Response of Wheat and Sugar Beet to Different Mineral–Organic Fertilization in a Long-Term Experiment
Abstract
1. Introduction
2. Materials and Methods
2.1. Weather Conditions
2.2. Soil Material and Chemical Analysis
2.3. Plant Material and Chemical Analysis
2.4. Nitrogen Use Efficiency Indices
2.5. Statistical Analysis
3. Results
3.1. Crop Yield
3.2. Macronutrient Uptake
3.3. Soil Mineral N
3.4. Crop Yield and Nutrient Uptake as a Function of Soil Properties
3.5. Nitrogen Use Efficiency
4. Discussion
4.1. Soil Proporties
4.2. Crop Yield and Nutrient Uptake
4.3. Nitrogen Use Efficiency
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spiegel, H.; Dersch, G.; Baumgarten, A.; Hösch, J. The International Organic Nitrogen Long-Term Fertilisation Experiment (IOSDV) at Vienna after 21 Years. Arch. Agron. Soil Sci. 2010, 56, 405–420. [Google Scholar] [CrossRef]
- Körschens, M.; Albert, E.; Armbruster, M.; Barkusky, D.; Baumecker, M.; Behle-Schalk, L.; Bischoff, R.; Čergan, Z.; Ellmer, F.; Herbst, F.; et al. Effect of Mineral and Organic Fertilization on Crop Yield, Nitrogen Uptake, Carbon and Nitrogen Balances, as Well as Soil Organic Carbon Content and Dynamics: Results from 20 European Long-Term Field Experiments of the Twenty-First Century. Arch. Agron. Soil Sci. 2013, 59, 1017–1040. [Google Scholar] [CrossRef]
- Macholdt, J.; Piepho, H.P.; Honermeier, B.; Perryman, S.; Macdonald, A.; Poulton, P. The Effects of Cropping Sequence, Fertilization and Straw Management on the Yield Stability of Winter Wheat (1986–2017) in the Broadbalk Wheat Experiment, Rothamsted, UK. J. Agric. Sci. 2020, 158, 65–79. [Google Scholar] [CrossRef]
- Hlisnikovský, L.; Menšík, L.; Čermák, P.; Křížová, K.; Kunzová, E. Long-Term Effect of Pig Slurry and Mineral Fertilizer Additions on Soil Nutrient Content, Field Pea Grain and Straw Yield under Winter Wheat–Spring Barley–Field Pea Crop Rotation on Cambisol and Luvisol. Land 2022, 11, 187. [Google Scholar] [CrossRef]
- Hoang, Q.V. Influence of 96 Years of Mineral and Organic Fertilization on Selected Soil Properties: A Case Study from Long-Term Field Experiments in Skierniewice, Central Poland. Soil Sci. Annu. 2023, 74, 161945. [Google Scholar] [CrossRef]
- Eghball, B.; Wienhold, B.J.; Woodbury, B.L.; Eigenberg, R.A. Plant Availability of Phosphorus in Swine Slurry and Cattle Feedlot Manure. Agron. J. 2005, 97, 542–548. [Google Scholar] [CrossRef]
- Boitt, G.; Schmitt, D.E.; Gatiboni, L.C.; Wakelin, S.A.; Black, A.; Sacomori, W.; Cassol, P.C.; Condron, L.M. Fate of Phosphorus Applied to Soil in Pig Slurry under Cropping in Southern Brazil. Geoderma 2018, 321, 164–172. [Google Scholar] [CrossRef]
- Chen, Y.; Camps-Arbestain, M.; Shen, Q.; Singh, B.; Cayuela, M.L. The Long-Term Role of Organic Amendments in Building Soil Nutrient Fertility: A Meta-Analysis and Review. Nutr. Cycl. Agroecosyst. 2018, 111, 103–125. [Google Scholar] [CrossRef]
- Benedet, L.; Wilbert Ferreira, G.; Brunetto, G.; Loss, A.; Emílio Lovato, P.; Rogério Lourenzi, C.; Henrique Godinho Silva, S.; Curi, N.; José Comin, J. Use of Swine Manure in Agriculture in Southern Brazil: Fertility or Potential Contamination? In Soil Contamination—Threats and Sustainable Solutions; IntechOpen: London, UK, 2021. [Google Scholar]
- Scheid, D.L.; da Silva, R.F.; da Silva, V.R.; Da Ros, C.O.; Pinto, M.A.B.; Gabriel, M.; Cherubin, M.R. Changes in Soil Chemical and Physical Properties in Pasture Fertilised with Liquid Swine Manure. Sci. Agric. 2020, 77, e20190017. [Google Scholar] [CrossRef]
- Yagüe, M.R.; Bosch-Serra, À.D.; Boixadera, J. Measurement and Estimation of the Fertiliser Value of Pig Slurry by Physicochemical Models: Usefulness and Constraints. Biosyst. Eng. 2012, 111, 206–216. [Google Scholar] [CrossRef]
- Bosch-Serra, A.D.; Ortiz, C.; Yagüe, M.R.; Boixadera, J. Strategies to Optimize Nitrogen Efficiency When Fertilizing with Pig Slurries in Dryland Agricultural Systems. Eur. J. Agron. 2015, 67, 27–36. [Google Scholar] [CrossRef]
- Fontaine, S.; Mariotti, A.; Abbadie, L. The Priming Effect of Organic Matter: A Question of Microbial Competition? Soil Biol. Biochem. 2003, 35, 837–843. [Google Scholar] [CrossRef]
- Yang, Y.; Lei, D.; Zhang, Y.; Zhao, Z.; Xie, H.; Deng, F.; Bao, X.; Zhang, X.; He, H. Effects of Pig Slurry Coupled with Straw Mulching on Soil Nitrogen Dynamics and Maize Growth. Agronomy 2025, 15, 1062. [Google Scholar] [CrossRef]
- Gwengu, A.; Mndela, M.; Rapiya, M. The Potential of Pig Slurry Application on Pasture Production: A Systematic Approach. J. Soil Sci. Plant Nutr. 2025, 25, 8089–8102. [Google Scholar] [CrossRef]
- Sørensen, P.; Amato, M. Remineralisation and residual effects of N after application of pig slurry to soil. Eur. J. Agron. 2002, 16, 81–95. [Google Scholar] [CrossRef]
- Barłóg, P.; Łukowiak, R.; Grzebisz, W. Predicting the Content of Soil Mineral Nitrogen Based on the Content of Calcium Chloride-Extractable Nutrients. J. Plant Nutr. Soil Sci. 2017, 180, 624–635. [Google Scholar] [CrossRef]
- Córdova, C.; Barrera, J.A.; Magna, C. Spatial Variation of Nitrogen Mineralization as a Guide for Variable Application of Nitrogen Fertilizer to Cereal Crops. Nutr. Cycl. Agroecosyst. 2018, 110, 83–88. [Google Scholar] [CrossRef]
- Kuśmierz, S.; Skowrońska, M.; Tkaczyk, P.; Lipiński, W.; Mielniczuk, J. Soil Organic Carbon and Mineral Nitrogen Contents in Soils as Affected by Their PH, Texture and Fertilization. Agronomy 2023, 13, 267. [Google Scholar] [CrossRef]
- Sørensen, P.; Thomsen, I.K.; Schröder, J.J. Empirical model for mineralisation of manure nitrogen in soil. Soil Res. 2017, 55, 500–505. [Google Scholar] [CrossRef]
- Sieling, K.; Ni, K.; Kage, H. Application of pig slurry—First year and residual effects on yield and N balance. Eur. J. Agron. 2014, 59, 3–21. [Google Scholar] [CrossRef]
- Dai, J.; Gui, H.; Shen, F.; Liu, Y.; Bai, M.; Yang, J.; Liu, H.; Luo, P.; Han, X.; Siddique, K.H.M. Fertilizer 15N balance in a soybean-maize-maize rotation system based on a 41-year long-term experiment in Northeast China. Front. Plant Sci. 2023, 14, 1105131. [Google Scholar] [CrossRef]
- Tang, J.; Li, W.; Wei, T.; Huang, R.; Zeng, Z. Patterns and Mechanisms of Legume Responses to Nitrogen Enrichment: A Global Meta-Analysis. Plants 2024, 13, 3244. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, Nitrogen-Use Efficiency, and Nitrogen Management. AMBIO A J. Hum. Environ. 2002, 31, 132. [Google Scholar] [CrossRef]
- Grzebisz, W.; Diatta, J.; Barłóg, P.; Biber, M.; Potarzycki, J.; Łukowiak, R.; Przygocka-Cyna, K.; Szczepaniak, W. Soil Fertility Clock—Crop Rotation as a Paradigm in Nitrogen Fertilizer Productivity Control. Plants 2022, 11, 2841. [Google Scholar] [CrossRef]
- Marszałek, M.; Kowalski, Z.; Makara, A. Physicochemical and microbiological characteristics of pig slurry. Tech. Trans. Chem. 2014, 1, 81–91. [Google Scholar]
- Yost, J.L.; Schmidt, A.M.; Koelsch, R.; Schott, L.R. Effect of Swine Manure on Soil Health Properties: A Systematic Review. Soil Sci. Soc. Am. J. 2022, 86, 450–486. [Google Scholar] [CrossRef]
- Ragályi, P.; Szabó, A.; Csathó, P.; Rékási, M.; Csontos, P. Interaction of Nitrogen, Phosphorus, and Potassium Fertilisation and Precipitation on the Nitrogen Use Efficiency of Rainfed Grass. Nitrogen 2025, 6, 8. [Google Scholar] [CrossRef]
- Hernández, D.; Polo, A.; Plaza, C. Long-Term Effects of Pig Slurry on Barley Yield and N Use Efficiency under Semiarid Mediterranean Conditions. Eur. J. Agron. 2013, 44, 78–86. [Google Scholar] [CrossRef]
- Martínez, E.; Maresma, A.; Biau, A.; Berenguer, P.; Cela, S.; Santiveri, F.; Michelena, A.; Lloveras, J. Long-Term Effects of Pig Slurry Combined with Mineral Nitrogen on Maize in a Mediterranean Irrigated Environment. Field Crop. Res. 2017, 214, 341–349. [Google Scholar] [CrossRef]
- IUSS Working Group WRB World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences: Vienna, Austria, 2022; ISBN 979-8-9862451-1-9. [Google Scholar]
- Mehlich, A. Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen Use Efficiency Definitions of Today and Tomorrow. Front. Plant Sci. 2021, 12, 637108. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591. [Google Scholar] [CrossRef]
- De Conti, L.; Ceretta, C.A.; Ferreira, P.A.A.; Lorensini, A.; Lourenzi, C.; Vidal, R.F.; Tassinari, A.; Brunetto, G. Effects of Pig Slurry Application and Crops on Phosphorus Content in Soil and the Chemical Species in Solution. R. Bras. Ci. Solo 2015, 39, 774–787. [Google Scholar] [CrossRef]
- Shakoor, A.; Bosch-Serra, À.D.; Alberdi, J.R.O.; Herrero, C. Seven years of pig slurry fertilization: Impacts on soil chemical properties and the element content of winter barley plants. Environ. Sci. Pollut. Res. 2022, 29, 74655–74668. [Google Scholar] [CrossRef]
- Schröder, J.J.; Schröder, J.J.; Jansen, A.G.; Hilhorst, G.J. Long-Term Nitrogen Supply from Cattle Slurry. Soil Use Manag. 2005, 21, 196–204. [Google Scholar] [CrossRef]
- Barłóg, P.; Hlisnikovský, L.; Łukowiak, R.; Kunzová, E. Soil Phosphorus and Potassium Fractions in Response to the Long-Term Application of Pig Slurry and NPK Mineral Fertilizers. Agronomy 2025, 15, 1183. [Google Scholar] [CrossRef]
- Cassity-Duffey, K.; Cabrera, M.; Gaskin, J.; Franklin, D.; Kissel, D.; Saha, U. Nitrogen mineralization from organic materials and fertilizers: Predicting N release. Soil Sci. Soc. Am. J. 2020, 84, 522–533. [Google Scholar] [CrossRef]
- Glendining, M.J.; Powlson, D.S.; Poulton, P.R.; Bradbury, N.J.; Palazzo, D.; Li, X. The effects of long-term applications of inorganic nitrogen fertilizer on soil nitrogen in the Broadbalk Wheat Experiment. J. Agric. Sci. 1996, 127, 347–363. [Google Scholar] [CrossRef]
- Chantigny, M.H.; Angers, D.A.; Morvan, T.; Pomar, C. Dynamics of Pig Slurry Nitrogen in Soil and Plant as Determined with 15 N. Soil Sci. Soc. Am. J. 2004, 68, 637–643. [Google Scholar] [CrossRef]
- Mazur, Z.; Mazur, T. Effects of Long-Term Organic and Mineral Fertilizer Applications on Soil Nitrogen Content. Pol. J. Environ. Stud. 2015, 24, 2073–2078. [Google Scholar] [CrossRef] [PubMed]
- Robertson, G.P.; Groffman, P.M. Nitrogen transformations. In Soil Microbiology, Ecology and Biochemistry, 4th ed.; Paul, E.A., Ed.; Academic Press: Burlington, MA, USA, 2015; pp. 421–446. [Google Scholar]
- Maidl, F.X.; Fischbeck, G. Effects of Long-term Application of Slurry on Soil Nitrogen Mineralization. J. Agron. Crop Sci. 2008, 162, 310–319. [Google Scholar] [CrossRef]
- Hannaway, D.B.; Shuler, P.E. Nitrogen Fertilization in Alfalfa Production. J. Prod. Agric. 1993, 6, 80–85. [Google Scholar] [CrossRef]
- Kelner, D.J.; Vessey, J.K.; Entz, M.H. The Nitrogen Dynamics of 1-, 2- and 3-Year Stands of Alfalfa in a Cropping System. Agric. Ecosyst. Environ. 1997, 64, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Guo, J.; Yan, H. Alfalfa (Medicago sativa L.) Nitrogen Utilization, Yield and Quality Respond to Nitrogen Application Level with Center Pivot Fertigation System. Agronomy 2024, 14, 48. [Google Scholar] [CrossRef]
- Chen, Q.; Xin, Y.; Liu, Z. Long-Term Fertilization with Potassium Modifies Soil Biological Quality in K-Rich Soils. Agronomy 2020, 10, 771. [Google Scholar] [CrossRef]
- Mahler, R.L.; Wilson, S.; Shafii, B.; Price, W. Long-Term Trends of Nitrogen and Phosphorus Use and Soil PH Change in Northern Idaho and Eastern Washington. Commun. Soil Sci. Plant Anal. 2016, 47, 414–424. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: http://faostat.fao.org/site/567/default.aspx#ancor (accessed on 5 November 2025).
- Song, X.; Fang, C.; Yuan, Z.-Q.; Li, F.-M.; Sardans, J.; Penuelas, J. Long-Term Alfalfa (Medicago sativa L.) Establishment Could Alleviate Phosphorus Limitation Induced by Nitrogen Deposition in the Carbonate Soil. J. Environ. Manag. 2022, 324, 116346. [Google Scholar] [CrossRef]
- Blecharczyk, A.; Zawada, D.; Sawinska, Z.; Małecka-Jankowiak, I.; Waniorek, W. Impact of crop sequence and fertilization on yield of winter wheat. Fragm. Agron. 2019, 36, 27–35. [Google Scholar] [CrossRef]
- Wang, N.; Ai, Z.; Zhang, Q.; Leng, P.; Qiao, Y.; Li, Z.; Tian, C.; Cheng, H.; Chen, G.; Li, F. Impacts of Nitrogen (N), Phosphorus (P), and Potassium (K) Fertilizers on Maize Yields, Nutrient Use Efficiency, and Soil Nutrient Balance: Insights from a Long-Term Diverse NPK Omission Experiment in the North China Plain. Field Crop. Res. 2024, 318, 109616. [Google Scholar] [CrossRef]
- Hlisnikovský, L.; Menšík, L.; Roman, M.; Kunzová, E. The Evaluation of a Long-Term Experiment on the Relationships between Weather, Nitrogen Fertilization, Preceding Crop, and Winter Wheat Grain Yield on Cambisol. Plants 2024, 13, 802. [Google Scholar] [CrossRef] [PubMed]
- Kirkby, E.A.; Le Bot, J.; Adamowicz, S.; Römheld, V. Nitrogen in Physiology—An Agronomic Perspective and Implications for the Use of Different Nitrogen Forms. In Proceedings of the IFS Conference, International Fertiliser Society (IFS). GBR., Cambridge, UK, December 2009; 46p. Available online: https://hal.inrae.fr/hal-02757766 (accessed on 9 October 2025).
- Noor, H.; Ding, P.; Ren, A.; Sun, M.; Gao, Z. Effects of Nitrogen Fertilizer on Photosynthetic Characteristics and Yield. Agronomy 2023, 13, 1550. [Google Scholar] [CrossRef]
- Khan, F.; Siddique, A.B.; Shabala, S.; Zhou, M.; Zhao, C. Phosphorus Plays Key Roles in Regulating Plants’ Physiological Responses to Abiotic Stresses. Plants 2023, 12, 2861. [Google Scholar] [CrossRef]
- Iqbal, N.; Umar, S. Role of Potassium in Abiotic Stress; Springer Nature: Singapore, 2022; ISBN 9789811644610. [Google Scholar]
- Berntsen, J.; Petersen, B.M.; Sørensen, P.; Olesen, J.E. Simulating Residual Effects of Animal Manures Using 15N Isotopes. Plant Soil 2007, 290, 173–187. [Google Scholar] [CrossRef]
- Cela, S.; Santiveri, F.; Lloveras, J. Residual Effects of Pig Slurry and Mineral Nitrogen Fertilizer on Irrigated Wheat. Eur. J. Agron. 2011, 34, 257–262. [Google Scholar] [CrossRef]
- Vaziritabar, Y.; Frei, M.; Yan, F.; Vaziritabar, Y.; Honermeier, B. Enhancing Nitrogen Use Efficiency and Plant Productivity in Long-Term Precrop/Crop Rotation and Fertilization Management. Field Crop. Res. 2024, 306, 109210. [Google Scholar] [CrossRef]
- Fixen, P.; Brenturp, F.; Bruulsema, T.W.; Garcia, F.; Norton, R.; Zingore, S. Nutrient/Fertilizer Use Efficiency: Measurment, Current Situation and Trends. In Managing Water and Fertilizer for Sustainable Agricultural Intensification; International Fertilizer Industry Association: Paris, France, 2015; pp. 8–38. Available online: https://www.fertilizer.org/wp-content/uploads/2023/01/2014_fue_chapter_1.pdf (accessed on 9 October 2025).
- Ortiz, C.; Boixadera, J.; Bosch-Serra, À.D. Residual Effects of Pig Slurry Fertilization in a Mediterranean Rainfed Cereal System. Agronomy 2024, 14, 2552. [Google Scholar] [CrossRef]
- Lal, R. Enhancing Crop Yields in the Developing Countries through Restoration of the Soil Organic Carbon Pool in Agricultural Lands. Land Degrad. Dev. 2006, 17, 197–209. [Google Scholar] [CrossRef]




| Treatments | Winter Wheat (2019–2020) | Sugar Beet (2020–2021) | ||||
|---|---|---|---|---|---|---|
| N | P | K | N | P | K | |
| N0P0K0 | 0 | 0 | 0 | 0 | 0 | 0 |
| N1P1K1 | 40 | 21 | 80 | 80 | 28 | 125 |
| N3P2K2 | 55 | 26 | 100 | 160 | 35 | 166 |
| N4P2K2 | 75 | 26 | 100 | 200 | 35 | 166 |
| PS+N0P0K0 | 0 | 0 | 0 | 89 | 39 | 88 |
| PS+N1P1K1 | 40 | 21 | 80 | 169 (80 + 89) | 67 (28 + 39) | 213 (125 + 88) |
| PS+N3P2K2 | 55 | 26 | 100 | 249 (160 + 89) | 74 (35 + 39) | 254 (166 + 88) |
| PS+N4P2K2 | 75 | 26 | 100 | 289 (200 + 89) | 74 (35 + 39) | 254 (166 + 88) |
| Parameters | Soil Depth (m) | |||||
|---|---|---|---|---|---|---|
| 0.0–0.3 | 0.3–0.6 | |||||
| Min–Max | Mean | CV 1 | Min–Max | Mean | CV | |
| Particle-size distribution | ||||||
| 2 Sand, % | 14–15 | 14.3 | 3.04 | 13–14 | 13.8 | 3.15 |
| Coarse silt, % | 23–25 | 24.5 | 3.53 | 22–24 | 23.0 | 3.07 |
| Fine silt, % | 32–34 | 33.0 | 2.14 | 30–32 | 31.4 | 2.75 |
| Clay, % | 26–31 | 28.3 | 6.32 | 31–33 | 31.8 | 2.61 |
| Chemical properties | ||||||
| 3 pH | 4.62–6.55 | 5.25 | 7.67 | 4.83–6.98 | 5.68 | 10.2 |
| TSC, g kg−1 | 10.9–15.7 | 14.0 | 6.48 | 7.3–17.7 | 9.93 | 21.5 |
| TN, g kg−1 | 0.87–1.51 | 1.29 | 8.12 | 0.76–1.35 | 0.94 | 13.2 |
| C:N | 8.8–15.0 | 10.9 | 7.46 | 8.4–17.6 | 10.6 | 19.0 |
| CEC, mM kg−1 | 58.8–101.3 | 71.3 | 12.8 | 54.7–126.0 | 87.3 | 18.7 |
| BS, % | 57.7–82.9 | 71.3 | 7.54 | 67.0–86.4 | 77.4 | 4.90 |
| M3P | 14.9–195.7 | 114.5 | 42.0 | 7.3–123.0 | 52.4 | 44.3 |
| M3K | 132.0–268.0 | 201.9 | 15.9 | 120.6–245.8 | 181.5 | 15.2 |
| M3Ca | 1177–2786 | 1731 | 18.9 | 1679–4987 | 2580 | 27.6 |
| M3Mg | 128.0–268.6 | 196.3 | 17.0 | 132.1–298.9 | 232.2 | 12.6 |
| Treatment | Nt | Pt | Kt | Cat | Mgt |
|---|---|---|---|---|---|
| kg ha−1 | |||||
| Winter wheat (2020) | |||||
| N0P0K0 | 107.4 ± 2.9 f | 21.5 ± 1.4 b | 56.7 ± 5.3 b | 11.5 ± 0.3 e | 8.5 ± 0.2 e |
| N1P1K1 | 145.2 ± 3.0 e | 31.4 ± 3.0 a | 81.7 ± 8.1 ab | 15.9 ± 0.5 cd | 11.6 ± 0.2 cd |
| N3P2K2 | 162.0 ± 2.9 d | 31.7 ± 2.7 a | 85.0 ± 8.1 a | 15.9 ± 0.3 cd | 10.9 ± 0.2 d |
| N4P2K2 | 191.3 ± 4.1 bc | 33.7 ± 2.3 a | 93.2 ± 3.6 a | 18.6 ± 0.5 b | 13.0 ± 0.3 b |
| PS+N0P0K0 | 159.7 ± 3.4 de | 29.9 ± 1.1 ab | 77.3 ± 5.4 ab | 14.9 ± 0.5 d | 12.0 ± 0.3 bcd |
| PS+N1P1K1 | 180.2 ± 2.0 c | 33.7 ± 1.2 a | 81.9 ± 5.7 a | 16.0 ± 0.2 cd | 12.7 ± 0.1 bc |
| PS+N3P2K2 | 200.8 ± 3.7 b | 36.2 ± 1.0 a | 87.7 ± 5.3 a | 17.1 ± 0.3 bc | 15.0 ± 0.3 a |
| PS+N4P2K2 | 217.9 ± 4.0 a | 36.3 ± 1.4 a | 89.1 ± 4.9 a | 23.4 ± 0.3 a | 14.3 ± 0.3 a |
| ANOVA results | |||||
| F7,24 | *** | *** | ** | *** | *** |
| Sugar beet (2021) | |||||
| N0P0K0 | 99.7 ± 1.8 e | 20.0 ± 0.4 e | 149.3 ± 2.8 e | 53.8 ± 1.0 c | 39.1 ± 0.8 e |
| N1P1K1 | 143.2 ± 4.0 d | 29.7 ± 0.6 d | 216.8 ± 5.6 d | 72.2 ± 2.6 a | 48.6 ± 1.1 d |
| N3P2K2 | 174.0 ± 1.5 c | 39.8 ± 0.4 b | 275.2 ± 2.6 b | 75.0 ± 0.9 a | 59.7 ± 0.5 c |
| N4P2K2 | 182.1 ± 4.3 c | 39.2 ± 0.9 b | 292.8 ± 7.0 ab | 74.2 ± 1.9 a | 59.9 ± 1.4 bc |
| PS+N0P0K0 | 145.1 ± 3.9 d | 35.7 ± 0.8 c | 210.2 ± 5.4 d | 73.4 ± 2.5 a | 55.4 ± 1.5 c |
| PS+N1P1K1 | 180.6 ± 1.1 c | 41.1 ± 0.3 b | 254.0 ± 1.6 c | 74.2 ± 0.4 a | 57.0 ± 0.4 bc |
| PS+N3P2K2 | 203.3 ± 2.4 b | 41.2 ± 0.5 b | 281.8 ± 3.3 ab | 64.8 ± 0.9 b | 60.9 ± 0.7 ab |
| PS+N4P2K2 | 274.9 ± 3.2 a | 46.3 ± 0.6 a | 296.7 ± 3.4 a | 59.6 ± 0.7 bc | 64.6 ± 0.8 a |
| ANOVA results | |||||
| F7,24 | *** | *** | *** | *** | *** |
| Treatment | NHI | PHI | KHI | CaHI | MgHI |
|---|---|---|---|---|---|
| % | |||||
| Winter wheat (2020) | |||||
| N0P0K0 | 91.4 ± 0.04 a | 82.8 ± 0.5 | 35.3 ± 3.3 | 26.2 ± 0.1 a | 66.6 ± 3.3 |
| N1P1K1 | 90.3 ± 0.37 bc | 80.4 ± 1.5 | 35.4 ± 3.5 | 17.3 ± 0.6 c | 73.1 ± 3.7 |
| N3P2K2 | 90.4 ± 0.05 bc | 81.3 ± 3.0 | 35.2 ± 2.9 | 17.6 ± 0.1 c | 66.5 ± 3.0 |
| N4P2K2 | 90.2 ± 0.32 c | 83.3 ± 1.2 | 33.7 ± 1.7 | 17.5 ± 0.5 c | 75.4 ± 1.8 |
| PS+N0P0K0 | 91.7 ± 0.27 a | 83.7 ± 0.6 | 37.5 ± 2.1 | 20.5 ± 0.6 b | 73.5 ± 2.0 |
| PS+N1P1K1 | 91.2 ± 0.01 ab | 82.8 ± 0.8 | 37.6 ± 2.4 | 16.6 ± 0.1 c | 73.9 ± 3.8 |
| PS+N3P2K2 | 90.4 ± 0.02 bc | 82.2 ± 1.6 | 37.7 ± 3.0 | 14.6 ± 0.1 d | 79.7 ± 1.9 |
| PS+N4P2K2 | 88.2 ± 0.12 d | 85.1 ± 0.8 | 39.8 ± 4.0 | 19.8 ± 0.2 b | 79.1 ± 4.6 |
| ANOVA results | |||||
| F7,24 | *** | n.s. | n.s. | *** | n.s. |
| Sugar beet (2021) | |||||
| N0P0K0 | 58.4 ± 1.6 ab | 73.5 ± 1.3 a | 69.8 ± 1.4 a | 61.5 ± 1.6 a | 68.1 ± 4.3 a |
| N1P1K1 | 50.6 ± 2.1 cd | 65.6 ± 1.9 cd | 53.4 ± 2.1 b | 38.2 ± 2.0 bcd | 55.3 ± 2.6 b |
| N3P2K2 | 55.5 ± 1.4 abc | 66.8 ± 1.3 c | 49.8 ± 1.5 b | 40.8 ± 1.4 bc | 57.7 ± 2.1 ab |
| N4P2K2 | 53.8 ± 0.9 bc | 66.6 ± 0.8 cd | 53.0 ± 0.9 b | 44.1 ± 0.9 b | 58.4 ± 2.7 ab |
| PS+N0P0K0 | 61.2 ± 0.9 a | 72.3 ± 0.8 ab | 65.3 ± 0.9 a | 39.6 ± 0.9 bcd | 61.2 ± 2.3 ab |
| PS+N1P1K1 | 54.3 ± 0.4 bc | 69.5 ± 0.3 bc | 54.7 ± 0.4 b | 36.3 ± 0.4 cd | 56.6 ± 1.5 ab |
| PS+N3P2K2 | 53.4 ± 1.0 bc | 67.0 ± 0.9 bc | 53.4 ± 1.0 b | 34.8 ± 0.9 d | 53.7 ± 0.7 b |
| PS+N4P2K2 | 47.0 ± 1.3 d | 61.2 ± 1.3 d | 52.2 ± 1.2 b | 41.9 ± 1.3 bc | 61.3 ± 2.4 ab |
| ANOVA results | |||||
| F7,24 | *** | *** | *** | *** | * |
| Treatments | Soil Depth/Form of N | ||||||
|---|---|---|---|---|---|---|---|
| 0.0–0.3 m | 0.3–0.6 m | 0.0–0.6 m | |||||
| NH4-N | NO3-N | Nmin | NH4-N | NO3-N | Nmin | Total Nmin | |
| Spring 2020 | |||||||
| N0P0K0 | 2.91 ± 0.26 | 35.6 ± 3.1 | 38.5 ± 3.2 | 2.60 ± 0.28 | 46.5 ± 7.8 | 49.1 ± 7.9 | 87.6 ± 10.1 |
| N1P1K1 | 2.42 ± 0.24 | 41.3 ± 9.1 | 43.7 ± 9.3 | 3.57 ± 0.22 | 51.3 ± 9.4 | 54.8 ± 9.2 | 98.6 ± 18.5 |
| N3P2K2 | 2.84 ± 0.21 | 40.2 ± 6.1 | 43.0 ± 6.3 | 2.85 ± 0.19 | 49.8 ± 6.3 | 52.7 ± 6.4 | 95.7 ± 10.1 |
| N4P2K2 | 2.57 ± 0.15 | 42.1 ± 3.5 | 44.7 ± 3.5 | 2.80 ± 0.37 | 51.6 ± 4.0 | 54.4 ± 4.2 | 99.1 ± 5.8 |
| PS+N0P0K0 | 2.27 ± 0.07 | 48.0 ± 1.7 | 50.3 ± 1.7 | 2.99 ± 0.15 | 54.6 ± 5.0 | 57.5 ± 5.1 | 107.8 ± 6.8 |
| PS+N1P1K1 | 2.86 ± 0.37 | 40.9 ± 3.7 | 43.8 ± 3.5 | 3.07 ± 0.66 | 62.3 ± 4.6 | 65.4 ± 4.3 | 109.1 ± 5.0 |
| PS+N3P2K2 | 2.58 ± 0.34 | 46.1 ± 2.4 | 48.7 ± 2.3 | 2.57 ± 0.38 | 66.9 ± 5.4 | 69.5 ± 5.2 | 118.2 ± 3.8 |
| PS+N4P2K2 | 3.32 ± 0.10 | 61.0 ± 9.7 | 64.4 ± 9.6 | 3.04 ± 0.53 | 86.6 ± 19.5 | 89.7 ± 15.5 | 147.8 ± 23.3 |
| ANOVA results | |||||||
| F7,24 | n.s | n.s | n.s | n.s | n.s | n.s | n.s |
| Spring 2021 | |||||||
| N0P0K0 | 2.45 ± 0.73 | 17.7 ± 3.2 c | 20.1 ± 3.1 d | 5.23 ± 0.75 | 16.4 ± 1.9 c | 21.6 ± 2.7 c | 41.8 ± 4.7 c |
| N1P1K1 | 3.24 ± 1.01 | 24.7 ± 2.7 abc | 27.9 ± 3.2 bcd | 5.07 ± 0.40 | 21.6 ± 1.6 bc | 26.6 ± 1.4 bc | 54.5 ± 2.1 bc |
| N3P2K2 | 4.36 ± 0.17 | 25.7 ± 2.4 abc | 30.1 ± 2.2 abcd | 5.45 ± 0.30 | 24.3 ± 3.6 bc | 29.8 ± 3.3 bc | 59.8 ± 5.2 bc |
| N4P2K2 | 4.65 ± 0.44 | 22.4 ± 2.0 bc | 27.0 ± 1.7 cd | 5.02 ± 0.40 | 28.4 ± 2.0 bc | 33.4 ± 1.9 bc | 60.4 ± 1.9 bc |
| PS+N0P0K0 | 4.90 ± 0.65 | 27.8 ± 2.1 abc | 32.7 ± 1.8 abc | 6.13 ± 0.31 | 49.0 ± 12.5 abc | 55.2 ± 12.2 abc | 87.9 ± 11.1 ab |
| PS+N1P1K1 | 4.85 ± 0.74 | 30.2 ± 2.3 ab | 35.0 ± 2.7 abc | 5.41 ± 0.44 | 48.8 ± 6.7 abc | 54.2 ± 6.7 abc | 89.3 ± 4.9 ab |
| PS+N3P2K2 | 4.19 ± 1.54 | 35.4 ± 4.3 a | 39.6 ± 3.6 ab | 5.52 ± 0.23 | 57.9 ± 7.4 ab | 63.4 ± 7.5 ab | 103.0 ± 7.6 a |
| PS+N4P2K2 | 5.40 ± 0.57 | 35.3 ± 0.7 a | 40.7 ± 1.2 a | 4.91 ± 0.32 | 66.8 ± 16.1 a | 71.7 ± 16.4 a | 112.4 ± 17.0 a |
| ANOVA results | |||||||
| F7,24 | n.s | *** | *** | n.s | *** | *** | *** |
| Features | GY/TY | SY/LY | Nt | Pt | Kt | Cat | Mgt |
|---|---|---|---|---|---|---|---|
| Winter wheat (2020) | |||||||
| Soil depth: 0.0–0.3 m | |||||||
| Nmin | 0.64 | 0.53 | 0.74 * | 0.61 | 0.48 | 0.85 ** | 0.68 |
| M3P | 0.90 ** | 0.93 ** | 0.93 ** | 0.94 *** | 0.80 * | 0.76 * | 0.91 ** |
| M3K | 0.57 | 0.57 | 0.59 | 0.58 | 0.33 | 0.35 | 0.72 * |
| M3Ca | −0.66 | −0.67 | −0.87 ** | −0.69 | −0.58 | −0.75 * | −0.79 * |
| M3Mg | −0.21 | −0.38 | −0.33 | −0.41 | −0.61 | −0.40 | −0.18 |
| Soil depth: 0.3–0.6 m | |||||||
| Nmin | 0.69 | 0.64 | 0.81 * | 0.71 * | 0.48 | 0.81 * | 0.79 * |
| M3P | 0.86 ** | 0.88 ** | 0.89 ** | 0.89 ** | 0.72 * | 0.69 | 0.90 ** |
| M3K | 0.76 * | 0.79 * | 0.76 * | 0.80 * | 0.60 | 0.61 | 0.83 * |
| M3Ca | −0.58 | −0.47 | −0.60 | −0.42 | −0.29 | −0.32 | −0.52 |
| M3Mg | −0.22 | −0.33 | −0.21 | −0.27 | −0.54 | −0.10 | −0.06 |
| Sugar beet 2021 | |||||||
| Soil depth: 0.0–0.3 m | |||||||
| Nmin | 0.85 ** | 0.80 * | 0.84 ** | 0.86 ** | 0.69 | 0.09 | 0.81 * |
| M3P | 0.79 * | 0.83 * | 0.85 ** | 0.85 ** | 0.77 * | 0.02 | 0.80 * |
| M3K | 0.74 * | 0.88 ** | 0.82 * | 0.81 * | 0.88 ** | 0.14 | 0.80 * |
| M3Ca | −0.65 | −0.58 | −0.71 * | −0.71 * | −0.57 | 0.19 | −0.68 |
| M3Mg | −0.16 | −0.43 | −0.34 | −0.27 | −0.57 | −0.10 | −0.32 |
| Soil depth: 0.3–0.6 m | |||||||
| Nmin | 0.75 * | 0.62 | 0.77 * | 0.75 * | 0.52 | −0.09 | 0.70 |
| M3P | 0.78 * | 0.81 * | 0.91 ** | 0.80 * | 0.84 ** | −0.02 | 0.82 * |
| M3K | 0.73 * | 0.78 * | 0.77 * | 0.72 * | 0.82 * | 0.09 | 0.75 * |
| M3Ca | −0.70 | −0.57 | −0.45 | −0.61 | −0.62 | −0.37 | −0.68 |
| M3Mg | −0.19 | −0.32 | −0.09 | −0.20 | −0.47 | −0.50 | −0.28 |
| Treatment | PFP kg kg−1 | AE kg kg−1 | PNB kg kg−1 | NUtE kg kg−1 | NUEs kg kg−1 | PFPin kg kg−1 | NUpE kg ha−1 | NUEb kg ha−1 |
|---|---|---|---|---|---|---|---|---|
| Winter wheat (2020) | ||||||||
| N0P0K0 | --- | --- | --- | 47.9 ± 0.02 b | 104.3 ± 2.8 b | 58.6 ± 1.6 b | 122.5 ± 3.3 b | --- |
| N1P1K1 | 175.9 ± 3.8 b | 47.4 ± 3.8 bc | 2.68 ± 0.07 c | 48.4 ± 0.20 a | 92.3 ± 2.0 ac | 50.8 ± 1.1 c | 104.8 ± 2.1 ef | 3.28 ± 0.07 b |
| N3P2K2 | 133.1 ± 2.4 d | 39.7 ± 2.4 cd | 2.64 ± 0.05 c | 45.2 ± 0.02 c | 87.9 ± 1.6 c | 48.6 ± 0.9 cd | 107.5 ± 1.9 cde | 2.66 ± 0.05 c |
| N4P2K2 | 103.2 ± 2.3 e | 34.7 ± 2.3 d | 2.16 ± 0.04 d | 40.5 ± 0.15 f | 80.9 ± 1.7 d | 44.5 ± 1.0 e | 109.8 ± 2.3 de | 2.30 ± 0.05 d |
| PS+N0P0K0 | --- | --- | 48.2 ± 0.14 ab | 124.4 ± 3.2 a | 71.5 ± 1.5 a | 148.2 ± 3.2 a | --- | |
| PS+N1P1K1 | 196.3 ± 2.2 a | 67.9 ± 2.1 a | 3.99 ± 0.09 a | 43.6 ± 0.01 d | 95.4 ± 1.0 bc | 52.7 ± 0.6 c | 120.8 ± 1.3 bc | 4.11 ± 0.04 a |
| PS+N3P2K2 | 151.7 ± 2.8 c | 58.3 ± 2.8 ab | 3.28 ± 0.04 b | 41.6 ± 0.01 e | 87.3 ± 1.6 cd | 48.2 ± 0.9 cd | 115.9 ± 2.2 bcd | 3.30 ± 0.06 b |
| PS+N4P2K2 | 110.1 ± 2.1 e | 41.6 ± 2.1 cd | 2.68 ± 0.05 c | 37.9 ± 0.05 g | 64.4 ± 1.1 e | 36.1 ± 0.7 d | 95.2 ± 1.8 f | 2.56 ± 0.05 c |
| Sugar beet (2021) | ||||||||
| N0P0K0 | --- | --- | --- | 614.9 ± 17.1 a | 1963.3 ± 40.3 a | 1467.9 ± 48.4 a | 238.7 ± 4.2 a | --- |
| N1P1K1 | 903.3 ± 26.9 a | 137.1 ± 26.9 b | 1.25 ± 0.02 b | 505.7 ± 21.2 bc | 816.5 ± 16.9 c | 537.1 ± 16.0 c | 106.5 ± 3.0 c | 0.90 ± 0.03 b |
| N3P2K2 | 503.3 ± 13.6 b | 120.1 ± 13.6 b | 0.90 ± 0.02 c | 462.8 ± 12.0 cd | 584.1 ± 5.5 d | 366.3 ± 9.9 d | 79.1 ± 0.7 de | 0.60 ± 0.02 c |
| N4P2K2 | 408.2 ± 9.1 c | 101.7 ± 9.1 b | 0.87 ± 0.01 c | 448.6 ± 7.5 d | 492.2 ± 11.1 de | 313.5 ± 7.0 d | 69.9 ± 1.7 e | 0.49 ± 0.01 d |
| PS+N0P0K0 | 906.0 ± 16.0 a | 217.2 ± 16.0 a | 2.05 ± 0.05 a | 556.4 ± 8.2 b | 1352.1 ± 33.5 b | 917.3 ± 16.2 b | 165.0 ± 4.4 b | 1.00 ± 0.02 a |
| PS+N1P1K1 | 483.4 ± 5.5 b | 120.7 ± 5.5 b | 0.86 ± 0.02 c | 452.3 ± 3.4 cd | 750.7 ± 5.3 c | 482.6 ± 5.5 c | 106.7 ± 0.7 c | 0.58 ± 0.01 c |
| PS+N3P2K2 | 335.6 ± 7.1 d | 89.4 ± 7.1 b | 0.73 ± 0.01 d | 411.0 ± 7.6 d | 507.0 ± 6.1 de | 317.7 ± 6.7 d | 77.3 ± 0.9 de | 0.44 ± 0.01 d |
| PS+N4P2K2 | 297.8 ± 8.9 d | 85.7 ± 8.9 b | 0.70 ± 0.01 d | 313.1 ± 9.0 e | 438.2 ± 6.0 e | 275.5 ± 8.2 d | 88.0 ± 1.0 d | 0.45 ± 0.01 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barłóg, P.; Hlisnikovský, L.; Łukowiak, R.; Menšík, L.; Kunzová, E. Response of Wheat and Sugar Beet to Different Mineral–Organic Fertilization in a Long-Term Experiment. Life 2025, 15, 1779. https://doi.org/10.3390/life15111779
Barłóg P, Hlisnikovský L, Łukowiak R, Menšík L, Kunzová E. Response of Wheat and Sugar Beet to Different Mineral–Organic Fertilization in a Long-Term Experiment. Life. 2025; 15(11):1779. https://doi.org/10.3390/life15111779
Chicago/Turabian StyleBarłóg, Przemysław, Lukáš Hlisnikovský, Remigiusz Łukowiak, Ladislav Menšík, and Eva Kunzová. 2025. "Response of Wheat and Sugar Beet to Different Mineral–Organic Fertilization in a Long-Term Experiment" Life 15, no. 11: 1779. https://doi.org/10.3390/life15111779
APA StyleBarłóg, P., Hlisnikovský, L., Łukowiak, R., Menšík, L., & Kunzová, E. (2025). Response of Wheat and Sugar Beet to Different Mineral–Organic Fertilization in a Long-Term Experiment. Life, 15(11), 1779. https://doi.org/10.3390/life15111779

