Standardized Rapid Sequence Intubation (RSI) Improves Effectiveness and Safety in Mixed Physician and Paramedic Hungarian EMS
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
- •
- Standardized equipment and training for clinicians;
- •
- Modification of recommended drugs for induction;
- •
- Introduction of muscle relaxants for the induction of intubation;
- •
- After having identified ETI as a critical process, clinical governance elements were introduced (SOP development and updates, simulation-based training, real-time telephone consultation system, continuous feedback and audit, etc.).
- •
- After training and with equipment available, all providers were required to follow the new SOP; however, occasional cases still employed the non-RSI method.
- •
- The SOP was known to all providers before training; this might have influenced the non-RSI arm.
- •
- The database relied on self-reported data, which inherently carries the risk of documentation bias.
- •
- In addition to the examined factors, the effectiveness of ETI may have been influenced by other variables that were not analyzed in this study (e.g., comorbidity, preoxygenation effectiveness, pre-induction haemodynamic status, etc.); these variables may have differed between the subgroups, even with the large number of cases. These variables could be the subject of future research [35].
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| RSI | Rapid Sequence Intubation |
| ETI | Endotracheal Intubation |
| EMS | Emergency Medical Service |
| NAS | National Ambulance Service, Hungary |
| SOP | Standard Operating Procedure |
| SD | Standard Deviation |
| DASH-1A | Definitive Airway Sans Hypoxia and Hypotension on First Attempt |
| CA | Cardiac Arrest |
| HEMS | Helicopter Emergency Medical Service |
References
- Pepe, P.E.; Roppolo, L.P.; Fowler, R.L. Prehospital endotracheal intubation: Elemental or detrimental? Crit. Care 2015, 19, 121. [Google Scholar] [CrossRef] [PubMed]
- Crewdson, K.; Lockey, D.; Voelckel, W.; Temesvari, P.; Lossius, H.M.; EHAC Medical Working Group. Best practice advice on pre-hospital emergency anaesthesia & advanced airway management. Scand. J. Trauma Resusc. Emerg. Med. 2019, 27, 6. [Google Scholar] [CrossRef]
- Fevang, E.; Perkins, Z.; Lockey, D.; Jeppesen, E.; Lossius, H.M. A systematic review and meta-analysis comparing mortality in pre-hospital tracheal intubation to emergency department intubation in trauma patients. Crit. Care 2017, 21, 192. [Google Scholar] [CrossRef]
- Denninghoff, K.R.; Nuno, T.; Pauls, Q.; Yeatts, S.D.; Silbergleit, R.; Palesch, Y.Y.; Merck, L.H.; Manley, G.T.; Wright, D.W. Prehospital Intubation is Associated with Favorable Outcomes and Lower Mortality in ProTECT III. Prehospital Emerg. Care 2017, 21, 539–544. [Google Scholar] [CrossRef]
- Khosravan, S.; Alami, A.; Hamzei, A.; Borna, J. Comparing the effectiveness of airway management devices in pre-hospital emergency care: A randomized clinical trial. Pak. J. Med. Sci. 2015, 31, 946–949. [Google Scholar] [CrossRef]
- Bossers, S.M.; Schwarte, L.A.; Loer, S.A.; Twisk, J.W.; Boer, C.; Schober, P. Experience in Prehospital Endotracheal Intubation Significantly Influences Mortality of Patients with Severe Traumatic Brain Injury: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0141034. [Google Scholar] [CrossRef] [PubMed]
- Benoit, J.L.; Gerecht, R.B.; Steuerwald, M.T.; McMullan, J.T. Endotracheal intubation versus supraglottic airway placement in out-of-hospital cardiac arrest: A meta-analysis. Resuscitation 2015, 93, 20–26. [Google Scholar] [CrossRef]
- Hasegawa, K.; Hiraide, A.; Chang, Y.; Brown, D.F. Association of prehospital advanced airway management with neurologic outcome and survival in patients with out-of-hospital cardiac arrest. JAMA 2013, 309, 257–266. [Google Scholar] [CrossRef]
- Evans, C.C.; Brison, R.J.; Howes, D.; Stiell, I.G.; Pickett, W. Prehospital non-drug assisted intubation for adult trauma patients with a Glasgow Coma Score less than 9. Emerg. Med. J. 2013, 30, 935–941. [Google Scholar] [CrossRef]
- Lossius, H.M.; Roislien, J.; Lockey, D.J. Patient safety in pre-hospital emergency tracheal intubation: A comprehensive meta-analysis of the intubation success rates of EMS providers. Crit. Care 2012, 16, R24. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.E.; Balasubramani, G.K.; Cook, L.J.; Lave, J.R.; Yealy, D.M. Out-of-hospital endotracheal intubation experience and patient outcomes. Ann. Emerg. Med. 2010, 55, 527–537.e6. [Google Scholar] [CrossRef]
- Bernard, S.A.; Nguyen, V.; Cameron, P.; Masci, K.; Fitzgerald, M.; Cooper, D.J.; Walker, T.; Std, B.P.; Myles, P.; Murray, L.; et al. Prehospital rapid sequence intubation improves functional outcome for patients with severe traumatic brain injury: A randomized controlled trial. Ann. Surg. 2010, 252, 959–965. [Google Scholar] [CrossRef]
- Tam, R.K.; Maloney, J.; Gaboury, I.; Verdon, J.M.; Trickett, J.; Leduc, S.D.; Poirier, P. Review of endotracheal intubations by Ottawa advanced care paramedics in Canada. Prehospital Emerg. Care 2009, 13, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Berlac, P.; Hyldmo, P.K.; Kongstad, P.; Kurola, J.; Nakstad, A.R.; Sandberg, M. Pre-hospital airway management: Guidelines from a task force from the Scandinavian Society for Anaesthesiology and Intensive Care Medicine. Acta Anaesthesiol. Scand. 2008, 52, 897–907. [Google Scholar] [CrossRef]
- Wang, H.E.; Yealy, D.M. Out-of-hospital endotracheal intubation: Where are we? Ann. Emerg. Med. 2006, 47, 532–541. [Google Scholar] [CrossRef]
- Burton, J.H. Out-of-hospital endotracheal intubation: Half empty or half full? Ann. Emerg. Med. 2006, 47, 542–544. [Google Scholar] [CrossRef]
- Seamon, M.J.; Doane, S.M.; Gaughan, J.P.; Kulp, H.; D’Andrea, A.P.; Pathak, A.S.; Santora, T.A.; Goldberg, A.J.; Wydro, G.C. Prehospital interventions for penetrating trauma victims: A prospective comparison between Advanced Life Support and Basic Life Support. Injury 2013, 44, 634–638. [Google Scholar] [CrossRef] [PubMed]
- DeMasi, S.C.; Casey, J.D.; Semler, M.W. Evidence-based Emergency Tracheal Intubation. Am. J. Respir. Crit. Care Med. 2025, 211, 1156–1164. [Google Scholar] [CrossRef]
- Ben-Naoui, I.; Compère, V.; Clavier, T.; Besnier, E. Practices of Rapid Sequence Induction for Prevention of Aspiration—An International Declarative Survey. J. Clin. Med. 2025, 14, 2177. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, J.L.; Lyng, J.W.; Miller, B.L.; Perlmutter, M.C.; Abraham, H.; Sahni, R. Prehospital Drug Assisted Airway Management: An NAEMSP Position Statement and Resource Document. Prehospital Emerg. Care 2022, 26, 42–53. [Google Scholar] [CrossRef]
- Apfelbaum, J.L.; Hagberg, C.A.; Connis, R.T.; Abdelmalak, B.B.; Agarkar, M.; Dutton, R.P.; Fiadjoe, J.E.; Greif, R.; Klock, P.A.; Mercier, D.; et al. 2022 American Society of Anesthesiologists Practice Guidelines for Management of the Difficult Airway. Anesthesiology 2022, 136, 31–81. [Google Scholar] [CrossRef]
- Mosier, J.M.; Sakles, J.C.; Law, J.A.; Brown, C.A., 3rd; Brindley, P.G. Tracheal Intubation in the Critically Ill. Where We Came from and Where We Should Go. Am. J. Respir. Crit. Care Med. 2020, 201, 775–788. [Google Scholar] [CrossRef] [PubMed]
- Lauriks, A.; Missiaen, M.; Sabbe, M. Prehospital intubation in patients with severe traumatic brain injury: A review. Eur. J. Emerg. Med. 2025, 32, 236–247. [Google Scholar] [CrossRef]
- Fouche, P.F.; Stein, C.; Simpson, P.; Carlson, J.N.; Doi, S.A. Nonphysician Out-of-Hospital Rapid Sequence Intubation Success and Adverse Events: A Systematic Review and Meta-Analysis. Ann. Emerg. Med. 2017, 70, 449–459.e20. [Google Scholar] [CrossRef] [PubMed]
- Crewdson, K.; Lockey, D.J.; Roislien, J.; Lossius, H.M.; Rehn, M. The success of pre-hospital tracheal intubation by different pre-hospital providers: A systematic literature review and meta-analysis. Crit. Care 2017, 21, 31. [Google Scholar] [CrossRef]
- Peters, J.; van Wageningen, B.; Hendriks, I.; Eijk, R.; Edwards, M.; Hoogerwerf, N.; Biert, J. First-pass intubation success rate during rapid sequence induction of prehospital anaesthesia by physicians versus paramedics. Eur. J. Emerg. Med. 2015, 22, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Heritage, D.; Griggs, J.; Barrett, J.; Clarke, S.; Carroll, R.; Lyon, R.; Bootland, D. Helicopter emergency medical services demonstrate reduced time to emergency anaesthesia in an undifferentiated trauma population: A retrospective observational analysis across three major trauma networks. Scand. J. Trauma. Resusc. Emerg. Med. 2024, 32, 138. [Google Scholar] [CrossRef]
- Phelps, S. Intubation success rates of prehospital rapid sequence induction of anaesthesia by physicians versus paramedics. Eur. J. Emerg. Med. 2017, 24, 76–77. [Google Scholar] [CrossRef]
- Lockey, D.J.; Crewdson, K.; Davies, G.; Jenkins, B.; Klein, J.; Laird, C.; Mahoney, P.F.; Nolan, J.; Pountney, A.; Shinde, S.; et al. AAGBI: Safer pre-hospital anaesthesia 2017: Association of Anaesthetists of Great Britain and Ireland. Anaesthesia 2017, 72, 379–390. [Google Scholar] [CrossRef]
- Myers, L.A.; Gallet, C.G.; Kolb, L.J.; Lohse, C.M.; Russi, C.S. Determinants of Success and Failure in Prehospital Endotracheal Intubation. West. J. Emerg. Med. 2016, 17, 640–647. [Google Scholar] [CrossRef]
- McQueen, C.; Crombie, N.; Hulme, J.; Cormack, S.; Hussain, N.; Ludwig, F.; Wheaton, S. Prehospital anaesthesia performed by physician/critical care paramedic teams in a major trauma network in the UK: A 12 month review of practice. Emerg. Med. J. 2015, 32, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Soti, A.; Temesvari, P.; Hetzman, L.; Eross, A.; Petroczy, A. Implementing new advanced airway management standards in the Hungarian physician staffed Helicopter Emergency Medical Service. Scand. J. Trauma. Resusc. Emerg. Med. 2015, 23, 3. [Google Scholar] [CrossRef]
- Lockey, D.J.; Crewdson, K. Pre-hospital anaesthesia: No longer the ‘poor relative’ of high quality in-hospital emergency airway management. Br. J. Anaesth. 2018, 120, 898–901. [Google Scholar] [CrossRef]
- Crewdson, K.; Rehn, M.; Lockey, D. Airway management in pre-hospital critical care: A review of the evidence for a ‘top five’ research priority. Scand. J. Trauma. Resusc. Emerg. Med. 2018, 26, 89. [Google Scholar] [CrossRef]
- Hayes-Bradley, C.; McCreery, M.; Delorenzo, A.; Bendall, J.; Lewis, A.; Bowles, K.-A. Predictive and protective factors for failing first pass intubation in prehospital rapid sequence intubation: An aetiology and risk systematic review with meta-analysis. Br. J. Anaesth. 2024, 132, 918–935. [Google Scholar] [CrossRef]
- Sorbello, M.; Paternò, D.S.; Zdravkovic, I.; La Via, L. Pharmacological approach to rapid sequence induction/intubation: A contemporary perspective. Curr. Opin. Anaesthesiol. 2025, 38, 369–374. [Google Scholar] [CrossRef]
- Collins, J.; O’Sullivan, E.P. Rapid sequence induction and intubation. BJA Educ. 2022, 22, 484–490. [Google Scholar] [CrossRef]
- Raatiniemi, L.; Lankimaki, S.; Martikainen, M. Pre-hospital airway management by non-physicians in Northern Finland—A cross-sectional survey. Acta Anaesthesiol. Scand. 2013, 57, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Gellerfors, M.; Fevang, E.; Backman, A.; Kruger, A.; Mikkelsen, S.; Nurmi, J.; Rognas, L.; Sandstrom, E.; Skallsjo, G.; Svensen, C.; et al. Pre-hospital advanced airway management by anaesthetist and nurse anaesthetist critical care teams: A prospective observational study of 2028 pre-hospital tracheal intubations. Br. J. Anaesth. 2018, 120, 1103–1109. [Google Scholar] [CrossRef]
- Harris, T.; Lockey, D. Success in physician prehospital rapid sequence intubation: What is the effect of base speciality and length of anaesthetic training? Emerg. Med. J. 2011, 28, 225–229. [Google Scholar] [CrossRef]
- UK HEMS RSI SOP. 2010. Available online: http://www.ukhems.co.uk/Rapid%20Sequence%20Intubation.Pdf (accessed on 4 November 2025).
- Grmec, S. Comparison of three different methods to confirm tracheal tube placement in emergency intubation. Intensive Care Med. 2002, 28, 701–704. [Google Scholar] [CrossRef]
- Knapp, S.; Kofler, J.; Stoiser, B.; Thalhammer, F.; Burgmann, H.; Posch, M.; Hofbauer, R.; Stanzel, M.; Frass, M. The assessment of four different methods to verify tracheal tube placement in the critical care setting. Anesth. Analg. 1999, 88, 766–770. [Google Scholar]
- Silvestri, S.; Ralls, G.A.; Krauss, B.; Thundiyil, J.; Rothrock, S.G.; Senn, A.; Carter, E.; Falk, J. The effectiveness of out-of-hospital use of continuous end-tidal carbon dioxide monitoring on the rate of unrecognized misplaced intubation within a regional emergency medical services system. Ann. Emerg. Med. 2005, 45, 497–503. [Google Scholar] [CrossRef]
- Lockey, D.J.; Avery, P.; Harris, T.; Davies, G.E.; Lossius, H.M. A prospective study of physician pre-hospital anaesthesia in trauma patients: Oesophageal intubation, gross airway contamination and the ‘quick look’ airway assessment. BMC Anesth. 2013, 13, 21. [Google Scholar] [CrossRef]
- Donald, M.J.; Paterson, B. End tidal carbon dioxide monitoring in prehospital and retrieval medicine: A review. Emerg. Med. J. 2006, 23, 728–730. [Google Scholar] [CrossRef]
- Higgs, A.; McGrath, B.A.; Goddard, C.; Rangasami, J.; Suntharalingam, G.; Gale, R.; Cook, T.M.; Difficult Airway Society; Intensive Care Society; Faculty of Intensive Care Medicine; et al. Guidelines for the management of tracheal intubation in critically ill adults. Br. J. Anaesth. 2018, 120, 323–352. [Google Scholar] [CrossRef]
- Hinckley, B. DASH-1A. 2012. Available online: https://prehospitalmed.com/2012/05/15/dash-1a-emergency-airway-concepts-with-dr-bill-hinckley/ (accessed on 4 November 2025).
- Powell, E.K.; Hinckley, W.R.; Stolz, U.; Golden, A.J.; Ventura, A.; McMullan, J.T. Predictors of Definitive Airway Sans Hypoxia/Hypotension on First Attempt (DASH-1A) Success in Traumatically Injured Patients Undergoing Prehospital Intubation. Prehospital Emerg. Care 2019, 24, 470–477. [Google Scholar] [CrossRef]
- Reichert, R.J.; Gothard, M.; Gothard, M.D.; Schwartz, H.P.; Bigham, M.T. Intubation Success in Critical Care Transport: A Multicenter Study. Prehospital Emerg. Care 2018, 22, 571–577. [Google Scholar] [CrossRef]
- Sunde, G.A.; Heltne, J.K.; Lockey, D.; Burns, B.; Sandberg, M.; Fredriksen, K.; Hufthammer, K.O.; Soti, A.; Lyon, R.; Jantti, H.; et al. Airway management by physician-staffed Helicopter Emergency Medical Services—A prospective, multicentre, observational study of 2327 patients. Scand. J. Trauma. Resusc. Emerg. Med. 2015, 23, 57. [Google Scholar] [CrossRef]
- Sunde, G.A.; Sandberg, M.; Lyon, R.; Fredriksen, K.; Burns, B.; Hufthammer, K.O.; Roislien, J.; Soti, A.; Jantti, H.; Lockey, D.; et al. Hypoxia and hypotension in patients intubated by physician staffed helicopter emergency medical services—A prospective observational multi-centre study. BMC Emerg. Med. 2017, 17, 22. [Google Scholar] [CrossRef]
- Delorenzo, A.; St Clair, T.; Andrew, E.; Bernard, S.; Smith, K. Prehospital Rapid Sequence Intubation by Intensive Care Flight Paramedics. Prehospital Emerg. Care 2018, 22, 595–601. [Google Scholar] [CrossRef]
- George, N.H.; Cihla, J.B.; Guyette, F.X.; Ramgopal, S.; Martin-Gill, C. Prehospital Endotracheal Intubation Success Rates for Critical Care Nurses Versus Paramedics. Prehospital Emerg. Care 2025, 1–7. [Google Scholar] [CrossRef]
- Park, L.; Zeng, I.; Brainard, A. Systematic review and meta-analysis of first-pass success rates in emergency department intubation: Creating a benchmark for emergency airway care. Emerg. Med. Australas. 2017, 29, 40–47. [Google Scholar] [CrossRef]
- Elmer, J.; Brown, F.; Martin-Gill, C.; Guyette, F.X. Prevalence and Predictors of Post-Intubation Hypotension in Prehospital Trauma Care. Prehospital Emerg. Care 2019, 24, 461–469. [Google Scholar] [CrossRef]
| All (n = 6399) | Paramedic (n = 5023) | Physician (n = 695) | Specialist (n = 667) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Variables | Non-RSI (n = 3236) | RSI (n = 3163) | p | Non-RSI (n = 2591) | RSI (n = 2432) | p | Non-RSI (n = 329) | RSI (n = 366) | p | Non-RSI (n = 307) | RSI (n = 360) | p |
| Age, y mean (SD) | 65.2 (18.2) | 62.2 (19.0) | <0.0001 | 65.9 (17.2) | 62.8 (18.4) | <0.0001 | 62.7 (21.1) | 59.8 (20.4) | 0.07 | 61.9 (22.4) | 60.9 (20.9) | 0.53 |
| Age, Median (range) | 68 (0–102) | 65 (1–100) | - | 68 (0–99) | 65 (2–100) | - | 67 (0–94) | 63 (4–94) | - | 68 (0–94) | 64 (1–98) | - |
| Male * (n, %) | 1663 51.4% | 1775 56.1% | 0.0009 | 1352 52.2% | 1357 55.8% | 0.02 | 174 52.9% | 194 53.0% | 0.89 | 136 45.3% | 223 61.9% | <0.0001 |
| All (N = 6399) | Paramedic (N = 5023) | Physician (N = 695) | Specialist (N = 667) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Variables | Non-RSI (n = 3236) | RSI (n = 3163) | p | Non-RSI (n = 2591) | RSI (n = 2432) | p | Non-RSI (n = 329) | RSI (n = 366) | p | Non-RSI (n = 307) | RSI (n = 360) | p |
| Airway compromise | 1065 (32.9%) | 616 (19.5%) | <0.0001 | 864 (33.4%) | 445 (18.3%) | <0.0001 | 111 (33.7%) | 92 (25.1%) | 0.0128 | 85 (27.7%) | 77 (21.4%) | 0.0587 |
| Unconsciousness | 2348 (72.6%) | 2392 (75.6%) | 0.005 | 1886 (72.8%) | 1834 (75.4%) | 0.0342 | 233 (70.8%) | 280 (76.5%) | 0.0889 | 223 (72.6%) | 274 (76.1%) | 0.3050 |
| Ventilatory failure | 1232 (38.1%) | 872 (27.6%) | <0.0001 | 973 (37.6%) | 682 (28.0%) | <0.0001 | 133 (40.4%) | 97 (26.5%) | <0.0001 | 125 (40.7%) | 91 (25.3%) | <0.0001 |
| Agitation and head injury | 67 (2.1%) | 122 (3.9%) | <0.0001 | 48 (1.9%) | 87 (3.6%) | 0.0002 | 8 (2.4%) | 22 (6.0%) | 0.0204 | 11 (3.6%) | 13 (3.6%) | 0.9845 |
| Others | 99 (3.1%) | 79 (2.5%) | 0.18 | 68 (2.6%) | 53 (2.2%) | 0.3038 | 16 (4.9%) | 15 (4.1%) | 0.6258 | 15 (4.9%) | 11 (3.1%) | 0.2235 |
| Trauma | 313 (9.7%) | 468 (14.8%) | <0.0001 | 238 (9.2%) | 342 (14.1%) | <0.0001 | 36 (10.9%) | 64 (17.5%) | 0.01 | 39 (12.7%) | 61 (16.9%) | 0.13 |
| All (N = 6399) | Paramedic (N = 5023) | Physician (N = 695) | Specialist (N = 667) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Variables | Non-RSI (n = 3236) | RSI (n = 3163) | p | Non-RSI (n = 2591) | RSI (n = 2432) | p | Non-RSI (n = 329) | RSI (n = 366) | p | Non-RSI (n = 307) | RSI (n = 360) | p |
| Successful ETI | 3120 (96.4%) | 3071 (97.1%) | 0.13 | 2494 (96.3%) | 2355 (96.8%) | 0.2632 | 318 (96.7%) | 357 (97.5%) | 0.4862 | 299 (97.4%) | 355 (98.6%) | 0.2571 |
| EtCO2 + * | 2502 (77.3%) | 3087 (97.6%) | <0.0001 | 1986 (76.7%) | 2386 (98.1%) | <0.0001 | 262 (79.6%) | 347 (94.8%) | <0.0001 | 249 (81.1%) | 349 (96.9%) | <0.0001 |
| First-attempt success rate | 2422 (74.9%) | 2706 (85.6%) | <0.0001 | 1908 (73.6%) | 2078 (85.4%) | <0.0001 | 253 (76.9%) | 310 (84.7%) | 0.0089 | 257 (83.7%) | 314 (87.2%) | 0.1982 |
| Hypoxia | 249 (7.7%) | 264 (8.3%) | 0.34 | 198 (7.6%) | 208 (8.6%) | 0.2366 | 28 (8.5%) | 29 (7.9%) | 0.7782 | 22 (7.2%) | 27 (7.5%) | 0.8692 |
| Hypotension | 631 (19.5%) | 421 (13.3%) | <0.0001 | 506 (19.5%) | 319 (13.1%) | <0.0001 | 76 (23.1%) | 50 (13.7%) | 0.0013 | 48 (15.6%) | 51 (14.2%) | 0.5949 |
| CA | 107 (3.3%) | 85 (2.7%) | 0.15 | 82 (3.2%) | 65 (2.7%) | 0.3011 | 12 (3.7%) | 13 (3.6%) | 0.9462 | 13 (4.2%) | 7 (1.9%) | 0.0839 |
| DASH-1A | 1780 (55.0%) | 2165 (68.5%) | <0.0001 | 1399 (54.0%) | 1667 (68.5%) | <0.0001 | 181 (55.0%) | 244 (66.7%) | 0.0017 | 198 (64.5%) | 251 (69.7%) | 0.1514 |
| Comparison | Subgroup (s) | n | DASH-1A OR (95% CI) |
|---|---|---|---|
| RSI vs. non-RSI | Paramedic subgroup | 5023 | 1.86 (1.65–2.08) |
| RSI vs. non-RSI | Physician subgroup | 695 | 1.64 (1.20–2.22) |
| RSI vs. non-RSI | Specialist subgroup | 667 | 1.27 (0.92–1.75) |
| RSI vs. non-RSI | Non-trauma patients | 5618 | 1.75 (1.57–1.95) |
| RSI vs. non-RSI | Trauma patients | 781 | 2.09 (1.55–2.80) |
| Trauma vs. non-trauma (within RSI group) | RSI group | 3163 | 0.96 (0.78–1.19) |
| Trauma vs. non-trauma (within non-RSI group) | Non-RSI group | 3236 | 0.81 (0.64–1.02) |
| RSI vs. non-RSI | No airway compromise | 4718 | 1.8 (1.6–2.1) |
| RSI vs. non-RSI | Airway compromise | 1681 | 1.4 (1.2–1.8) |
| RSI vs. non-RSI | No ventilatory failure | 4295 | 1.9 (1.7–2.2) |
| RSI vs. non-RSI | Ventilatory failure | 2104 | 1.4 (1.2–1.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burány, B.; Temesvári, P.; Radnai, M.; Sóti, Á.; Csukly, G.; Élő, G. Standardized Rapid Sequence Intubation (RSI) Improves Effectiveness and Safety in Mixed Physician and Paramedic Hungarian EMS. Life 2025, 15, 1725. https://doi.org/10.3390/life15111725
Burány B, Temesvári P, Radnai M, Sóti Á, Csukly G, Élő G. Standardized Rapid Sequence Intubation (RSI) Improves Effectiveness and Safety in Mixed Physician and Paramedic Hungarian EMS. Life. 2025; 15(11):1725. https://doi.org/10.3390/life15111725
Chicago/Turabian StyleBurány, Béla, Péter Temesvári, Márton Radnai, Ákos Sóti, Gábor Csukly, and Gábor Élő. 2025. "Standardized Rapid Sequence Intubation (RSI) Improves Effectiveness and Safety in Mixed Physician and Paramedic Hungarian EMS" Life 15, no. 11: 1725. https://doi.org/10.3390/life15111725
APA StyleBurány, B., Temesvári, P., Radnai, M., Sóti, Á., Csukly, G., & Élő, G. (2025). Standardized Rapid Sequence Intubation (RSI) Improves Effectiveness and Safety in Mixed Physician and Paramedic Hungarian EMS. Life, 15(11), 1725. https://doi.org/10.3390/life15111725

