech. 2024, 5, e62747. [Google Scholar] [CrossRef] [PubMed]
- Trees, E.; Carleton, H.A.; Folster, J.P.; Gieraltowski, L.; Hise, K.; Leeper, M.; Nguyen, T.A.; Poates, A.; Sabol, A.; Tagg, K.A.; et al. Genetic Diversity in Salmonella Enterica in Outbreaks of Foodborne and Zoonotic Origin in the USA in 2006–2017. Microorganisms 2024, 12, 1563. [Google Scholar] [CrossRef]
- Wallace, R.L.; Cribb, D.M.; Bulach, D.M.; Ingle, D.J.; Joensen, K.G.; Nielsen, E.M.; Leekitcharoenphon, P.; Stingl, K.; Kirk, M.D. Campylobacter Jejuni ST50, a Pathogen of Global Importance: A Comparative Genomic Analysis of Isolates from Australia, Europe and North America. Zoonoses Public Health 2021, 68, 638–649. [Google Scholar] [CrossRef]
- Jin, Y.; Ning, X.; Gao, Y.; Li, W.; Li, Y.; Wang, Y.; Zhou, J.; Stanford, K.; Ba, X.; Jin, Y.; et al. Clostridium Perfringens in the Intestine: Innocent Bystander or Serious Threat? Microorganisms 2024, 12, 1610. [Google Scholar] [CrossRef]
- Harrington, W.N.; Kackos, C.M.; Webby, R.J. The Evolution and Future of Influenza Pandemic Preparedness. Exp. Mol. Med. 2021, 53, 737–749. [Google Scholar] [CrossRef]
- Jackson, B.R.; Tarr, C.; Strain, E.; Jackson, K.A.; Conrad, A.; Carleton, H.; Katz, L.S.; Stroika, S.; Gould, L.H.; Mody, R.K.; et al. Implementation of Nationwide Real-Time Whole-Genome Sequencing to Enhance Listeriosis Outbreak Detection and Investigation. Clin. Infect. Dis. 2016, 63, 380. [Google Scholar] [CrossRef]
- Pompon, J.; Morales-Vargas, R.; Manuel, M.; Tan, C.H.; Vial, T.; Tan, J.H.; Sessions, O.M.; Vasconcelos, P.D.C.; Ng, L.C.; Missé, D. A Zika Virus from America Is More Efficiently Transmitted than an Asian Virus by Aedes aegypti Mosquitoes from Asia. Sci. Rep. 2017, 7, 1215. [Google Scholar] [CrossRef] [PubMed]
- Lavania, M.; Sharma, V.; Meena, V.K.; Joshi, M.; Potdar, V.; Vipat, V.; Walimbe, A.; Waghchaure, R.; Umare, P.; Vishwanathan, R.; et al. Norovirus Genomes Detected from the Guillain–Barré Syndrome (GBS) Cases in a Community Outbreak in Pune, India, 2025. J. Infect. 2025, 91. [Google Scholar] [CrossRef]
- Jara, M.; Frias-De-Diego, A.; Dellicour, S.; Baele, G.; Machado, G. Tracing Foot-and-Mouth Disease Virus Phylogeographical Patterns and Transmission Dynamics. bioRxiv 2019, 590612. [Google Scholar] [CrossRef]
- Ferdous, M.; Zhou, K.; De Boer, R.F.; Friedrich, A.W.; Kooistra-Smid, A.M.D.; Rossen, J.W.A. Comprehensive Characterization of Escherichia coli O104: H4 Isolated from Patients in the Netherlands. Front. Microbiol. 2015, 6, 1348. [Google Scholar] [CrossRef] [PubMed]
- Kossow, A.; Zhang, W.; Bielaszewska, M.; Rhode, S.; Hansen, K.; Fruth, A.; Rüter, C.; Karch, H.; Mellmann, A. Molecular Characterization of Human Atypical Sorbitol-Fermenting Enteropathogenic Escherichia Coli O157 Reveals High Diversity. J. Clin. Microbiol. 2016, 54, 1357–1363. [Google Scholar] [CrossRef]
- Phadungsombat, J.; Imad, H.; Rahman, M.; Nakayama, E.E.; Kludkleeb, S.; Ponam, T.; Rahim, R.; Hasan, A.; Poltep, K.; Yamanaka, A.; et al. A Novel Sub-Lineage of Chikungunya Virus East/Central/South African Genotype Indian Ocean Lineage Caused Sequential Outbreaks in Bangladesh and Thailand. Viruses 2020, 12, 1319. [Google Scholar] [CrossRef]
- Deeba, F.; Haider, M.S.H.; Ahmed, A.; Tazeen, A.; Faizan, M.I.; Salam, N.; Hussain, T.; Alamery, S.F.; Parveen, S. Global Transmission and Evolutionary Dynamics of the Chikungunya Virus. Epidemiol. Infect. 2020, 148, e63. [Google Scholar] [CrossRef]
- Ramphal, Y.; Tegally, H.; San, J.E.; Reichmuth, M.L.; Hofstra, M.; Wilkinson, E.; Baxter, C.; de Oliveira, T.; Moir, M. Understanding the Transmission Dynamics of the Chikungunya Virus in Africa. Pathogens 2024, 13, 605. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Wu, Q.; Ding, X.; Yin, C.; Yang, E.; Sun, D.; Wang, W.; Yang, Y.; Guo, F. Multiple Responses Optimization of Antioxidative Components Extracted from Fenugreek Seeds Using Response Surface Methodology to Identify Their Chemical Compositions. Food Sci. Nutr. 2022, 10, 3475–3484. [Google Scholar] [CrossRef]
- Ahuir-Baraja, A.E.; Cibot, F.; Llobat, L.; Garijo, M.M. Anthelmintic Resistance: Is a Solution Possible? Exp. Parasitol. 2021, 230, 108169. [Google Scholar] [CrossRef]
- Papp, M.; Solymosi, N. Review and Comparison of Antimicrobial Resistance Gene Databases. Antibiotics 2022, 11, 339. [Google Scholar] [CrossRef]
- Grad, Y.H.; Harris, S.R.; Kirkcaldy, R.D.; Green, A.G.; Marks, D.S.; Bentley, S.D.; Trees, D.; Lipsitch, M. Genomic Epidemiology of Gonococcal Resistance to Extended-Spectrum Cephalosporins, Macrolides, and Fluoroquinolones in the United States, 2000–2013. J. Infect. Dis. 2016, 214, 1579–1587. [Google Scholar] [CrossRef]
- Hussein, R.A.; Al-Ouqaili, M.T.S.; Majeed, Y.H. Detection of Clarithromycin Resistance and 23SrRNA Point Mutations in Clinical Isolates of Helicobacter Pylori Isolates: Phenotypic and Molecular Methods. Saudi J. Biol. Sci. 2022, 29, 513–520. [Google Scholar] [CrossRef]
- Zhu, T.; Liu, S.; Ying, Y.; Xu, L.; Liu, Y.; Jin, J.; Ying, J.; Lu, J.; Lin, X.; Li, K.; et al. Genomic and Functional Characterization of Fecal Sample Strains of Proteus Cibarius Carrying Two FloR Antibiotic Resistance Genes and a Multiresistance Plasmid-Encoded Cfr Gene. Comp. Immunol. Microbiol. Infect. Dis. 2020, 69, 101427. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, X.; Liang, J.; Li, Q.; Lin, H.; Lin, C.; Liu, H.; Zhou, D.; Lu, W.; Sun, Z.; et al. Characterization of Florfenicol Resistance Genes in the Coagulase-Negative Staphylococcus (CoNS) Isolates and Genomic Features of a Multidrug-Resistant Staphylococcus Lentus Strain H29. Antimicrob. Resist. Infect. Control 2021, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhu, R.; Li, W.; Ma, J.; Lin, H. Genomic Insights into the Antibiotic Resistance Pattern of the Tetracycline-Degrading Bacterium, Arthrobacter nicotianae OTC-16. Sci. Rep. 2021, 11, 15638. [Google Scholar] [CrossRef]
- Boiko, I.; Golparian, D.; Jacobsson, S.; Krynytska, I.; Frankenberg, A.; Shevchenko, T.; Unemo, M. Genomic Epidemiology and Antimicrobial Resistance Determinants of Neisseria gonorrhoeae Isolates from Ukraine, 2013–2018. APMIS 2020, 128, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Pelleau, S.; Moss, E.L.; Dhingra, S.K.; Volney, B.; Casteras, J.; Gabryszewski, S.J.; Volkman, S.K.; Wirth, D.F.; Legrand, E.; Fidock, D.A.; et al. Adaptive Evolution of Malaria Parasites in French Guiana: Reversal of Chloroquine Resistance by Acquisition of a Mutation in Pfcrt. Proc. Natl. Acad. Sci. USA 2015, 112, 11672–11677. [Google Scholar] [CrossRef] [PubMed]
- Wasakul, V.; Disratthakit, A.; Mayxay, M.; Chindavongsa, K.; Sengsavath, V.; Thuy-Nhien, N.; Pearson, R.D.; Phalivong, S.; Xayvanghang, S.; Maude, R.J.; et al. Malaria Outbreak in Laos Driven by a Selective Sweep for Plasmodium Falciparum Kelch13 R539T Mutants: A Genetic Epidemiology Analysis. Lancet Infect. Dis. 2023, 23, 568–577. [Google Scholar] [CrossRef]
- Pearson, R.D.; Amato, R.; Kwiatkowski, D.P. An Open Dataset of Plasmodium falciparum Genome Variation in 7,000 Worldwide Samples. Wellcome Open Res. 2019, 6, 42. [Google Scholar] [CrossRef]
- Lee, T.; Pang, S.; Stegger, M.; Sahibzada, S.; Abraham, S.; Daley, D.; Coombs, G. A Three-Year Whole Genome Sequencing Perspective of Enterococcus Faecium Sepsis in Australia. PLoS ONE 2020, 15, e0228781. [Google Scholar] [CrossRef]
- de Souza, J.; D’Espindula, H.R.S.; Ribeiro, I.D.F.; Gonçalves, G.A.; Pillonetto, M.; Faoro, H. Carbapenem Resistance in Acinetobacter baumannii: Mechanisms, Therapeutics, and Innovations. Microorganisms 2025, 13, 1501. [Google Scholar] [CrossRef]
- Mohammadpour, D.; Memar, M.Y.; Leylabadlo, H.E.; Ghotaslou, A.; Ghotaslou, R. Carbapenem-Resistant Klebsiella Pneumoniae: A Comprehensive Review of Phenotypic and Genotypic Methods for Detection. Microbe 2025, 6, 100246. [Google Scholar] [CrossRef]
- Aung, H.L.; Chaidir, L.; Pitaloka, D.A.E.; Miyahara, Y.; Kumar, N.; Soeroto, A.Y.; Cook, G.M.; van Crevel, R.; Alisjahbana, B.; Peacock, S.J.; et al. Whole Genome Sequencing Reveals Novel Resistance-Conferring Mutations and Large Genome Deletions in Drug-Resistant Mycobacterium Tuberculosis Isolates from Indonesia. J. Glob. Antimicrob. Resist. 2025, 44, 314–318. [Google Scholar] [CrossRef]
- Brown, A.C.; Chen, J.C.; Francois Watkins, L.K.; Campbell, D.; Folster, J.P.; Tate, H.; Wasilenko, J.; Van Tubbergen, C.; Friedman, C.R. CTX-M-65 Extended-Spectrum β-Lactamase–Producing Salmonella Enterica Serotype Infantis, United States. Emerg. Infect. Dis. 2018, 24, 2284–2291. [Google Scholar] [CrossRef]
- Deng, S.; Li, C.; Zhang, H.; Xie, Y.; Wang, X.; Luo, W.; Chen, Z.; Tang, F. Analyzing Shigella in Wuhan: Serotypes, Antimicrobial Resistance, and Public Health Implications. Infect. Drug Resist. 2025, 18, 3745–3760. [Google Scholar] [CrossRef] [PubMed]
- Ramatla, T.; Nkhebenyane, J.; Lekota, K.E.; Thekisoe, O.; Monyama, M.; Achilonu, C.C.; Khasapane, G. Global Prevalence and Antibiotic Resistance Profiles of Carbapenem-Resistant Pseudomonas Aeruginosa Reported from 2014 to 2024: A Systematic Review and Meta-Analysis. Front. Microbiol. 2025, 16, 1599070. [Google Scholar] [CrossRef] [PubMed]
- Fahran, D.M.; Al-Saadi, B.Q.H. Molecular Detection of Antimicrobial Resistant Genes (ErmB, Mef and TetM) in Streptococcus Pneumoniae in Baghdad Hospital. Biochem. Cell Arch. 2022, 3477–3484. [Google Scholar] [CrossRef]
- Bolourchi, N.; Noori Goodarzi, N.; Giske, C.G.; Nematzadeh, S.; Haririzadeh Jouriani, F.; Solgi, H.; Badmasti, F. Comprehensive Pan-Genomic, Resistome and Virulome Analysis of Clinical OXA-48 Producing Carbapenem-Resistant Serratia Marcescens Strains. Gene 2022, 822, 146355. [Google Scholar] [CrossRef] [PubMed]
- McGowan, C.R.; Takahashi, E.; Romig, L.; Bertram, K.; Kadir, A.; Cummings, R.; Cardinal, L.J. Community-Based Surveillance of Infectious Diseases: A Systematic Review of Drivers of Success. BMJ Glob. Health 2022, 7, e009934. [Google Scholar] [CrossRef]
- Koks, S.; Williams, R.W.; Quinn, J.; Farzaneh, F.; Conran, N.; Tsai, S.J.; Awandare, G.; Goodman, S.R. COVID-19: Time for Precision Epidemiology. Exp. Biol. Med. 2020, 245, 677. [Google Scholar] [CrossRef]
- Nigeria Centre for Disease Control (NCDC). Federal Ministry of Health Technical Guidelines for Integrated Disease Surveillance and Response in Nigeria; Nigeria Centre for Disease Control (NCDC): Abuja, Nigeria, 2019. [Google Scholar]
- Colebunders, R.L. Control of Communicable Diseases Manual, 19th Edition Control of Communicable Diseases Manual, 19th Edition Edited by David L. Heymann Washington, DC: American Public Health Association, 2008. 746 Pp. $45.00 (Hardcover). Clin. Infect. Dis. 2009, 49, 1292–1293. [Google Scholar] [CrossRef]
- Bottichio, L.; Keaton, A.; Thomas, D.; Fulton, T.; Tiffany, A.; Frick, A.; Mattioli, M.; Kahler, A.; Murphy, J.; Otto, M.; et al. Shiga Toxin–Producing Escherichia Coli Infections Associated With Romaine Lettuce—United States, 2018. Clin. Infect. Dis. 2020, 71, e323–e330. [Google Scholar] [CrossRef]
- Park, C.J.; Li, J.; Zhang, X.; Gao, F.; Benton, C.S.; Andam, C.P. Diverse Lineages of Multidrug Resistant Clinical Salmonella Enterica and a Cryptic Outbreak in New Hampshire, USA Revealed from a Year-Long Genomic Surveillance. Infect. Genet. Evol. 2021, 87, 104645. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.H.; McDermott, P.F.; et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef]
- Rokney, A.; Valinsky, L.; Vranckx, K.; Feldman, N.; Agmon, V.; Moran-Gilad, J.; Weinberger, M. WGS-Based Prediction and Analysis of Antimicrobial Resistance in Campylobacter Jejuni Isolates From Israel. Front. Cell Infect. Microbiol. 2020, 10, 365. [Google Scholar] [CrossRef]
- Paranthaman, K.; Mook, P.; Curtis, D.; Evans, E.W.; Crawley-Boevey, E.; Dabke, G.; Carroll, K.; McCormick, J.; Dallman, T.J.; Crook, P. Development and Evaluation of an Outbreak Surveillance System Integrating Whole Genome Sequencing Data for Non-Typhoidal Salmonella in London and South East of England, 2016-17. Epidemiol Infect 2021, 149, e164. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, M.; Lutgring, J.D.; Ansari, U.; Lawsin, A.; Albrecht, V.; McAllister, G.; Daniels, J.; Lonsway, D.; McKay, S.; Beldavs, Z.; et al. Molecular Characterization of Carbapenem-Resistant Enterobacterales Collected in the United States. Microb. Drug Resist. 2022, 28, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.W.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 Novel Coronavirus (2019-NCoV) by Real-Time RT-PCR. Eurosurveillance 2020, 25. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Nadeau, S.; Yared, M.; Voinov, P.; Xie, N.; Roemer, C.; Stadler, T. CoV-Spectrum: Analysis of Globally Shared SARS-CoV-2 Data to Identify and Characterize New Variants. Bioinformatics 2022, 38, 1735–1737. [Google Scholar] [CrossRef]
- Kalinich, C.C.; Jensen, C.G.; Neugebauer, P.; Petrone, M.E.; Peña-Hernández, M.; Ott, I.M.; Wyllie, A.L.; Alpert, T.; Vogels, C.B.F.; Fauver, J.R.; et al. Real-Time Public Health Communication of Local SARS-CoV-2 Genomic Epidemiology. PLoS Biol. 2020, 18, e3000869. [Google Scholar] [CrossRef]
- Carter, L.L.; Yu, M.A.; Sacks, J.A.; Barnadas, C.; Pereyaslov, D.; Cognat, S.; Briand, S.; Ryan, M.J.; Samaan, G. Global Genomic Surveillance Strategy for Pathogens with Pandemic and Epidemic Potential 2022–2032. Bull World Health Organ 2022, 100, 239. [Google Scholar] [CrossRef]
- Akande, O.W.; Carter, L.L.; Abubakar, A.; Achilla, R.; Barakat, A.; Gumede, N.; Guseinova, A.; Inbanathan, F.Y.; Kato, M.; Koua, E.; et al. Strengthening Pathogen Genomic Surveillance for Health Emergencies: Insights from the World Health Organization’s Regional Initiatives. Front. Public. Health 2023, 11, 1146730. [Google Scholar] [CrossRef]
- Bourgeois, F.T.; Porter, S.C.; Valim, C.; Jackson, T.; Cook, E.F.; Mandl, K.D. The Value of Patient Self-Report for Disease Surveillance. J. Am. Med. Inform. Assoc. 2007, 14, 765–771. [Google Scholar] [CrossRef]
- Brownstein, J.S.; Freifeld, C.C.; Madoff, L.C. Digital Disease Detection—Harnessing the Web for Public Health Surveillance. N. Engl. J. Med. 2009, 360, 2153. [Google Scholar] [CrossRef]
- Charles-Smith, L.E.; Reynolds, T.L.; Cameron, M.A.; Conway, M.; Lau, E.H.Y.; Olsen, J.M.; Pavlin, J.A.; Shigematsu, M.; Streichert, L.C.; Suda, K.J.; et al. Using Social Media for Actionable Disease Surveillance and Outbreak Management: A Systematic Literature Review. PLoS ONE 2015, 10, e0139701. [Google Scholar] [CrossRef]
- Restrepo, J.C.; Dueñas, D.; Corredor, Z.; Liscano, Y. Advances in Genomic Data and Biomarkers: Revolutionizing NSCLC Diagnosis and Treatment. Cancers 2023, 15, 3474. [Google Scholar] [CrossRef] [PubMed]
- Hulsen, T.; Jamuar, S.S.; Moody, A.R.; Karnes, J.H.; Varga, O.; Hedensted, S.; Spreafico, R.; Hafler, D.A.; McKinney, E.F. From Big Data to Precision Medicine. Front. Med. 2019, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- Behl, A.; Nair, A.; Mohagaonkar, S.; Yadav, P.; Gambhir, K.; Tyagi, N.; Sharma, R.K.; Butola, B.S.; Sharma, N. Threat, Challenges, and Preparedness for Future Pandemics: A Descriptive Review of Phylogenetic Analysis Based Predictions. Infect. Genet. Evol. 2022, 98, 105217. [Google Scholar] [CrossRef] [PubMed]
- Forster, P.; Forster, L.; Renfrew, C.; Forster, M. Phylogenetic Network Analysis of SARS-CoV-2 Genomes. Proc. Natl. Acad. Sci. USA 2020, 117, 9241–9243. [Google Scholar] [CrossRef] [PubMed]
- Yebra, G.; Ragonnet-Cronin, M.; Ssemwanga, D.; Parry, C.M.; Logue, C.H.; Cane, P.A.; Kaleebu, P.; Leigh Brown, A.J. Analysis of the History and Spread of HIV-1 in Uganda Using Phylodynamics. J. Gen. Virol. 2015, 96, 1890. [Google Scholar] [CrossRef]
- Brito, A.F.; Semenova, E.; Dudas, G.; Hassler, G.W.; Kalinich, C.C.; Kraemer, M.U.G.; Ho, J.; Tegally, H.; Githinji, G.; Agoti, C.N.; et al. Global Disparities in SARS-CoV-2 Genomic Surveillance. Nat. Commun. 2022, 13, 7003. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.D.; Woolhouse, M.E.J.; Rambaut, A. The Effects of Sampling Strategy on the Quality of Reconstruction of Viral Population Dynamics Using Bayesian Skyline Family Coalescent Methods: A Simulation Study. Virus Evol. 2016, 2, vew003. [Google Scholar] [CrossRef]
- Dellicour, S.; Hong, S.L.; Vrancken, B.; Chaillon, A.; Gill, M.S.; Maurano, M.T.; Ramaswami, S.; Zappile, P.; Marier, C.; Harkins, G.W.; et al. Dispersal Dynamics of SARS-CoV-2 Lineages during the First Epidemic Wave in New York City. PLoS Pathog. 2021, 17, e1009571. [Google Scholar] [CrossRef]
- Lemey, P.; Hong, S.L.; Hill, V.; Baele, G.; Poletto, C.; Colizza, V.; O’Toole, Á.; McCrone, J.T.; Andersen, K.G.; Worobey, M.; et al. Accommodating Individual Travel History and Unsampled Diversity in Bayesian Phylogeographic Inference of SARS-CoV-2. Nat. Commun. 2020, 11, 5110. [Google Scholar] [CrossRef] [PubMed]
- Bull, R.A.; Adikari, T.N.; Ferguson, J.M.; Hammond, J.M.; Stevanovski, I.; Beukers, A.G.; Naing, Z.; Yeang, M.; Verich, A.; Gamaarachchi, H.; et al. Analytical Validity of Nanopore Sequencing for Rapid SARS-CoV-2 Genome Analysis. Nat. Commun. 2020, 11, 6272. [Google Scholar] [CrossRef]
- Tyson, J.R.; James, P.; Stoddart, D.; Sparks, N.; Wickenhagen, A.; Hall, G.; Choi, J.H.; Lapointe, H.; Kamelian, K.; Smith, A.D.; et al. Improvements to the ARTIC Multiplex PCR Method for SARS-CoV-2 Genome Sequencing Using Nanopore. bioRxiv 2020. [Google Scholar] [CrossRef]
- Didelot, X.; Maiden, M.C.J. Impact of Recombination on Bacterial Evolution. Trends Microbiol. 2010, 18, 315–322. [Google Scholar] [CrossRef]
- Lythgoe, K.A.; Hall, M.; Ferretti, L.; de Cesare, M.; MacIntyre-Cockett, G.; Trebes, A.; Andersson, M.; Otecko, N.; Wise, E.L.; Moore, N.; et al. SARS-CoV-2 within-Host Diversity and Transmission. Science 2021, 372, eabg0821. [Google Scholar] [CrossRef]
- Quince, C.; Walker, A.W.; Simpson, J.T.; Loman, N.J.; Segata, N. Shotgun Metagenomics, from Sampling to Analysis. Nat. Biotechnol. 2017, 35, 833–844. [Google Scholar] [CrossRef]
- Schnell, I.B.; Bohmann, K.; Gilbert, M.T.P. Tag Jumps Illuminated--Reducing Sequence-to-Sample Misidentifications in Metabarcoding Studies. Mol. Ecol. Resour. 2015, 15, 1289–1303. [Google Scholar] [CrossRef]
- Erlich, Y.; Narayanan, A. Routes for Breaching and Protecting Genetic Privacy. Nat. Rev. Genet. 2014, 15, 409–421. [Google Scholar] [CrossRef]
- Volz, E.M.; Siveroni, I. Bayesian Phylodynamic Inference with Complex Models. PLoS Comput. Biol. 2018, 14, e1006546. [Google Scholar] [CrossRef]
- WHO. WHO SARS-CoV-2 Genomic Sequencing for Public Health Goals: Interim Guidance; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Turakhia, Y.; Thornlow, B.; Hinrichs, A.S.; De Maio, N.; Gozashti, L.; Lanfear, R.; Haussler, D.; Corbett-Detig, R. Ultrafast Sample Placement on Existing TRees (UShER) Enables Real-Time Phylogenetics for the SARS-CoV-2 Pandemic. Nat. Genet. 2021, 53, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Filipe, A.; Shepherd, J.G.; Williams, T.; Hughes, J.; Aranday-Cortes, E.; Asamaphan, P.; Ashraf, S.; Balcazar, C.; Brunker, K.; Campbell, A.; et al. Genomic Epidemiology Reveals Multiple Introductions of SARS-CoV-2 from Mainland Europe into Scotland. Nat. Microbiol. 2020, 6, 112–122. [Google Scholar] [CrossRef]
- COVID-19 Genomics UK (COG-UK) Consortium. An Integrated National Scale SARS-CoV-2 Genomic Surveillance Network. Lancet Microbe 2020, 1, e99–e100. [Google Scholar] [CrossRef] [PubMed]
- Munnink, B.B.O.; Sikkema, R.S.; Nieuwenhuijse, D.F.; Molenaar, R.J.; Munger, E.; Molenkamp, R.; Van Der Spek, A.; Tolsma, P.; Rietveld, A.; Brouwer, M.; et al. Transmission of SARS-CoV-2 on Mink Farms between Humans and Mink and Back to Humans. Science 2020, 371, 172. [Google Scholar] [CrossRef] [PubMed]
- FAO. One Health Joint Plan of Action, 2022–2026; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Lytras, S.; Lamb, K.D.; Ito, J.; Grove, J.; Yuan, K.; Sato, K.; Hughes, J.; Robertson, D.L. Pathogen Genomic Surveillance and the AI Revolution. J. Virol. 2025, 99, e01601-24. [Google Scholar] [CrossRef]
| Pathogen | Region/Context | Key WGS Findings | Public Health Impact | Reference |
|---|---|---|---|---|
| Plasmodium vivax | China–Myanmar border, Greater Mekong Subregion | Distinct local genetic clade identified; clustering confirmed by ML and IBD analyses | Informs geographically targeted malaria elimination strategies; highlights risk of parasite resurgence | [20] |
| Dengue virus (DENV-1–4) | Nepal; Asia, Africa, Americas, Europe | Genomes linked to strains from India (2019) and China (2018); global movement detected | Traces outbreak sources; supports control strategies in endemic and newly affected regions | [28] |
| West Nile virus (WNV) | Europe and North America | ≥13 introductions in Europe; lineage 2 expanding into temperate regions | Improves understanding of viral evolution and spread; informs surveillance priorities | [32] |
| Methicillin-resistant Staphylococcus aureus (MRSA) | Asia, Africa, Middle East, Europe | Travel-associated transmission detected; genomic tools outperform traditional typing | Supports infection control policies and strengthens cross-border AMR surveillance | [33] |
| Candida auris | India | Clonal strains with low genetic diversity; multidrug resistance linked to transporter genes | Identifies antifungal resistance mechanisms; guides hospital infection control measures | [34] |
| Escherichia coli ST131 | Global (e.g., Europe, Asia, North America) | Dominant clone associated with fluoroquinolone resistance; rapid global spread | Informs AMR surveillance and control strategies | [35] |
| Vibrio parahaemolyticus | Asia; Gulf of Mexico | Identified oceanic gene pools; frequent recombination and host adaptation | Enhances understanding of environmental reservoirs and transmission dynamics | [36] |
| Salmonella enterica | United States | Emergence of epidemic strains; network-based genomic analysis | Improves outbreak detection and source attribution in foodborne illnesses | [37] |
| Campylobacter jejuni | Australia, Europe, North America | Evidence of rapid host switching; challenges in source attribution | Guides public health interventions and food safety measures | [38] |
| Clostridium perfringens | Global | High genetic diversity; identification of enterotoxin-producing strains | Assists in food safety and public health responses to foodborne outbreaks | [39] |
| Influenza virus | Global | Dynamic genome evolution; identification of novel circulating strains | Supports vaccine development and pandemic preparedness strategies | [40] |
| Listeria monocytogenes | United States | Identification of outbreak sources; improved traceback capability | Strengthens food safety measures and outbreak response strategies | [41] |
| Zika virus | Americas, Southeast Asia | Traced spread via mosquito vectors; identified mutations linked to microcephaly | Informs vector control strategies and public health responses | [42] |
| Norovirus | India (Pune) | Mutated GII.16[P16] strain linked to Guillain–Barré syndrome outbreak | Highlights need for enhanced surveillance of neurological complications | [43] |
| Foot-and-mouth disease virus (FMDV) | Asia | Revealed within-host viral diversity; identified mutations linked to tissue adaptation | Improves understanding of viral evolution and transmission dynamics | [44] |
| Pathogen | Key Resistance Genes/Mutations | Drug Resistance | WGS Contribution | Reference |
|---|---|---|---|---|
| Neisseria gonorrhoeae | mtrR mutations, penA alleles | Azithromycin, cefixime | Identified novel mutations associated with treatment failure | [53] |
| Helicobacter pylori | 23S rRNA mutations | Clarithromycin | Linked specific mutations to macrolide resistance | [54] |
| Proteus spp. | floR (plasmid + chromosome) | Florfenicol | Highlighted role of mobile genetic elements in gene transfer | [55] |
| Staphylococcus lentus | 11 resistance genes (plasmid + chromosome) | Multidrug resistance | Defined genomic basis of MDR | [56] |
| Arthrobacter nicotianae | 8 resistance genes, mobile loci outside plasmids | Tetracycline | Identified extrachromosomal AMR genes | [57] |
| Neisseria gonorrhoeae (Ukraine isolates) | GyrA S91F, ParC S87R, rpsJ V57M, tetM, penA-34.001 | Ciprofloxacin, tetracycline, β-lactams | Phylogenomic analysis revealed MDR lineages and key mutations | [58] |
| Plasmodium falciparum | pfcrt K76T, C350R, pfaat1 S258L, pfdhfr, pfdhps, pfk13, pfmdr1, pfama1 | Chloroquine, artemisinin, multidrug resistance | GWAS + WGS identified novel molecular markers for surveillance | [60] |
| Enterococcus faecium | vanA, vanB operons | Vancomycin | WGS of 1025 isolates defined clonal clusters, geographic subclusters, and resistance determinants | [62] |
| Acinetobacter baumannii | OXA-23, OXA-24, OXA-58 carbapenemases | Carbapenems | Characterized global spread and clonal expansion of resistant strains | [63] |
| Klebsiella pneumoniae | KPC, NDM, OXA-48 carbapenemases | Carbapenems | Identified hypervirulent strains with multidrug resistance | [64] |
| Mycobacterium tuberculosis | rpoB mutations, katG mutations | Rifampicin, isoniazid | Whole-genome sequencing for rapid detection of resistance | [65] |
| Salmonella enterica | blaCTX-M, blaTEM, blaSHV | Extended-spectrum cephalosporins | Tracked spread of resistance genes in foodborne outbreaks | [66] |
| Shigella spp. | blaCTX-M, aac(3)-IV | Aminoglycosides, cephalosporins | Identified plasmid-mediated resistance mechanisms | [67] |
| Pseudomonas aeruginosa | VIM, IMP, NDM metallo-β-lactamases | Carbapenems | Characterized resistance profiles and clonal spread | [68] |
| Streptococcus pneumoniae | ermB, mefA | Macrolides | Identified genetic determinants of macrolide resistance | [69] |
| Enterobacteriaceae | blaNDM, blaKPC, blaOXA-48 | Carbapenems | Whole-genome sequencing for surveillance of resistant strains | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, S.; Dhakal, T.; Kim, B.-J.; Jang, G.S.; Oh, Y. Genomics in Epidemiology and Disease Surveillance: An Exploratory Analysis. Life 2025, 15, 1848. https://doi.org/10.3390/life15121848
Tiwari S, Dhakal T, Kim B-J, Jang GS, Oh Y. Genomics in Epidemiology and Disease Surveillance: An Exploratory Analysis. Life. 2025; 15(12):1848. https://doi.org/10.3390/life15121848
Chicago/Turabian StyleTiwari, Shraddha, Thakur Dhakal, Baek-Jun Kim, Gab Sue Jang, and Yeonsu Oh. 2025. "Genomics in Epidemiology and Disease Surveillance: An Exploratory Analysis" Life 15, no. 12: 1848. https://doi.org/10.3390/life15121848
APA StyleTiwari, S., Dhakal, T., Kim, B.-J., Jang, G. S., & Oh, Y. (2025). Genomics in Epidemiology and Disease Surveillance: An Exploratory Analysis. Life, 15(12), 1848. https://doi.org/10.3390/life15121848

