The Social Relevance of Numbers: Insights from Animal Studies
Abstract
1. Numerical Cognition in Animals
2. Social Dynamics Requires Numbers
2.1. Counting the Group Members
2.2. Ordering the Group
2.3. Group Decision
3. Evolutionary Pressure
3.1. The Adaptive Value of Cognition
3.2. The Social Intelligence Hypothesis
3.3. Refining the Proxies of Sociality
4. Effects of Early Social Deprivation
5. Conclusions & Future Directions
- Longitudinal studies: These should track the development of numerical abilities from early life stages to adulthood in species with different social structures. For example, comparing the ontogeny of numerical skills in highly social primates like chimpanzees with less social ones like orangutans could provide valuable insights.
- Integration of neuroimaging techniques: While challenging in non-human animals, techniques like fMRI or EEG could be used to study the neural correlates of numerical processing. For instance, comparing brain activation patterns during numerical tasks between socially reared and isolated individuals could reveal how social experience shapes neural circuits involved in numerical cognition.
- Experimental manipulation of social experiences: Future studies could systematically vary the social experiences of young animals (within ethical bounds) and assess the impact on numerical abilities. This could involve comparing animals raised in standard social groups with those in enriched social environments or those with limited social contact.
- Field studies: Observational studies in natural settings could provide ecological validity to lab-based findings. For example, tracking how wild animals use numerical information in social contexts (e.g., during intergroup conflicts or mating decisions) could offer insights into the adaptive value of numerical abilities.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| OFS | Object File System |
| AMS | Analogue Magnitude System |
| EIH | Ecological Intelligence Hypothesis |
| SIH | Social Intelligence Hypothesis |
References
- Butterworth, B. Can Fish Count? What Animals Reveal About Our Uniquely Mathematical Minds; Basic Books: New York, NY, USA, 2022; ISBN 978-1-5416-2081-0. [Google Scholar]
- Rugani, R. Towards Numerical Cognition’s Origin: Insights from Day-Old Domestic Chicks. Philos. Trans. R. Soc. B Biol. Sci. 2017, 373, 20160509. [Google Scholar] [CrossRef]
- Vallortigara, G. Comparative Cognition of Number and Space: The Case of Geometry and of the Mental Number Line. Philos. Trans. R. Soc. B Biol. Sci. 2017, 373, 20170120. [Google Scholar] [CrossRef]
- Pfungst, O. Ein Beitrag zur Experimentellen Tier- und Menschenpsychologie. In Das Pferd des Herrn von Osten: Der Kluge Hans; J. A. Barth: Leipzig, Germany, 1907. [Google Scholar]
- Koehler, O. Vom Erlernen unbenannter Anzahlen bei Vögeln. Naturwissenschaften 1941, 29, 201–218. [Google Scholar] [CrossRef]
- Emmerton, J.; Lohmann, A.; Niemann, J. Pigeons’ Serial Ordering of Numerosity with Visual Arrays. Anim. Learn. Behav. 1997, 25, 234–244. [Google Scholar] [CrossRef]
- Emmerton, J. Numerosity Differences and Effects of Stimulus Density on Pigeons’ Discrimination Performance. Anim. Learn. Behav. 1998, 26, 243–256. [Google Scholar] [CrossRef]
- Meck, W.H.; Church, R.M. A Mode Control Model of Counting and Timing Processes. J. Exp. Psychol. Anim. Behav. Process 1983, 9, 320–334. [Google Scholar] [CrossRef]
- Jordan, K.E.; Brannon, E.M. A Common Representational System Governed by Weber’s Law: Nonverbal Numerical Similarity Judgments in 6-Year-Olds and Rhesus Macaques. J. Exp. Child. Psychol. 2006, 95, 215–229. [Google Scholar] [CrossRef]
- Rugani, R.; Regolin, L.; Vallortigara, G. Discrimination of Small Numerosities in Young Chicks. J. Exp. Psychol. Anim. Behav. Process. 2008, 34, 388–399. [Google Scholar] [CrossRef]
- Dehaene, S. The Number Sense: How the Mind Creates Mathematics; Oxford University Press: New York, NY, USA, 2011; ISBN 978-0-19-975387-1. [Google Scholar]
- Lorenzi, E.; Kobylkov, D.; Vallortigara, G. Is There an Innate Sense of Number in the Brain? Cereb. Cortex 2025, 35, bhaf004. [Google Scholar] [CrossRef]
- Burr, D.C.; Anobile, G.; Arrighi, R. Psychophysical Evidence for the Number Sense. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170045. [Google Scholar] [CrossRef]
- Halberda, J.; Mazzocco, M.M.M.; Feigenson, L. Individual Differences in Non-Verbal Number Acuity Correlate with Maths Achievement. Nature 2008, 455, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Starr, A.; Libertus, M.E.; Brannon, E.M. Number Sense in Infancy Predicts Mathematical Abilities in Childhood. Proc. Natl. Acad. Sci. USA 2013, 110, 18116–18120. [Google Scholar] [CrossRef] [PubMed]
- Brannon, E.M.; Terrace, H.S. Ordering of the Numerosities 1 to 9 by Monkeys. Science 1998, 282, 746–749. [Google Scholar] [CrossRef] [PubMed]
- Hauser, M.D.; Carey, S.; Hauser, L.B. Spontaneous Number Representation in Semi-Free-Ranging Rhesus Monkeys. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2000, 267, 829–833. [Google Scholar] [CrossRef]
- Rugani, R.; Vallortigara, G.; Priftis, K.; Regolin, L. Number-Space Mapping in the Newborn Chick Resembles Humans’ Mental Number Line. Science 2015, 347, 534–536. [Google Scholar] [CrossRef]
- Agrillo, C.; Piffer, L.; Bisazza, A.; Butterworth, B. Evidence for Two Numerical Systems That Are Similar in Humans and Guppies. PLoS ONE 2012, 7, e31923. [Google Scholar] [CrossRef]
- Howard, S.R.; Avarguès-Weber, A.; Garcia, J.E.; Greentree, A.D.; Dyer, A.G. Numerical Ordering of Zero in Honey Bees. Science 2018, 360, 1124–1126. [Google Scholar] [CrossRef]
- Kilian, A.; Yaman, S.; von Fersen, L.; Güntürkün, O. A Bottlenose Dolphin Discriminates Visual Stimuli Differing in Numerosity. Learn. Behav. 2003, 31, 133–142. [Google Scholar] [CrossRef]
- Davis, H.; Bradford, S.A. Counting Behavior by Rats in a Simulated Natural Environment. Ethology 1986, 73, 265–280. [Google Scholar] [CrossRef]
- Izard, V.; Sann, C.; Spelke, E.S.; Streri, A. Newborn Infants Perceive Abstract Numbers. Proc. Natl. Acad. Sci. USA 2009, 106, 10382–10385. [Google Scholar] [CrossRef]
- Wynn, K. Addition and Subtraction by Human Infants. Nature 1992, 358, 749–750. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Spelke, E.S. Large Number Discrimination in 6-Month-Old Infants. Cognition 2000, 74, B1–B11. [Google Scholar] [CrossRef] [PubMed]
- Feigenson, L.; Carey, S.; Spelke, E. Infants’ Discrimination of Number vs. Continuous Extent. Cogn. Psychol. 2002, 44, 33–66. [Google Scholar] [CrossRef]
- Lipton, J.S.; Spelke, E.S. Origins of Number Sense: Large-Number Discrimination in Human Infants. Psychol. Sci. 2003, 14, 396–401. [Google Scholar] [CrossRef]
- Xu, F. Numerosity Discrimination in Infants: Evidence for Two Systems of Representations. Cognition 2003, 89, B15–B25. [Google Scholar] [CrossRef] [PubMed]
- Kinzler, K.D.; Spelke, E.S. Core Systems in Human Cognition. Prog. Brain Res. 2007, 164, 257–264. [Google Scholar] [CrossRef]
- Spelke, E.S. Core Knowledge. Am. Psychol. 2000, 55, 1233–1243. [Google Scholar] [CrossRef]
- Vallortigara, G.; Chiandetti, C.; Rugani, R.; Sovrano, V.A.; Regolin, L. Animal Cognition. Wiley Interdiscip. Rev. Cogn. Sci. 2010, 1, 882–893. [Google Scholar] [CrossRef]
- Trick, L.M.; Pylyshyn, Z.W. Why Are Small and Large Numbers Enumerated Differently? A Limited-Capacity Preattentive Stage in Vision. Psychol. Rev. 1994, 101, 80–102. [Google Scholar] [CrossRef]
- Feigenson, L.; Carey, S.; Hauser, M. The Representations Underlying Infants’ Choice of More: Object Files Versus Analog Magnitudes. Psychol. Sci. 2002, 13, 150–156. [Google Scholar] [CrossRef]
- Gallistel, C.R.; Gelman, R. Preverbal and Verbal Counting and Computation. Cognition 1992, 44, 43–74. [Google Scholar] [CrossRef] [PubMed]
- Wynn, K. Psychological Foundations of Number: Numerical Competence in Human Infants. Trends Cogn. Sci. 1998, 2, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Feigenson, L.; Libertus, M.E.; Halberda, J. Links Between the Intuitive Sense of Number and Formal Mathematics Ability. Child Dev. Perspect. 2013, 7, 74–79. [Google Scholar] [CrossRef]
- Piazza, M.; Facoetti, A.; Trussardi, A.N.; Berteletti, I.; Conte, S.; Lucangeli, D.; Dehaene, S.; Zorzi, M. Developmental Trajectory of Number Acuity Reveals a Severe Impairment in Developmental Dyscalculia. Cognition 2010, 116, 33–41. [Google Scholar] [CrossRef]
- Moyer, R.S.; Landauer, T.K. Time Required for Judgements of Numerical Inequality. Nature 1967, 215, 1519–1520. [Google Scholar] [CrossRef]
- Nieder, A. The Evolutionary History of Brains for Numbers. Trends Cogn. Sci. 2021, 25, 608–621. [Google Scholar] [CrossRef]
- Peters, L.; De Smedt, B. Arithmetic in the Developing Brain: A Review of Brain Imaging Studies. Dev. Cogn. Neurosci. 2018, 30, 265–279. [Google Scholar] [CrossRef]
- Vogel, S.E.; De Smedt, B. Developmental Brain Dynamics of Numerical and Arithmetic Abilities. npj Sci. Learn. 2021, 6, 22. [Google Scholar] [CrossRef]
- Lorenzi, E.; Perrino, M.; Vallortigara, G. Numerosities and Other Magnitudes in the Brains: A Comparative View. Front. Psychol. 2021, 12, 641994. [Google Scholar] [CrossRef]
- Ditz, H.M.; Nieder, A. Neurons Selective to the Number of Visual Items in the Corvid Songbird Endbrain. Proc. Natl. Acad. Sci. USA 2015, 112, 7827–7832. [Google Scholar] [CrossRef]
- Wagener, L.; Nieder, A. Categorical Representation of Abstract Spatial Magnitudes in the Executive Telencephalon of Crows. Curr. Biol. 2023, 33, 2151–2162.e5. [Google Scholar] [CrossRef]
- Sawamura, H.; Shima, K.; Tanji, J. Numerical Representation for Action in the Parietal Cortex of the Monkey. Nature 2002, 415, 918–922. [Google Scholar] [CrossRef]
- Kobylkov, D.; Mayer, U.; Zanon, M.; Vallortigara, G. Number Neurons in the Nidopallium of Young Domestic Chicks. Proc. Natl. Acad. Sci. USA 2022, 119, e2201039119. [Google Scholar] [CrossRef]
- Lorenzi, E.; Perrino, M.; Messina, A.; Zanon, M.; Vallortigara, G. Innate Responses to Numerousness Reveal Neural Activation in Different Brain Regions in Newly-Hatched Visually Naïve Chicks. Heliyon 2024, 10, e34162. [Google Scholar] [CrossRef]
- Luu, P.; Nadtochiy, A.; Zanon, M.; Moreno, N.; Messina, A.; Petrazzini, M.E.M.; Torres Perez, J.V.; Keomanee-Dizon, K.; Jones, M.; Brennan, C.H.; et al. Neural Basis of Number Sense in Larval Zebrafish. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Ditz, H.M.; Nieder, A. Numerosity Representations in Crows Obey the Weber–Fechner Law. Proc. R. Soc. B Biol. Sci. 2016, 283, 20160083. [Google Scholar] [CrossRef] [PubMed]
- Szűcs, D.; Devine, A.; Soltesz, F.; Nobes, A.; Gabriel, F. Cognitive Components of a Mathematical Processing Network in 9-Year-Old Children. Dev. Sci. 2014, 17, 506–524. [Google Scholar] [CrossRef] [PubMed]
- Feigenson, L.; Dehaene, S.; Spelke, E. Core Systems of Number. Trends Cogn. Sci. 2004, 8, 307–314. [Google Scholar] [CrossRef]
- Nieder, A.; Dehaene, S. Representation of Number in the Brain. Annu. Rev. Neurosci. 2009, 32, 185–208. [Google Scholar] [CrossRef]
- Barnard, A.M.; Hughes, K.D.; Gerhardt, R.R.; DiVincenti, L.; Bovee, J.M.; Cantlon, J.F. Inherently Analog Quantity Representations in Olive Baboons (Papio anubis). Front. Psychol. 2013, 4, 253. [Google Scholar] [CrossRef]
- Beran, M.J.; Evans, T.A.; Leighty, K.A.; Harris, E.H.; Rice, D. Summation and Quantity Judgments of Sequentially Presented Sets by Capuchin Monkeys (Cebus apella). Am. J. Primatol. 2008, 70, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Flombaum, J.I.; Junge, J.A.; Hauser, M.D. Rhesus Monkeys (Macaca mulatta) Spontaneously Compute Addition Operations over Large Numbers. Cognition 2005, 97, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Panteleeva, S.; Reznikova, Z.; Vygonyailova, O. Quantity Judgments in the Context of Risk/Reward Decision Making in Striped Field Mice: First “Count”, Then Hunt. Front. Psychol. 2013, 4, 53. [Google Scholar] [CrossRef] [PubMed]
- Perdue, B.M.; Talbot, C.F.; Stone, A.M.; Beran, M.J. Putting the Elephant Back in the Herd: Elephant Relative Quantity Judgments Match Those of Other Species. Anim. Cogn. 2012, 15, 955–961. [Google Scholar] [CrossRef]
- Emmerton, J.; Renner, J.C. Scalar Effects in the Visual Discrimination of Numerosity by Pigeons. Learn. Behav. 2006, 34, 176–192. [Google Scholar] [CrossRef]
- Pepperberg, I.M. Cognitive and Communicative Abilities of Grey Parrots. Appl. Anim. Behav. Sci. 2006, 100, 77–86. [Google Scholar] [CrossRef]
- Kelly, E.M. Counting on Your Friends: The Role of Social Environment on Quantity Discrimination. Behav. Process. 2016, 128, 9–16. [Google Scholar] [CrossRef]
- Hunter, H.; Blackburn, G.; Ashton, B.J.; Ridley, A.R. Group Size Affects Spontaneous Quantity Discrimination Performance in Wild Western Australian Magpies (Gymnorhina tibicen dorsalis). Anim. Cogn. 2025, 28, 41. [Google Scholar] [CrossRef]
- Agrillo, C.; Dadda, M.; Serena, G.; Bisazza, A. Do Fish Count? Spontaneous Discrimination of Quantity in Female Mosquitofish. Anim. Cogn. 2008, 11, 495–503. [Google Scholar] [CrossRef]
- Agrillo, C.; Miletto Petrazzini, M.E.; Tagliapietra, C.; Bisazza, A. Inter-Specific Differences in Numerical Abilities Among Teleost Fish. Front. Psychol. 2012, 3, 483. [Google Scholar] [CrossRef]
- Gómez-Laplaza, L.M.; Gerlai, R. Spontaneous Discrimination of Small Quantities: Shoaling Preferences in Angelfish (Pterophyllum Scalare). Anim. Cogn. 2011, 14, 565–574. [Google Scholar] [CrossRef]
- Potrich, D.; Sovrano, V.A.; Stancher, G.; Vallortigara, G. Quantity Discrimination by Zebrafish (Danio rerio). J. Comp. Psychol. 2015, 129, 388–393. [Google Scholar] [CrossRef]
- Stancher, G.; Sovrano, V.A.; Potrich, D.; Vallortigara, G. Discrimination of Small Quantities by Fish (Redtail Splitfin, Xenotoca eiseni). Anim. Cogn. 2013, 16, 307–312. [Google Scholar] [CrossRef]
- Krusche, P.; Uller, C.; Dicke, U. Quantity Discrimination in Salamanders. J. Exp. Biol. 2010, 213, 1822–1828. [Google Scholar] [CrossRef]
- Stancher, G.; Rugani, R.; Regolin, L.; Vallortigara, G. Numerical Discrimination by Frogs (Bombina orientalis). Anim. Cogn. 2015, 18, 219–229. [Google Scholar] [CrossRef]
- Uller, C.; Jaeger, R.; Guidry, G.; Martin, C. Salamanders (Plethodon cinereus) Go for More: Rudiments of Number in an Amphibian. Anim. Cogn. 2003, 6, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Gazzola, A.; Vallortigara, G.; Pellitteri-Rosa, D. Continuous and Discrete Quantity Discrimination in Tortoises. Biol. Lett. 2018, 14, 20180649. [Google Scholar] [CrossRef] [PubMed]
- Miletto Petrazzini, M.E.; Fraccaroli, I.; Gariboldi, F.; Agrillo, C.; Bisazza, A.; Bertolucci, C.; Foà, A. Quantitative Abilities in a Reptile (Podarcis sicula). Biol. Lett. 2017, 13, 20160899. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.-C.; Whiting, M.J.; Hsieh, M.-Y.; Shaner, P.-J.L.; Lin, S.-M. Superior Continuous Quantity Discrimination in a Freshwater Turtle. Front. Zool. 2021, 18, 49. [Google Scholar] [CrossRef]
- Szabo, B.; Noble, D.W.A.; McCloghry, K.J.; Monteiro, M.E.S.; Whiting, M.J. Spontaneous Quantity Discrimination in a Family-Living Lizard. Behav. Ecol. 2021, 32, 686–694. [Google Scholar] [CrossRef]
- Giurfa, M. Honeybees Foraging for Numbers. J. Comp. Physiol. A 2019, 205, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Howard, S.R.; Avarguès-Weber, A.; Garcia, J.E.; Greentree, A.D.; Dyer, A.G. Numerical Cognition in Honeybees Enables Addition and Subtraction. Sci. Adv. 2019, 5, eaav0961. [Google Scholar] [CrossRef] [PubMed]
- Pahl, M.; Si, A.; Zhang, S. Numerical Cognition in Bees and Other Insects. Front. Psychol. 2013, 4, 162. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, R.L.; Briceño, R.D.; Briceño-Aguilar, E.; Höbel, G. Nephila Clavipes Spiders (Araneae: Nephilidae) Keep Track of Captured Prey Counts: Testing for a Sense of Numerosity in an Orb-Weaver. Anim. Cogn. 2015, 18, 307–314. [Google Scholar] [CrossRef]
- Tanner, C.J. Numerical Assessment Affects Aggression and Competitive Ability: A Team-Fighting Strategy for the Ant Formica Xerophila. Proc. R. Soc. B Biol. Sci. 2006, 273, 2737–2742. [Google Scholar] [CrossRef]
- Yang, T.-I.; Chiao, C.-C. Number Sense and State-Dependent Valuation in Cuttlefish. Proc. R. Soc. B Biol. Sci. 2016, 283, 20161379. [Google Scholar] [CrossRef]
- Krebs, J.R.; Ryan, J.C.; Charnov, E.L. Hunting by Expectation or Optimal Foraging? A Study of Patch Use by Chickadees. Anim. Behav. 1974, 22, 953-IN3. [Google Scholar] [CrossRef]
- Davis, H.; Pérusse, R. Numerical Competence in Animals: Definitional Issues, Current Evidence, and a New Research Agenda. Behav. Brain Sci. 1988, 11, 561–615. [Google Scholar] [CrossRef]
- Bogale, B.A.; Kamata, N.; Mioko, K.; Sugita, S. Quantity Discrimination in Jungle Crows, Corvus macrorhynchos. Anim. Behav. 2011, 82, 635–641. [Google Scholar] [CrossRef]
- Swenson, L.C. One versus Two Discrimination by Whitenecked Ravens (Corvus cryptoleucus) with Non-Number Dimensions Varied. Anim. Behav. 1970, 18, 454–460. [Google Scholar] [CrossRef]
- Potrich, D.; Zanon, M.; Vallortigara, G. Archerfish Number Discrimination. eLife 2022, 11, e74057. [Google Scholar] [CrossRef]
- Bortot, M.; Agrillo, C.; Avarguès-Weber, A.; Bisazza, A.; Miletto Petrazzini, M.E.; Giurfa, M. Honeybees Use Absolute Rather than Relative Numerosity in Number Discrimination. Biol. Lett. 2019, 15, 20190138. [Google Scholar] [CrossRef] [PubMed]
- Harper, D.G.C. Competitive Foraging in Mallards: “Ideal Free’ Ducks. Anim. Behav. 1982, 30, 575–584. [Google Scholar] [CrossRef]
- Rugani, R.; Vallortigara, G.; Regolin, L. The Use of Proportion by Young Domestic Chicks (Gallus gallus). Anim. Cogn. 2015, 18, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Rugani, R.; McCrink, K.; de Hevia, M.-D.; Vallortigara, G.; Regolin, L. Ratio Abstraction over Discrete Magnitudes by Newly Hatched Domestic Chicks (Gallus gallus). Sci. Rep. 2016, 6, 30114. [Google Scholar] [CrossRef]
- Godin, J.-G.J.; Keenleyside, M.H. Foraging on Patchily Distributed Prey by a Cichlid Fish (Teleostei, Cichlidae): A Test of the Ideal Free Distribution Theory. Anim. Behav. 1984, 32, 120–131. [Google Scholar] [CrossRef]
- Drucker, C.B.; Rossa, M.A.; Brannon, E.M. Comparison of Discrete Ratios by Rhesus Macaques (Macaca mulatta). Anim. Cogn. 2016, 19, 75–89. [Google Scholar] [CrossRef]
- Rakoczy, H.; Clüver, A.; Saucke, L.; Stoffregen, N.; Gräbener, A.; Migura, J.; Call, J. Apes Are Intuitive Statisticians. Cognition 2014, 131, 60–68. [Google Scholar] [CrossRef]
- Agrillo, C.; Dadda, M.; Serena, G. Choice of Female Groups by Male Mosquitofish (Gambusia holbrooki). Ethology 2008, 114, 479–488. [Google Scholar] [CrossRef]
- Pilastro, A.; Scaggiante, M.; Rasotto, M.B. Individual Adjustment of Sperm Expenditure Accords with Sperm Competition Theory. Proc. Natl. Acad. Sci. USA 2002, 99, 9913–9915. [Google Scholar] [CrossRef]
- Carazo, P.; Font, E.; Forteza-Behrendt, E.; Desfilis, E. Quantity Discrimination in Tenebrio molitor: Evidence of Numerosity Discrimination in an Invertebrate? Anim. Cogn. 2009, 12, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Carazo, P.; Fernández-Perea, R.; Font, E. Quantity Estimation Based on Numerical Cues in the Mealworm Beetle (Tenebrio molitor). Front. Psychol. 2012, 3, 502. [Google Scholar] [CrossRef] [PubMed]
- Lyon, B.E. Egg Recognition and Counting Reduce Costs of Avian Conspecific Brood Parasitism. Nature 2003, 422, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Kobayashi, T. Numerical Competence in Rats (Rattus norvegicus): Davis and Bradford (1986) Extended. J. Comp. Psychol. 2000, 114, 73–85. [Google Scholar] [CrossRef]
- Rugani, R.; Regolin, L.; Vallortigara, G. Rudimental Numerical Competence in 5-Day-Old Domestic Chicks (Gallus gallus): Identification of Ordinal Position. J. Exp. Psychol. Anim. Behav. Process. 2007, 33, 21–31. [Google Scholar] [CrossRef]
- Rugani, R.; Zhang, Y.; Scarsi, B.; Regolin, L. Hybro Chicks Outperform Ross308 in a Numerical-Ordinal Task. Cognitive and Behavioral Comparisons between 2 Broiler Strains of Newborn Domestic Chicks (Gallus gallus). Poult. Sci. 2023, 102, 103148. [Google Scholar] [CrossRef]
- Rugani, R.; Kelly, D.M.; Szelest, I.; Regolin, L.; Vallortigara, G. Is It Only Humans That Count from Left to Right? Biol. Lett. 2010, 6, 290–292. [Google Scholar] [CrossRef]
- Potrich, D.; Rugani, R.; Sovrano, V.A.; Regolin, L.; Vallortigara, G. Use of Numerical and Spatial Information in Ordinal Counting by Zebrafish. Sci. Rep. 2019, 9, 18323. [Google Scholar] [CrossRef]
- Chittka, L.; Geiger, K. Can Honey Bees Count Landmarks? Anim. Behav. 1995, 49, 159–164. [Google Scholar] [CrossRef]
- Scarf, D.; Colombo, M. Knowledge of the Ordinal Position of List Items in Pigeons. J. Exp. Psychol. Anim. Behav. Process. 2011, 37, 483–487. [Google Scholar] [CrossRef]
- Lyons, I.M.; Vogel, S.E.; Ansari, D. On the Ordinality of Numbers: A Review of Neural and Behavioral Studies. Prog. Brain Res. 2016, 227, 187–221. [Google Scholar] [CrossRef] [PubMed]
- Brunamonti, E.; Mione, V.; Bello, F.D.; Pani, P.; Genovesio, A.; Ferraina, S. Neuronal Modulation in the Prefrontal Cortex in a Transitive Inference Task: Evidence of Neuronal Correlates of Mental Schema Management. J. Neurosci. 2016, 36, 1223–1236. [Google Scholar] [CrossRef] [PubMed]
- Bergman, T.J.; Beehner, J.C.; Cheney, D.L.; Seyfarth, R.M. Hierarchical Classification by Rank and Kinship in Baboons. Science 2003, 302, 1234–1236. [Google Scholar] [CrossRef] [PubMed]
- Agrillo, C.; Bisazza, A. Understanding the Origin of Number Sense: A Review of Fish Studies. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20160511. [Google Scholar] [CrossRef]
- Nieder, A. The Adaptive Value of Numerical Competence. Trends Ecol. Evol. 2020, 35, 605–617. [Google Scholar] [CrossRef]
- McComb, K.; Packer, C.; Pusey, A. Roaring and Numerical Assessment in Contests between Groups of Female Lions, Panthera leo. Anim. Behav. 1994, 47, 379–387. [Google Scholar] [CrossRef]
- Benson-Amram, S.; Heinen, V.K.; Dryer, S.L.; Holekamp, K.E. Numerical Assessment and Individual Call Discrimination by Wild Spotted Hyaenas, Crocuta crocuta. Anim. Behav. 2011, 82, 743–752. [Google Scholar] [CrossRef]
- Wilson, M.L.; Hauser, M.D.; Wrangham, R.W. Does Participation in Intergroup Conflict Depend on Numerical Assessment, Range Location, or Rank for Wild Chimpanzees? Anim. Behav. 2001, 61, 1203–1216. [Google Scholar] [CrossRef]
- Kitchen, D.M. Experimental Test of Female Black Howler Monkey (Alouatta pigra) Responses to Loud Calls from Potentially Infanticidal Males: Effects of Numeric Odds, Vulnerable Offspring, and Companion Behavior. Am. J. Phys. Anthropol. 2006, 131, 73–83. [Google Scholar] [CrossRef]
- Seddon, N.; Tobias, J.A. Communal Singing in the Cooperatively Breeding Subdesert Mesite Monias benschi: Evidence of Numerical Assessment? J. Avian Biol. 2003, 34, 72–80. [Google Scholar] [CrossRef]
- Bonanni, R.; Natoli, E.; Cafazzo, S.; Valsecchi, P. Free-Ranging Dogs Assess the Quantity of Opponents in Intergroup Conflicts. Anim. Cogn. 2011, 14, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Bisazza, A.; Piffer, L.; Serena, G.; Agrillo, C. Ontogeny of Numerical Abilities in Fish. PLoS ONE 2010, 5, e15516. [Google Scholar] [CrossRef] [PubMed]
- Lucon-Xiccato, T.; Dadda, M. Individual Guppies Differ in Quantity Discrimination Performance across Antipredator and Foraging Contexts. Behav. Ecol. Sociobiol. 2016, 71, 13. [Google Scholar] [CrossRef]
- Mehlis, M.; Thünken, T.; Bakker, T.C.M.; Frommen, J.G. Quantification Acuity in Spontaneous Shoaling Decisions of Three-Spined Sticklebacks. Anim. Cogn. 2015, 18, 1125–1131. [Google Scholar] [CrossRef]
- Bshary, R.; Noë, R. Red Colobus and Diana Monkeys Provide Mutual Protection against Predators. Anim. Behav. 1997, 54, 1461–1474. [Google Scholar] [CrossRef]
- Sheardown, E.; Torres-Perez, J.V.; Anagianni, S.; Fraser, S.E.; Vallortigara, G.; Butterworth, B.; Miletto-Petrazzini, M.E.; Brennan, C.H. Characterizing Ontogeny of Quantity Discrimination in Zebrafish. Proc. Biol. Sci. 2022, 289, 20212544. [Google Scholar] [CrossRef]
- Massen, J.J.M.; Pašukonis, A.; Schmidt, J.; Bugnyar, T. Ravens Notice Dominance Reversals among Conspecifics within and Outside Their Social Group. Nat. Commun. 2014, 5, 3679. [Google Scholar] [CrossRef]
- Weiß, B.M.; Kehmeier, S.; Schloegl, C. Transitive Inference in Free-Living Greylag Geese, Anser anser. Anim. Behav. 2010, 79, 1277–1283. [Google Scholar] [CrossRef]
- Daisley, J.N.; Vallortigara, G.; Regolin, L. Low-Rank Gallus gallus domesticus Chicks Are Better at Transitive Inference Reasoning. Commun. Biol. 2021, 4, 1344. [Google Scholar] [CrossRef]
- Degrande, R.; Amichaud, O.; Piégu, B.; Cornilleau, F.; Jardat, P.; Ferreira, V.H.B.; Colson, V.; Lansade, L.; Calandreau, L. Transitive Reasoning in the Adult Domestic Hen in a Six-Term Series Task. Anim. Cogn. 2024, 27, 77. [Google Scholar] [CrossRef]
- Tibbetts, E.A.; Agudelo, J.; Pandit, S.; Riojas, J. Transitive Inference in Polistes Paper Wasps. Biol. Lett. 2019, 15, 20190015. [Google Scholar] [CrossRef] [PubMed]
- Cronin, A.L. Ratio-Dependent Quantity Discrimination in Quorum Sensing Ants. Anim. Cogn. 2014, 17, 1261–1268. [Google Scholar] [CrossRef]
- Doering, G.N.; Pratt, S.C. Queen Location and Nest Site Preference Influence Colony Reunification by the Ant Temnothorax rugatulus. Insect. Soc. 2016, 63, 585–591. [Google Scholar] [CrossRef]
- Franks, N.R.; Stuttard, J.P.; Doran, C.; Esposito, J.C.; Master, M.C.; Sendova-Franks, A.B.; Masuda, N.; Britton, N.F. How Ants Use Quorum Sensing to Estimate the Average Quality of a Fluctuating Resource. Sci. Rep. 2015, 5, 11890. [Google Scholar] [CrossRef] [PubMed]
- Boinski, S. Vocal Coordination of Troop Movement among White-Faced Capuchin Monkeys, Cebus capucinus. Am. J. Primatol. 1993, 30, 85–100. [Google Scholar] [CrossRef]
- Strandburg-Peshkin, A.; Farine, D.R.; Couzin, I.D.; Crofoot, M.C. Shared Decision-Making Drives Collective Movement in Wild Baboons. Science 2015, 348, 1358–1361. [Google Scholar] [CrossRef]
- Walker, R.H.; King, A.J.; McNutt, J.W.; Jordan, N.R. Sneeze to Leave: African Wild Dogs (Lycaon pictus) Use Variable Quorum Thresholds Facilitated by Sneezes in Collective Decisions. Proc. R. Soc. B Biol. Sci. 2017, 284, 20170347. [Google Scholar] [CrossRef]
- Bousquet, C.A.H.; Sumpter, D.J.T.; Manser, M.B. Moving Calls: A Vocal Mechanism Underlying Quorum Decisions in Cohesive Groups. Proc. R. Soc. B Biol. Sci. 2010, 278, 1482–1488. [Google Scholar] [CrossRef]
- Visscher, P.K.; Seeley, T.D. Coordinating a Group Departure: Who Produces the Piping Signals on Honeybee Swarms? Behav. Ecol. Sociobiol. 2007, 61, 1615–1621. [Google Scholar] [CrossRef]
- Rugani, R.; Fontanari, L.; Simoni, E.; Regolin, L.; Vallortigara, G. Arithmetic in Newborn Chicks. Proc. R. Soc. B Biol. Sci. 2009, 276, 2451–2460. [Google Scholar] [CrossRef]
- Rugani, R.; Loconsole, M.; Simion, F.; Regolin, L. Individually Distinctive Features Facilitate Numerical Discrimination of Sets of Objects in Domestic Chicks. Sci. Rep. 2020, 10, 16408. [Google Scholar] [CrossRef] [PubMed]
- Angulo, E.; Luque, G.M.; Gregory, S.D.; Wenzel, J.W.; Bessa-Gomes, C.; Berec, L.; Courchamp, F. Review: Allee Effects in Social Species. J. Anim. Ecol. 2018, 87, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Clutton-Brock, T.H. Breeding Together: Kin Selection and Mutualism in Cooperative Vertebrates. Science 2002, 296, 69–72. [Google Scholar] [CrossRef]
- Cockburn, A. Evolution of Helping Behavior in Cooperatively Breeding Birds. Annu. Rev. Ecol. Syst. 1998, 29, 141–177. [Google Scholar] [CrossRef]
- Benson-Amram, S.; Gilfillan, G.; McComb, K. Numerical Assessment in the Wild: Insights from Social Carnivores. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20160508. [Google Scholar] [CrossRef]
- Watts, D.P.; Mitani, J.C. Hunting Behavior of Chimpanzees at Ngogo, Kibale National Park, Uganda. Int. J. Primatol. 2002, 23, 1–28. [Google Scholar] [CrossRef]
- Parker, G.A. Assessment Strategy and the Evolution of Fighting Behaviour. J. Theor. Biol. 1974, 47, 223–243. [Google Scholar] [CrossRef]
- Caro, T.M. Antipredator Defenses in Birds and Mammals; University of Chicago Press: Chicago, IL, USA, 2005; ISBN 978-0-226-09436-6. [Google Scholar]
- Hamilton, W.D. Geometry for the Selfish Herd. J. Theor. Biol. 1971, 31, 295–311. [Google Scholar] [CrossRef]
- Kenward, R.E. Hawks and Doves: Factors Affecting Success and Selection in Goshawk Attacks on Woodpigeons. J. Anim. Ecol. 1978, 47, 449–460. [Google Scholar] [CrossRef]
- Krause, J.; Ruxton, G.D. Living in Groups; Oxford University Press: Oxford, UK, 2002; ISBN 978-0-19-850818-2. [Google Scholar]
- Hager, M.C.; Helfman, G.S. Safety in Numbers: Shoal Size Choice by Minnows under Predatory Threat. Behav. Ecol. Sociobiol. 1991, 29, 271–276. [Google Scholar] [CrossRef]
- Rugani, R.; Regolin, L.; Vallortigara, G. Imprinted Numbers: Newborn Chicks’ Sensitivity to Number vs. Continuous Extent of Objects They Have Been Reared With. Dev. Sci. 2010, 13, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Loconsole, M.; Regolin, L.; Rugani, R. Asymmetric Number–Space Association Leads to More Efficient Processing of Congruent Information in Domestic Chicks. Front. Behav. Neurosci. 2023, 17, 1115662. [Google Scholar] [CrossRef] [PubMed]
- Bugnyar, T. Why Are Ravens Smart? Exploring the Social Intelligence Hypothesis. J. Ornithol. 2024, 165, 15–26. [Google Scholar] [CrossRef]
- Braun, A.; Bugnyar, T. Social Bonds and Rank Acquisition in Raven Nonbreeder Aggregations. Anim. Behav. 2012, 84, 1507–1515. [Google Scholar] [CrossRef]
- Lazareva, O.F.; Smirnova, A.A.; Bagozkaja, M.S.; Zorina, Z.A.; Rayevsky, V.V.; Wasserman, E.A. Transitive Responding in Hooded Crows Requires Linearly Ordered Stimuli. J. Exp. Anal. Behav. 2004, 82, 1–19. [Google Scholar] [CrossRef]
- Fernald, R.D. Cognitive Skills and the Evolution of Social Systems. J. Exp. Biol. 2017, 220, 103–113. [Google Scholar] [CrossRef]
- MacLean, E.L.; Merritt, D.J.; Brannon, E.M. Social Complexity Predicts Transitive Reasoning in Prosimian Primates. Anim. Behav. 2008, 76, 479–486. [Google Scholar] [CrossRef]
- Chase, I.D. Behavioral Sequences During Dominance Hierarchy Formation in Chickens. Science 1982, 216, 439–440. [Google Scholar] [CrossRef]
- Benard, J.; Giurfa, M. A Test of Transitive Inferences in Free-Flying Honeybees: Unsuccessful Performance Due to Memory Constraints. Learn. Mem. 2004, 11, 328–336. [Google Scholar] [CrossRef]
- Regolin, L.; Loconsole, M.; Rosa-Salva, O.; Brosche, K.; Macchinizzi, M.; Felisatti, A.; Rugani, R. Numerical Cognition in Birds. Nat. Rev. Psychol. 2025, 4, 576–590. [Google Scholar] [CrossRef]
- Milton, K. Foraging Behaviour and the Evolution of Primate Intelligence. In Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes, and Humans; Clarendon Press/Oxford University Press: New York, NY, USA, 1988; pp. 285–305. ISBN 978-0-19-852179-2. [Google Scholar]
- Parker, S.T.; Gibson, K.R. Object Manipulation, Tool Use and Sensorimotor Intelligence as Feeding Adaptations in Cebus Monkeys and Great Apes. J. Hum. Evol. 1977, 6, 623–641. [Google Scholar] [CrossRef]
- Lefebvre, L.; Sol, D. Brains, Lifestyles and Cognition: Are There General Trends? Brain Behav. Evol. 2008, 72, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Morand-Ferron, J.; Cole, E.F.; Quinn, J.L. Studying the Evolutionary Ecology of Cognition in the Wild: A Review of Practical and Conceptual Challenges. Biol. Rev. 2016, 91, 367–389. [Google Scholar] [CrossRef] [PubMed]
- Sayol, F.; Maspons, J.; Lapiedra, O.; Iwaniuk, A.N.; Székely, T.; Sol, D. Environmental Variation and the Evolution of Large Brains in Birds. Nat. Commun. 2016, 7, 13971. [Google Scholar] [CrossRef]
- Shumway, C.A. Habitat Complexity, Brain, and Behavior. Brain Behav. Evol. 2008, 72, 123–134. [Google Scholar] [CrossRef]
- Soler, J.J.; Peralta-Sánchez, J.M.; Martín-Vivaldi, M.; Martín-Platero, A.M.; Flensted-Jensen, E.; Møller, A.P. Cognitive Skills and Bacterial Load: Comparative Evidence of Costs of Cognitive Proficiency in Birds. Naturwissenschaften 2012, 99, 111–122. [Google Scholar] [CrossRef]
- Dunn, J.C.; Cole, E.F.; Quinn, J.L. Personality and Parasites: Sex-Dependent Associations between Avian Malaria Infection and Multiple Behavioural Traits. Behav. Ecol. Sociobiol. 2011, 65, 1459–1471. [Google Scholar] [CrossRef]
- Brown, C.; Braithwaite, V.A. Effects of Predation Pressure on the Cognitive Ability of the Poeciliid Brachyraphis episcopi. Behav. Ecol. 2005, 16, 482–487. [Google Scholar] [CrossRef]
- Ferrari, M.C.O. Short-Term Environmental Variation in Predation Risk Leads to Differential Performance in Predation-Related Cognitive Function. Anim. Behav. 2014, 95, 9–14. [Google Scholar] [CrossRef]
- Tebbich, S.; Teschke, I. Coping with Uncertainty: Woodpecker Finches (Cactospiza pallida) from an Unpredictable Habitat Are More Flexible than Birds from a Stable Habitat. PLoS ONE 2014, 9, e91718. [Google Scholar] [CrossRef]
- Mazza, V.; Jacob, J.; Dammhahn, M.; Zaccaroni, M.; Eccard, J.A. Individual Variation in Cognitive Style Reflects Foraging and Anti-Predator Strategies in a Small Mammal. Sci. Rep. 2019, 9, 10157. [Google Scholar] [CrossRef] [PubMed]
- Sonnenberg, B.R.; Branch, C.L.; Pitera, A.M.; Bridge, E.; Pravosudov, V.V. Natural Selection and Spatial Cognition in Wild Food-Caching Mountain Chickadees. Curr. Biol. 2019, 29, 670–676.e3. [Google Scholar] [CrossRef] [PubMed]
- Melin, A.D.; Young, H.C.; Mosdossy, K.N.; Fedigan, L.M. Seasonality, Extractive Foraging and the Evolution of Primate Sensorimotor Intelligence. J. Hum. Evol. 2014, 71, 77–86. [Google Scholar] [CrossRef]
- Tomasello, M. Primate Cognition: Introduction to the Issue. Cogn. Sci. 2000, 24, 351–361. [Google Scholar] [CrossRef]
- Whiten, A.; Byrne, R.W. Machiavellian Intelligence II: Extensions and Evaluations; Cambridge University Press: Cambridge, UK, 1997; ISBN 978-0-521-55949-2. [Google Scholar]
- Balda, R.P.; Kamil, A.C. Long-Term Spatial Memory in Clark’s Nutcracker, Nucifraga columbiana. Anim. Behav. 1992, 44, 761–769. [Google Scholar] [CrossRef]
- Raby, C.R.; Alexis, D.M.; Dickinson, A.; Clayton, N.S. Planning for the Future by Western Scrub-Jays. Nature 2007, 445, 919–921. [Google Scholar] [CrossRef]
- Clutton-Brock, T.H.; Harvey, P.H. Primates, Brains and Ecology. J. Zool. 1980, 190, 309–323. [Google Scholar] [CrossRef]
- DeCasien, A.R.; Williams, S.A.; Higham, J.P. Primate Brain Size Is Predicted by Diet but Not Sociality. Nat. Ecol. Evol. 2017, 1, 0112. [Google Scholar] [CrossRef]
- Heldstab, S.A.; Kosonen, Z.K.; Koski, S.E.; Burkart, J.M.; van Schaik, C.P.; Isler, K. Manipulation Complexity in Primates Coevolved with Brain Size and Terrestriality. Sci. Rep. 2016, 6, 24528. [Google Scholar] [CrossRef]
- Powell, L.E.; Isler, K.; Barton, R.A. Re-Evaluating the Link between Brain Size and Behavioural Ecology in Primates. Proc. R. Soc. B Biol. Sci. 2017, 284, 20171765. [Google Scholar] [CrossRef]
- Kabadayi, C.; Taylor, L.A.; von Bayern, A.M.P.; Osvath, M. Ravens, New Caledonian Crows and Jackdaws Parallel Great Apes in Motor Self-Regulation despite Smaller Brains. R. Soc. Open Sci. 2016, 3, 160104. [Google Scholar] [CrossRef]
- Bosshard, T.C.; Salazar, L.T.H.; Laska, M. Numerical Cognition in Black-Handed Spider Monkeys (Ateles geoffroyi). Behav. Process. 2022, 201, 104734. [Google Scholar] [CrossRef]
- Dunbar, R.I.M. The Social Brain Hypothesis. Evol. Anthropol. Issues News Rev. 1998, 6, 178–190. [Google Scholar] [CrossRef]
- Humphrey, N.K. The Social Function of Intellect. In Growing Points in Ethology; Cambridge University Press: Oxford, UK, 1976. [Google Scholar]
- Jolly, A. Lemur Social Behavior and Primate Intelligence. Science 1966, 153, 501–506. [Google Scholar] [CrossRef]
- Brosnan, S.F.; Bshary, R. Cooperation and Deception: From Evolution to Mechanisms. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2593–2598. [Google Scholar] [CrossRef]
- Ashton, B.J.; Thornton, A.; Ridley, A.R. An Intraspecific Appraisal of the Social Intelligence Hypothesis. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170288. [Google Scholar] [CrossRef]
- Speechley, E.M.; Ashton, B.J.; Foo, Y.Z.; Simmons, L.W.; Ridley, A.R. Meta-Analyses Reveal Support for the Social Intelligence Hypothesis. Biol. Rev. 2024, 99, 1889–1908. [Google Scholar] [CrossRef]
- Mace, G.M.; Harvey, P.H.; Clutton-Brock, T.H. Brain Size and Ecology in Small Mammals. J. Zool. 1981, 193, 333–354. [Google Scholar] [CrossRef]
- Deaner, R.O.; Isler, K.; Burkart, J.; van Schaik, C. Overall Brain Size, and Not Encephalization Quotient, Best Predicts Cognitive Ability across Non-Human Primates. Brain Behav. Evol. 2007, 70, 115–124. [Google Scholar] [CrossRef]
- Barton, R.A. The Evolutionary Ecology of the Primate Brain; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Connor, R.C.; Mann, J.; Tyack, P.L.; Whitehead, H. Social Evolution in Toothed Whales. Trends Ecol. Evol. 1998, 13, 228–232. [Google Scholar] [CrossRef]
- Joffe, T.H.; Dunbar, R.I.M. Visual and Socio-Cognitive Information Processing in Primate Brain Evolution. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1997, 264, 1303–1307. [Google Scholar] [CrossRef]
- Dunbar, R.I.M.; Shultz, S. Evolution in the Social Brain. Science 2007, 317, 1344–1347. [Google Scholar] [CrossRef]
- Holekamp, K.E. Questioning the Social Intelligence Hypothesis. Trends Cogn. Sci. 2007, 11, 65–69. [Google Scholar] [CrossRef]
- Shultz, S.; Dunbar, R.I. m Both Social and Ecological Factors Predict Ungulate Brain Size. Proc. R. Soc. B Biol. Sci. 2005, 273, 207–215. [Google Scholar] [CrossRef]
- MacLean, E.L.; Barrickman, N.L.; Johnson, E.M.; Wall, C.E. Sociality, Ecology, and Relative Brain Size in Lemurs. J. Hum. Evol. 2009, 56, 471–478. [Google Scholar] [CrossRef]
- Beauchamp, G.; Fernández-Juricic, E. Is There a Relationship between Forebrain Size and Group Size in Birds? Evol. Ecol. Res. 2004, 6, 833–842. [Google Scholar]
- Burish, M.J.; Kueh, H.Y.; Wang, S.S.-H. Brain Architecture and Social Complexity in Modern and Ancient Birds. Brain Behav. Evol. 2004, 63, 107–124. [Google Scholar] [CrossRef]
- Iwaniuk, A.N.; Hurd, P.L. The Evolution of Cerebrotypes in Birds. Brain Behav. Evol. 2005, 65, 215–230. [Google Scholar] [CrossRef]
- Iwaniuk, A.N.; Arnold, K.E. Is Cooperative Breeding Associated with Bigger Brains? A Comparative Test in the Corvida (Passeriformes). Ethology 2004, 110, 203–220. [Google Scholar] [CrossRef]
- Healy, S.D.; Rowe, C. Costs and Benefits of Evolving a Larger Brain: Doubts over the Evidence That Large Brains Lead to Better Cognition. Anim. Behav. 2013, 86, e1–e3. [Google Scholar] [CrossRef]
- MacLean, E.L.; Hare, B.; Nunn, C.L.; Addessi, E.; Amici, F.; Anderson, R.C.; Aureli, F.; Baker, J.M.; Bania, A.E.; Barnard, A.M.; et al. The Evolution of Self-Control. Proc. Natl. Acad. Sci. USA 2014, 111, E2140–E2148. [Google Scholar] [CrossRef]
- Güntürkün, O.; Bugnyar, T. Cognition without Cortex. Trends Cogn. Sci. 2016, 20, 291–303. [Google Scholar] [CrossRef]
- MacLean, E.L.; Sandel, A.A.; Bray, J.; Oldenkamp, R.E.; Reddy, R.B.; Hare, B.A. Group Size Predicts Social but Not Nonsocial Cognition in Lemurs. PLoS ONE 2013, 8, e66359. [Google Scholar] [CrossRef] [PubMed]
- Whiten, A.; Byrne, R.W. Tactical Deception in Primates. Behav. Brain Sci. 1988, 11, 233–244. [Google Scholar] [CrossRef]
- Deaner, R.O.; van Schaik, C.P.; Johnson, V. Do Some Taxa Have Better Domain-General Cognition than Others? A Meta-Analysis of Nonhuman Primate Studies. Evol. Psychol. 2006, 4, 147470490600400114. [Google Scholar] [CrossRef]
- Gigerenzer, G. The Modularity of Social Intelligence. In Adaptive Thinking: Rationality in the Real World; Gigerenzer, G., Ed.; Oxford University Press: Oxford, UK, 2002; ISBN 978-0-19-515372-9. [Google Scholar]
- Reader, S.M.; Hager, Y.; Laland, K.N. The Evolution of Primate General and Cultural Intelligence. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1017–1027. [Google Scholar] [CrossRef]
- Kappeler, P.M. A Framework for Studying Social Complexity. Behav. Ecol. Sociobiol. 2019, 73, 13. [Google Scholar] [CrossRef]
- Cords, M.; Aureli, F.; Silk, J.B.; Call, J. Chapter 9—Reconciliation and Relationship Qualities. In Natural Conflict Resolution; Aureli, F., Ed.; University of California Press: Berkeley, CA, USA, 2000; pp. 177–198. ISBN 978-0-520-92493-2. [Google Scholar]
- Emery, N.J.; Seed, A.M.; von Bayern, A.M.P.; Clayton, N.S. Cognitive Adaptations of Social Bonding in Birds. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 489–505. [Google Scholar] [CrossRef]
- Shultz, S.; Dunbar, R.I.M. Social Bonds in Birds Are Associated with Brain Size and Contingent on the Correlated Evolution of Life-History and Increased Parental Investment. Biol. J. Linn. Soc. 2010, 100, 111–123. [Google Scholar] [CrossRef]
- Freeberg, T.M.; Dunbar, R.I.M.; Ord, T.J. Social Complexity as a Proximate and Ultimate Factor in Communicative Complexity. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1785–1801. [Google Scholar] [CrossRef]
- Amici, F.; Aureli, F.; Call, J. Fission-Fusion Dynamics, Behavioral Flexibility, and Inhibitory Control in Primates. Curr. Biol. 2008, 18, 1415–1419. [Google Scholar] [CrossRef]
- Bond, A.B.; Kamil, A.C.; Balda, R.P. Serial Reversal Learning and the Evolution of Behavioral Flexibility in Three Species of North American Corvids (Gymnorhinus cyanocephalus, Nucifraga columbiana, Aphelocoma californica). J. Comp. Psychol. 2007, 121, 372–379. [Google Scholar] [CrossRef]
- Lukas, D.; Clutton-Brock, T. Social Complexity and Kinship in Animal Societies. Ecol. Lett. 2018, 21, 1129–1134. [Google Scholar] [CrossRef] [PubMed]
- de Waal, F.B.M.; Tyack, P.L. Animal Social Complexity: Intelligence, Culture, and Individualized Societies; Harvard University Press: Cambridge, MA, USA, 2013; pp. 495–593. ISBN 978-0-674-41913-1. [Google Scholar]
- Zuberbühler, K.; Byrne, R.W. Social Cognition. Curr. Biol. 2006, 16, R786–R790. [Google Scholar] [CrossRef] [PubMed]
- Holekamp, K.E.; Sakai, S.T.; Lundrigan, B.L. Social Intelligence in the Spotted Hyena (Crocuta crocuta). Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Reader, S.M.; Laland, K.N. Social Intelligence, Innovation, and Enhanced Brain Size in Primates. Proc. Natl. Acad. Sci. USA 2002, 99, 4436–4441. [Google Scholar] [CrossRef]
- Lefebvre, L.; Giraldeau, L.-A. Is Social Learning an Adaptive Specialization? In Social Learning in Animals: The Roots of Culture; Academic Press: San Diego, CA, USA, 1996; pp. 107–128. [Google Scholar] [CrossRef]
- Deaner, R.O.; Nunn, C.L.; van Schaik, C.P. Comparative Tests of Primate Cognition: Different Scaling Methods Produce Different Results. Brain Behav. Evol. 2000, 55, 44–52. [Google Scholar] [CrossRef]
- Dall, S.R.X.; Giraldeau, L.-A.; Olsson, O.; McNamara, J.M.; Stephens, D.W. Information and Its Use by Animals in Evolutionary Ecology. Trends Ecol. Evol. 2005, 20, 187–193. [Google Scholar] [CrossRef]
- Dunlap, A.S.; Stephens, D.W. Reliability, Uncertainty, and Costs in the Evolution of Animal Learning. Curr. Opin. Behav. Sci. 2016, 12, 73–79. [Google Scholar] [CrossRef]
- Jetz, W.; Rubenstein, D.R. Environmental Uncertainty and the Global Biogeography of Cooperative Breeding in Birds. Curr. Biol. 2011, 21, 72–78. [Google Scholar] [CrossRef]
- Meaney, M.J.; Szyf, M. Maternal Care as a Model for Experience-Dependent Chromatin Plasticity? Trends Neurosci. 2005, 28, 456–463. [Google Scholar] [CrossRef]
- Brett, Z.H.; Humphreys, K.L.; Fleming, A.S.; Kraemer, G.W.; Drury, S.S. Using Cross-Species Comparisons and a Neurobiological Framework to Understand Early Social Deprivation Effects on Behavioral Development. Dev. Psychopathol. 2015, 27, 347–367. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, E.I. Sensitive Periods in the Development of the Brain and Behavior. J. Cogn. Neurosci. 2004, 16, 1412–1425. [Google Scholar] [CrossRef] [PubMed]
- Brainard, M.S.; Doupe, A.J. What Songbirds Teach Us about Learning. Nature 2002, 417, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Bolhuis, J.J.; Honey, R.C. Imprinting, Learning and Development: From Behaviour to Brain and Back. Trends Neurosci. 1998, 21, 306–311. [Google Scholar] [CrossRef]
- Di Giorgio, E.; Loveland, J.L.; Mayer, U.; Rosa-Salva, O.; Versace, E.; Vallortigara, G. Filial Responses as Predisposed and Learned Preferences: Early Attachment in Chicks and Babies. Behav. Brain Res. 2017, 325, 90–104. [Google Scholar] [CrossRef]
- Ramsay, A.O.; Hess, E.H. A Laboratory Approach to the Study of Imprinting. Wilson Bull. 1954, 66, 196–206. [Google Scholar]
- Versace, E.; Vallortigara, G. Origins of Knowledge: Insights from Precocial Species. Front. Behav. Neurosci. 2015, 9, 338. [Google Scholar] [CrossRef]
- Gluck, J.P.; Sackett, G.P. Extinction Deficits in Socially Isolated Rhesus Monkeys (Macaca mulatta). Dev. Psychol. 1976, 12, 173–174. [Google Scholar] [CrossRef]
- Lovic, V.; Fleming, A.S. Artificially-Reared Female Rats Show Reduced Prepulse Inhibition and Deficits in the Attentional Set Shifting Task—Reversal of Effects with Maternal-like Licking Stimulation. Behav. Brain Res. 2004, 148, 209–219. [Google Scholar] [CrossRef]
- Hyde, D.C.; Wood, J.N. Spatial Attention Determines the Nature of Nonverbal Number Representation. J. Cogn. Neurosci. 2011, 23, 2336–2351. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, M.A.; McLaughlin, K.A. Dimensions of Early Experience and Neural Development: Deprivation and Threat. Trends Cogn. Sci. 2014, 18, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Petanjek, Z.; Judaš, M.; Šimić, G.; Rašin, M.R.; Uylings, H.B.M.; Rakic, P.; Kostović, I. Extraordinary Neoteny of Synaptic Spines in the Human Prefrontal Cortex. Proc. Natl. Acad. Sci. USA 2011, 108, 13281–13286. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.M.; Greenough, W.T. Differential Rearing Effects on Rat Visual Cortex Synapses. I. Synaptic and Neuronal Density and Synapses per Neuron. Brain Res. 1985, 329, 195–203. [Google Scholar] [CrossRef]
- Globus, A.; Rosenzweig, M.R.; Bennett, E.L.; Diamond, M.C. Effects of Differential Experience on Dendritic Spine Counts in Rat Cerebral Cortex. J. Comp. Physiol. Psychol. 1973, 82, 175–181. [Google Scholar] [CrossRef]
- Greenough, W.T.; Volkmar, F.R. Pattern of Dendritic Branching in Occipital Cortex of Rats Reared in Complex Environments. Exp. Neurol. 1973, 40, 491–504. [Google Scholar] [CrossRef]
- Volkmar, F.R.; Greenough, W.T. Rearing Complexity Affects Branching of Dendrites in the Visual Cortex of the Rat. Science 1972, 176, 1445–1447. [Google Scholar] [CrossRef]
- Diamond, M.C.; Law, F.; Rhodes, H.; Lindner, B.; Rosenzweig, M.R.; Krech, D.; Bennett, E.L. Increases in Cortical Depth and Glia Numbers in Rats Subjected to Enriched Environment. J. Comp. Neurol. 1966, 128, 117–125. [Google Scholar] [CrossRef]
- Makinodan, M.; Rosen, K.M.; Ito, S.; Corfas, G. A Critical Period for Social Experience–Dependent Oligodendrocyte Maturation and Myelination. Science 2012, 337, 1357–1360. [Google Scholar] [CrossRef]
- Sabatini, M.J.; Ebert, P.; Lewis, D.A.; Levitt, P.; Cameron, J.L.; Mirnics, K. Amygdala Gene Expression Correlates of Social Behavior in Monkeys Experiencing Maternal Separation. J. Neurosci. 2007, 27, 3295–3304. [Google Scholar] [CrossRef]
- Weaver, I.C.G.; Meaney, M.J.; Szyf, M. Maternal Care Effects on the Hippocampal Transcriptome and Anxiety-Mediated Behaviors in the Offspring That Are Reversible in Adulthood. Proc. Natl. Acad. Sci. USA 2006, 103, 3480–3485. [Google Scholar] [CrossRef] [PubMed]
- Baroncelli, L.; Scali, M.; Sansevero, G.; Olimpico, F.; Manno, I.; Costa, M.; Sale, A. Experience Affects Critical Period Plasticity in the Visual Cortex through an Epigenetic Regulation of Histone Post-Translational Modifications. J. Neurosci. 2016, 36, 3430–3440. [Google Scholar] [CrossRef] [PubMed]
- Champagne, F.A.; Curley, J.P. How Social Experiences Influence the Brain. Curr. Opin. Neurobiol. 2005, 15, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Seckl, J.R. Glucocorticoids, Developmental ‘Programming’ and the Risk of Affective Dysfunction. In Progress in Brain Research; De Kloet, E.R., Oitzl, M.S., Vermetten, E., Eds.; Stress Hormones and Post Traumatic Stress Disorder Basic Studies and Clinical Perspectives; Elsevier: Amsterdam, The Netherlands, 2007; Volume 167, pp. 17–34. [Google Scholar] [CrossRef]
- Arnold, C.; Taborsky, B. Social Experience in Early Ontogeny Has Lasting Effects on Social Skills in Cooperatively Breeding Cichlids. Anim. Behav. 2010, 79, 621–630. [Google Scholar] [CrossRef]
- Nyman, C.; Fischer, S.; Aubin-Horth, N.; Taborsky, B. Effect of the Early Social Environment on Behavioural and Genomic Responses to a Social Challenge in a Cooperatively Breeding Vertebrate. Mol. Ecol. 2017, 26, 3186–3203. [Google Scholar] [CrossRef]
- Fahlke, C.; Lorenz, J.G.; Long, J.; Champoux, M.; Suomi, S.J.; Higley, J.D. Rearing Experiences and Stress-Induced Plasma Cortisol as Early Risk Factors for Excessive Alcohol Consumption in Nonhuman Primates. Alcohol. Clin. Exp. Res. 2000, 24, 644–650. [Google Scholar] [CrossRef]
- Francis, D.D.; Meaney, M.J. Maternal Care and the Development of Stress Responses. Curr. Opin. Neurobiol. 1999, 9, 128–134. [Google Scholar] [CrossRef]
- Suomi, S.J. Developmental Trajectories, Early Experiences, and Community Consequences: Lessons from Studies with Rhesus Monkeys. In Developmental Health and the Wealth of Nations: Social, Biological, and Educational Dynamics; The Guilford Press: New York, NY, USA, 1999; pp. 185–200. ISBN 978-1-57230-454-3. [Google Scholar]
- Caldji, C.; Diorio, J.; Meaney, M.J. Variations in Maternal Care in Infancy Regulate the Development of Stress Reactivity. Biol. Psychiatry 2000, 48, 1164–1174. [Google Scholar] [CrossRef]
- Ladd, C.O.; Huot, R.L.; Thrivikraman, K.V.; Nemeroff, C.B.; Plotsky, P.M. Long-Term Adaptations in Glucocorticoid Receptor and Mineralocorticoid Receptor Mrna and Negative Feedback on the Hypothalamo-Pituitary-Adrenal Axis Following Neonatal Maternal Separation. Biol. Psychiatry 2004, 55, 367–375. [Google Scholar] [CrossRef]
- van Oers, H.J.J.; de Kloet, E.R.; Whelan, T.; Levine, S. Maternal Deprivation Effect on the Infant’s Neural Stress Markers Is Reversed by Tactile Stimulation and Feeding but Not by Suppressing Corticosterone. J. Neurosci. 1998, 18, 10171–10179. [Google Scholar] [CrossRef]
- Dettling, A.; Pryce, C.R.; Martin, R.D.; Döbeli, M. Physiological Responses to Parental Separation and a Strange Situation Are Related to Parental Care Received in Juvenile Goeldi’s Monkeys (Callimico goeldii). Dev. Psychobiol. 1998, 33, 21–31. [Google Scholar] [CrossRef]
- Hall, F.S.; Wilkinson, L.S.; Humby, T.; Robbins, T.W. Maternal Deprivation of Neonatal Rats Produces Enduring Changes in Dopamine Function. Synapse 1999, 32, 37–43. [Google Scholar] [CrossRef]
- Schultz, W. Neuronal Reward and Decision Signals: From Theories to Data. Physiol. Rev. 2015, 95, 853–951. [Google Scholar] [CrossRef]
- Wise, R.A. Dopamine, Learning and Motivation. Nat. Rev. Neurosci. 2004, 5, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Graybiel, A.M. The Basal Ganglia: Learning New Tricks and Loving It. Curr. Opin. Neurobiol. 2005, 15, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, T.; DeLong, M.R. Deep-Brain Stimulation for Basal Ganglia Disorders. Basal Ganglia 2011, 1, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Lisman, J.E.; Grace, A.A. The Hippocampal-VTA Loop: Controlling the Entry of Information into Long-Term Memory. Neuron 2005, 46, 703–713. [Google Scholar] [CrossRef]
- Shohamy, D.; Adcock, R.A. Dopamine and Adaptive Memory. Trends Cogn. Sci. 2010, 14, 464–472. [Google Scholar] [CrossRef]
- Nieoullon, A. Dopamine and the Regulation of Cognition and Attention. Prog. Neurobiol. 2002, 67, 53–83. [Google Scholar] [CrossRef]
- Nestler, E.J.; Carlezon, W.A. The Mesolimbic Dopamine Reward Circuit in Depression. Biol. Psychiatry 2006, 59, 1151–1159. [Google Scholar] [CrossRef]
- Pizzagalli, D.A. Depression, Stress, and Anhedonia: Toward a Synthesis and Integrated Model. Annu. Rev. Clin. Psychol. 2014, 10, 393–423. [Google Scholar] [CrossRef] [PubMed]
- Melzack, R.; Burns, S.K. Neurophysiological Effects of Early Sensory Restriction. Exp. Neurol. 1965, 13, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Moretz, J.A.; Martins, E.P.; Robison, B.D. The Effects of Early and Adult Social Environment on Zebrafish (Danio rerio) Behavior. Environ. Biol. Fish 2007, 80, 91–101. [Google Scholar] [CrossRef]
- Adkins-Regan, E.; Krakauer, A. Removal of Adult Males from the Rearing Environment Increases Preference for Same-Sex Partners in the Zebra Finch. Anim. Behav. 2000, 60, 47–53. [Google Scholar] [CrossRef]
- Bertin, A.; Richard-Yris, M.-A. Mothering during Early Development Influences Subsequent Emotional and Social Behaviour in Japanese Quail. J. Exp. Zool. Part A Comp. Exp. Biol. 2005, 303, 792–801. [Google Scholar] [CrossRef]
- Bester-Meredith, J.K.; Marler, C.A. Social Experience During Development and Female Offspring Aggression in Peromyscus Mice. Ethology 2007, 113, 889–900. [Google Scholar] [CrossRef]
- Bastian, M.L.; Sponberg, A.C.; Sponberg, A.C.; Suomi, S.J.; Higley, J.D. Long-Term Effects of Infant Rearing Condition on the Acquisition of Dominance Rank in Juvenile and Adult Rhesus Macaques (Macaca mulatta). Dev. Psychobiol. 2003, 42, 44–51. [Google Scholar] [CrossRef]

| Social Function | Numerical Abilities | Species |
|---|---|---|
| Assessment of group size during conflicts | Proto-numerical Discrimination Proportional Reasoning | Lions (Panthera leo) [109] Spotted hyenas (Crocuta crocuta) [110] Chimpanzees (Pan troglodytes) [111] Black howler monkey (Alouatta pigra) [112] Subdesert mesite (Monias benschi) [113] Free-ranging dogs (Canis lupus familiaris) [114] Western Australian magpies (Gymnorhina tibicen dorsalis) [61] |
| Protection from predators via group size | Proto-numerical Discrimination | Guppies (Poecilia reticulata) [115,116] Sticklebacks (Gasterosteus aculeatus) [117] Red colobus (Procolobus badius) [118] Diana monkey (Cercopithecus diana) [118] Zebrafish (Danio rerio) [119] |
| Navigation of dominance hierarchies | Ordinal Processing | Baboons (Papio anubis) [106] Ravens (Corvus corax) [120] Greylag geese (Anser anser) [121] Domestic chickens (Gallus gallus) [122,123] Paper wasps (Polistes dominula and Polistes metricus) [124] |
| Initiation of collective actions | Proto-numerical Discrimination Proportional Reasoning | Ants (Myrmecina nipponica) [125,126,127] Capuchin monkeys (Cebus capucinus) [128] Baboons (Papio anubis) [129] African wild dogs (Lycaon pictus) [130] Meerkats (Suricata suricatta) [131] Honeybees (Apis mellifera) [132] |
| Balancing foraging trade-offs | Proportional Reasoning | Mallards (Anas platyrhynchos) [86] Cichlids (Astatotilapia burtoni) [89] |
| Tracking group members | Proto-Arithmetic | Domestic chicks (Gallus gallus) [133,134] |
| Pressure | Advantages of Numerical Processing | |
|---|---|---|
| Individual Behavior | Resources availability | Discriminating food resources (feeding) |
| Mating opportunities | Discriminating number of males and females (reproduction) | |
| Habitat complexity | Counting landmark as reference point (navigation) | |
| Parasitism | Reject parasitized eggs (parental care) | |
| Social Behavior | Collective foraging and hunting | Optimal distribution during foraging and numerical assessments during hunting strategies (feeding) |
| Territory defense | Use numerical assessment to establish advantages during intergroup conflict (aggression and defense) | |
| Predatory risk | Join larger groups for defense from predators (defense) | |
| Group organization | Ordering group member in hierarchy (navigate social system) | |
| Group cohesion | Initiate collective action (decision-making) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macchinizzi, M.; Felisatti, A.; Rugani, R. The Social Relevance of Numbers: Insights from Animal Studies. Life 2025, 15, 1775. https://doi.org/10.3390/life15111775
Macchinizzi M, Felisatti A, Rugani R. The Social Relevance of Numbers: Insights from Animal Studies. Life. 2025; 15(11):1775. https://doi.org/10.3390/life15111775
Chicago/Turabian StyleMacchinizzi, Matteo, Arianna Felisatti, and Rosa Rugani. 2025. "The Social Relevance of Numbers: Insights from Animal Studies" Life 15, no. 11: 1775. https://doi.org/10.3390/life15111775
APA StyleMacchinizzi, M., Felisatti, A., & Rugani, R. (2025). The Social Relevance of Numbers: Insights from Animal Studies. Life, 15(11), 1775. https://doi.org/10.3390/life15111775

