Fructose Malabsorption, Gut Microbiota and Clinical Consequences: A Narrative Review of the Current Evidence
Abstract
1. Introduction
2. Fructose Absorption
3. High-Fructose Diet and Gut Microbiota
4. Fructose Malabsorption and Gut Microbiota
5. Clinical Consequences of Gut Microbiota Changes Associated with Fructose Malabsorption
6. Personalized Management of Fructose Malabsorption
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| HFCS | High-fructose corn syrup |
| GLUT | Glucose transporter |
| KHK | Ketohexokinase |
| ChREBP | Carbohydrate response element-binding protein |
| SCFA | Short-chain fatty acid |
| FODMAP | Fermentable Oligosaccharides, Disaccharides, Monosaccharides and Polyols |
| LPS | Lipopolysaccharide |
| IBS | Irritable Bowel Syndrome |
References
- Roberfroid, M.B.; Delzenne, N.M. Dietary Fructans. Annu. Rev. Nutr. 1998, 18, 117–143. [Google Scholar] [CrossRef]
- Fedewa, A.; Rao, S.S.C. Dietary Fructose Intolerance, Fructan Intolerance and FODMAPs. Curr. Gastroenterol. Rep. 2014, 16, 370. [Google Scholar] [CrossRef]
- Directorate-General for Health and Food Safety. Consumption and Impact of High Fructose Syrups; Directorate-General for Health and Food Safety: Luxembourg, 2018. [Google Scholar]
- Moeller, S.M.; Fryhofer, S.A.; Osbahr, A.J.; Robinowitz, C.B. The Effects of High Fructose Syrup. J. Am. Coll. Nutr. 2009, 28, 619–626. [Google Scholar] [CrossRef]
- Turck, D.; Bohn, T.; Castenmiller, J.; de Henauw, S.; Ildico Hirsch-Ernst, K.; Katrine Knutsen, H.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Tolerable Upper Intake Level for Dietary Sugars. EFSA J. 2022, 20, e07074. [Google Scholar] [CrossRef]
- Gericke, B.; Schecker, N.; Amiri, M.; Naim, H.Y. Structure-Function Analysis of Human Sucrase-Isomaltase Identifies Key Residues Required for Catalytic Activity. J. Biol. Chem. 2017, 292, 11070. [Google Scholar] [CrossRef]
- Gibson, P.R.; Shepherd, S.J. Personal View: Food for Thought—Western Lifestyle and Susceptibility to Crohn’s Disease. The FODMAP Hypothesis. Aliment. Pharmacol. Ther. 2005, 21, 1399–1409. [Google Scholar] [CrossRef]
- Hughes, R.L.; Alvarado, D.A.; Swanson, K.S.; Holscher, H.D. The Prebiotic Potential of Inulin-Type Fructans: A Systematic Review. Adv. Nutr. 2022, 13, 492–529. [Google Scholar] [CrossRef]
- Simões, C.D.; Maganinho, M.; Sousa, A.S. FODMAPs, Inflammatory Bowel Disease and Gut Microbiota: Updated Overview on the Current Evidence. Eur. J. Nutr. 2022, 61, 1187–1198. [Google Scholar] [CrossRef]
- Barret, J.S.; Gibson, P.R. Clinical Ramifications of Malabsorption of Fructose and Other Short-Chain Carbohydrates. Pract. Gastroenterol. 2007, 53, 51–65. [Google Scholar]
- Gibson, P.R.; Newnham, E.; Barrett, J.S.; Shepherd, S.J.; Muir, J.G. Review Article: Fructose Malabsorption and the Bigger Picture. Aliment. Pharmacol. Ther. 2007, 25, 349–363. [Google Scholar] [CrossRef]
- Shepherd, S.J.; Gibson, P.R. Fructose Malabsorption and Symptoms of Irritable Bowel Syndrome: Guidelines for Effective Dietary Management. J. Am. Diet. Assoc. 2006, 106, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Amieva-Balmori, M.; Coss-Adame, E.; Rao, N.S.; Dávalos-Pantoja, B.M.; Rao, S.S.C. Diagnostic Utility of Carbohydrate Breath Tests for SIBO, Fructose, and Lactose Intolerance. Dig. Dis. Sci. 2020, 65, 1405–1413. [Google Scholar] [CrossRef]
- Rezaie, A.; Buresi, M.; Lembo, A.; Lin, H.; McCallum, R.; Rao, S.; Schmulson, M.; Valdovinos, M.; Zakko, S.; Pimentel, M. Hydrogen and Methane-Based Breath Testing in Gastrointestinal Disorders: The North American Consensus. Am. J. Gastroenterol. 2017, 112, 775–784. [Google Scholar] [CrossRef]
- Ferraris, R.P.; Choe, J.-Y.; Patel, C.R. Intestinal Absorption of Fructose. Annu. Rev. Nutr. 2018, 38, 41–67. [Google Scholar] [CrossRef]
- Gouyon, F.; Caillaud, L.; Carrière, V.; Klein, C.; Dalet, V.; Citadelle, D.; Kellett, G.L.; Thorens, B.; Leturque, A.; Brot-Laroche, E. Simple-sugar Meals Target GLUT2 at Enterocyte Apical Membranes to Improve Sugar Absorption: A Study in GLUT2-null Mice. J. Physiol. 2003, 552, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Patel, C.; Douard, V.; Yu, S.; Tharabenjasin, P.; Gao, N.; Ferraris, R.P. Fructose-Induced Increases in Expression of Intestinal Fructolytic and Gluconeogenic Genes Are Regulated by GLUT5 and KHK. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R499. [Google Scholar] [CrossRef] [PubMed]
- Patel, C.; Douard, V.; Yu, S.; Gao, N.; Ferraris, R.P. Transport, Metabolism, and Endosomal Trafficking-Dependent Regulation of Intestinal Fructose Absorption. FASEB J. 2015, 29, 4046. [Google Scholar] [CrossRef]
- Douard, V.; Ferraris, R.P. Regulation of the Fructose Transporter GLUT5 in Health and Disease. Am. J. Physiol.-Endocrinol. Metab. 2008, 295, E227–E237. [Google Scholar] [CrossRef]
- Ishimoto, T.; Lanaspa, M.A.; Le, M.T.; Garcia, G.E.; Diggle, C.P.; MacLean, P.S.; Jackman, M.R.; Asipu, A.; Roncal-Jimenez, C.A.; Kosugi, T.; et al. Opposing Effects of Fructokinase C and A Isoforms on Fructose-Induced Metabolic Syndrome in Mice. Proc. Natl. Acad. Sci. USA 2012, 109, 4320–4325. [Google Scholar] [CrossRef]
- Jang, C.; Wada, S.; Yang, S.; Gosis, B.; Zeng, X.; Zhang, Z.; Shen, Y.; Lee, G.; Arany, Z.; Rabinowitz, J.D. The Small Intestine Shields the Liver from Fructose-Induced Steatosis. Nat. Metab. 2020, 2, 586–593. [Google Scholar] [CrossRef]
- Kishida, K.; Pearce, S.C.; Yu, S.; Gao, N.; Ferraris, R.P. Nutrient Sensing by Absorptive and Secretory Progenies of Small Intestinal Stem Cells. Am. J. Physiol.-Gastrointest. Liver Physiol. 2017, 312, G592–G605. [Google Scholar] [CrossRef]
- Douard, V.; Ferraris, R.P. The Role of Fructose Transporters in Diseases Linked to Excessive Fructose Intake. J. Physiol. 2013, 591, 401–414. [Google Scholar] [CrossRef]
- Wright, E.M.; Martín, M.G.; Turk, E. Intestinal Absorption in Health and Disease—Sugars. Best Pract. Res. Clin. Gastroenterol. 2003, 17, 943–956. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.F.; Burt, E.; Dowling, K.; Davidson, G.; Brooks, D.A.; Butler, R.N. Effect of Age on Fructose Malabsorption in Children Presenting with Gastrointestinal Symptoms. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 581–584. [Google Scholar] [CrossRef]
- Davidson, N.O.; Hausman, A.M.L.; Ifkovits, C.A.; Buse, J.B.; Gould, G.W.; Burant, C.F.; Bell, G.I. Human Intestinal Glucose Transporter Expression and Localization of GLUT5. Am. Physiol. Soc. J. 1992, 262, C795–C800. [Google Scholar] [CrossRef]
- Rao, S.S.C.; Attaluri, A.; Anderson, L.; Stumbo, P. Ability of the Normal Human Small Intestine to Absorb Fructose: Evaluation by Breath Testing. Clin. Gastroenterol. Hepatol. 2007, 5, 959–963. [Google Scholar] [CrossRef]
- Ladas, S.D.; Grammenos, I.; Tassios, P.S.; Raptis, S.A. Coincidental Malabsorption of Lactose, Fructose, and Sorbitol Ingested at Low Doses Is Not Common in Normal Adults. Dig. Dis. Sci. 2000, 45, 2357–2362. [Google Scholar] [CrossRef] [PubMed]
- Jang, C.; Hui, S.; Lu, W.; Cowan, A.J.; Morscher, R.J.; Lee, G.; Liu, W.; Tesz, G.J.; Birnbaum, M.J.; Rabinowitz, J.D. The Small Intestine Converts Dietary Fructose into Glucose and Organic Acids. Cell Metab. 2018, 27, 351–361.e3. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.; Dong, H.; Chen, Z.; Jin, M.; Yin, J.; Li, H.; Shi, D.; Shao, Y.; Wang, H.; Chen, T.; et al. Intestinal Microbiota Mediates High-Fructose and High-Fat Diets to Induce Chronic Intestinal Inflammation. Front. Cell. Infect. Microbiol. 2021, 11, 654074. [Google Scholar] [CrossRef]
- Montrose, D.C.; Nishiguchi, R.; Basu, S.; Staab, H.A.; Zhou, X.K.; Wang, H.; Meng, L.; Johncilla, M.; Cubillos-Ruiz, J.R.; Morales, D.K.; et al. Dietary Fructose Alters the Composition, Localization, and Metabolism of Gut Microbiota in Association with Worsening Colitis. Cell. Mol. Gastroenterol. Hepatol. 2021, 11, 525–550. [Google Scholar] [CrossRef]
- Barone, S.; Fussell, S.L.; Singh, A.K.; Lucas, F.; Xu, J.; Kim, C.; Wu, X.; Yu, Y.; Amlal, H.; Seidler, U.; et al. Slc2a5 (Glut5) Is Essential for the Absorption of Fructose in the Intestine and Generation of Fructose-Induced Hypertension. J. Biol. Chem. 2009, 284, 5056–5066. [Google Scholar] [CrossRef]
- Kellet, G.L.; Helliwell, P.A. The Diffusive Component of Intestinal Glucose Absorption Is Mediated by the Glucose-Induced Recruitment of GLUT2 to the Brush-Border Membrane. Biochem. J. 2000, 350, 155–162. [Google Scholar] [CrossRef]
- Röder, P.V.; Geillinger, K.E.; Zietek, T.S.; Thorens, B.; Koepsell, H.; Daniel, H. The Role of SGLT1 and GLUT2 in Intestinal Glucose Transport and Sensing. PLoS ONE 2014, 9, e89977. [Google Scholar] [CrossRef]
- Jones, H.F.; Butler, R.N.; Brooks, D.A. Intestinal Fructose Transport and Malabsorption in Humans. Am. J. Physiol.-Gastrointest. Liver Physiol. 2011, 300, G202–G206. [Google Scholar] [CrossRef]
- Iizuka, K. Recent Progress on Fructose Metabolism—Chrebp, Fructolysis, and Polyol Pathway. Nutrients 2023, 15, 1778. [Google Scholar] [CrossRef]
- Iametti, S.; Bonomi, F.; Di Nunzio, M. Dietary Polyphenols and In Vitro Intestinal Fructose Uptake and Transport: A Systematic Literature Review. Int. J. Mol. Sci. 2022, 23, 14355. [Google Scholar] [CrossRef]
- Andrade, N.; Araújo, J.R.; Correia-Branco, A.; Carletti, J.V.; Martel, F. Effect of Dietary Polyphenols on Fructose Uptake by Human Intestinal Epithelial (Caco-2) Cells. J. Funct. Foods 2017, 36, 429–439. [Google Scholar] [CrossRef]
- Lee, Y.; Lim, Y.; Kwon, O. Selected Phytochemicals and Culinary Plant Extracts Inhibit Fructose Uptake in Caco-2 Cells. Molecules 2015, 20, 17393–17404. [Google Scholar] [CrossRef] [PubMed]
- Rumessen, J.J.; Gudmand-Høyer, E. Malabsorption of Fructose-Sorbitol Mixtures Interactions Causing Abdominal Distress. Scand. J. Gastroenterol. 1987, 22, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.K.; Tan, H.-L.; van Langenberg, D.R.; Barrett, J.S.; Rose, R.; Liels, K.; Gibson, P.R.; Muir, J.G. Dietary Sorbitol and Mannitol: Food Content and Distinct Absorption Patterns between Healthy Individuals and Patients with Irritable Bowel Syndrome. J. Hum. Nutr. Diet. 2014, 27, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Sia, T.; Tanaka, R.O.; Mousad, A.; Narayan, A.P.; Si, K.; Bacchus, L.; Ouerghi, H.; Patel, A.; Patel, A.; Cunningham, E.; et al. Fructose Malabsorption and Fructan Malabsorption Are Associated in Patients with Irritable Bowel Syndrome. BMC Gastroenterol. 2024, 24, 143. [Google Scholar] [CrossRef]
- Rizkalla, S.W. Health Implications of Fructose Consumption: A Review of Recent Data. Nutr. Metab. 2010, 7, 82. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Organization Guideline: Sugars Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Semchyshyn, H. Fructose-Mediated AGE-RAGE Axis: Approaches for Mild Modulation. Front. Nutr. 2024, 11, 1500375. [Google Scholar] [CrossRef] [PubMed]
- Livesey, G. Fructose Ingestion: Dose-Dependent Responses in Health Research. J. Nutr. 2009, 139, 1246S–1252S. [Google Scholar] [CrossRef] [PubMed]
- Do, M.H.; Lee, E.; Oh, M.J.; Kim, Y.; Park, H.Y. High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice without Body Weight Change. Nutrients 2018, 10, 761. [Google Scholar] [CrossRef]
- Watanabe, Y.; Fujisaka, S.; Ikeda, K.; Ishikawa, M.; Yamada, T.; Nawaz, A.; Kado, T.; Kuwano, T.; Nishimura, A.; Bilal, M.; et al. Gut Microbiota, Determined by Dietary Nutrients, Drive Modification of the Plasma Lipid Profile and Insulin Resistance. iScience 2021, 24, 102445. [Google Scholar] [CrossRef]
- Li, J.-M.; Yu, R.; Zhang, L.-P.; Wen, S.-Y.; Wang, S.-J.; Zhang, X.-Y.; Xu, Q.; Kong, L.-D. Dietary Fructose-Induced Gut Dysbiosis Promotes Mouse Hippocampal Neuroinflammation: A Benefit of Short-Chain Fatty Acids. Microbiome 2019, 7, 98. [Google Scholar] [CrossRef]
- Volynets, V.; Louis, S.; Pretz, D.; Lang, L.; Ostaff, M.J.; Wehkamp, J.; Bischoff, S.C. Intestinal Barrier Function and the Gut Microbiome Are Differentially Affected in Mice Fed a Western-Style Diet or Drinking Water Supplemented with Fructose. J. Nutr. 2017, 147, 770–780. [Google Scholar] [CrossRef]
- Di Luccia, B.; Crescenzo, R.; Mazzoli, A.; Cigliano, L.; Venditti, P.; Walser, J.-C.; Widmer, A.; Baccigalupi, L.; Ricca, E.; Iossa, S. Rescue of Fructose-Induced Metabolic Syndrome by Antibiotics or Faecal Transplantation in a Rat Model of Obesity. PLoS ONE 2015, 10, e0134893. [Google Scholar] [CrossRef]
- Beisner, J.; Gonzalez-Granda, A.; Basrai, M.; Damms-Machado, A.; Bischoff, S.C. Fructose-Induced Intestinal Microbiota Shift Following Two Types of Short-Term High-Fructose Dietary Phases. Nutrients 2020, 12, 3444. [Google Scholar] [CrossRef]
- Vasques-Monteiro, I.M.L.; Silva-Veiga, F.M.; Miranda, C.S.; de Andrade Gonçalves, É.C.B.; Daleprane, J.B.; Souza-Mello, V. A Rise in Proteobacteria Is an Indicator of Gut-Liver Axis-Mediated Nonalcoholic Fatty Liver Disease in High-Fructose-Fed Adult Mice. Nutr. Res. 2021, 91, 26–35. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, B.; Zhang, X.; Akbar, M.T.; Wu, T.; Zhang, Y.; Zhi, L.; Shen, Q. Exploration of the Muribaculaceae Family in the Gut Microbiota: Diversity, Metabolism, and Function. Nutrients 2024, 16, 2660. [Google Scholar] [CrossRef]
- Singh, S.B.; Carroll-Portillo, A.; Lin, H.C. Desulfovibrio in the Gut: The Enemy Within? Microorganisms 2023, 11, 1772. [Google Scholar] [CrossRef] [PubMed]
- Vacca, M.; Celano, G.; Calabrese, F.M.; Portincasa, P.; Gobbetti, M.; De Angelis, M. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms 2020, 8, 573. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, K.; Ma, X.; He, P. Clostridium Species as Probiotics: Potentials and Challenges. J. Anim. Sci. Biotechnol. 2020, 11, 24. [Google Scholar] [CrossRef]
- Hakansson, A.; Molin, G. Gut Microbiota and Inflammation. Nutrients 2011, 3, 637–682. [Google Scholar] [CrossRef]
- Gandy, K.A.O.; Zhang, J.; Nagarkatti, P.; Nagarkatti, M. The Role of Gut Microbiota in Shaping the Relapse-Remitting and Chronic-Progressive Forms of Multiple Sclerosis in Mouse Models. Sci. Rep. 2019, 9, 6923. [Google Scholar] [CrossRef] [PubMed]
- Belzer, C.; Gerber, G.K.; Roeselers, G.; Delaney, M.; DuBois, A.; Liu, Q.; Belavusava, V.; Yeliseyev, V.; Houseman, A.; Onderdonk, A.; et al. Dynamics of the Microbiota in Response to Host Infection. PLoS ONE 2014, 9, e95534. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gibson, G.R. Effects of the in Vitro Fermentation of Oligofructose and Inulin by Bacteria Growing in the Human Large Intestine. J. Appl. Bacteriol. 1993, 75, 373–380. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, L.; Wang, X.; Yi, Y.; Shan, Y.; Liu, B.; Zhou, Y.; Lü, X. Roles of Intestinal Parabacteroides in Human Health and Diseases. FEMS Microbiol. Lett. 2022, 369, fnac072. [Google Scholar] [CrossRef]
- Ubeda, C.; Bucci, V.; Caballero, S.; Djukovic, A.; Toussaint, N.C.; Equinda, M.; Lipuma, L.; Ling, L.; Gobourne, A.; No, D.; et al. Intestinal Microbiota Containing Barnesiella Species Cures Vancomycin-Resistant Enterococcus faecium Colonization. Infect. Immun. 2013, 81, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, D.; Cai, X.; Xing, X.; Shao, X.; Yin, A.; Zhao, Y.; Wang, M.; Fan, Y.; Liu, B.; et al. Gut Commensal Barnesiella intestinihominis Ameliorates Hyperglycemia and Liver Metabolic Disorders. Adv. Sci. 2024, 12, e2411181. [Google Scholar] [CrossRef]
- Schirmer, M.; Smeekens, S.P.; Vlamakis, H.; Jaeger, M.; Oosting, M.; Franzosa, E.A.; Horst, R.T.; Jansen, T.; Jacobs, L.; Bonder, M.J.; et al. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell 2016, 167, 1897. [Google Scholar] [CrossRef]
- Song, B.; He, J.; Pan, X.; Kong, L.; Xiao, C.; Keerqin, C.; Song, Z. Dietary Macleaya Cordata Extract Supplementation Improves the Growth Performance and Gut Health of Broiler Chickens with Necrotic Enteritis. J. Anim. Sci. Biotechnol. 2023, 14, 113. [Google Scholar] [CrossRef]
- Pryde, S.E.; Duncan, S.H.; Hold, G.L.; Stewart, C.S.; Flint, H.J. The Microbiology of Butyrate Formation in the Human Colon. FEMS Microbiol. Lett. 2002, 217, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Canani, R.B.; Di Costanzo, M.; Leone, L.; Pedata, M.; Meli, R.; Calignano, A. Potential Beneficial Effects of Butyrate in Intestinal and Extraintestinal Diseases. World J. Gastroenterol. WJG 2011, 17, 1519. [Google Scholar] [CrossRef] [PubMed]
- Alemán, J.O.; Henderson, W.A.; Walker, J.M.; Ronning, A.; Jones, D.R.; Walter, P.J.; Daniel, S.G.; Bittinger, K.; Vaughan, R.; MacArthur, R.; et al. Excess Dietary Fructose Does Not Alter Gut Microbiota or Permeability in Humans: A Pilot Randomized Controlled Study. J. Clin. Transl. Sci. 2021, 5, e143. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, W.; Huang, W.; Lin, Y.; Chan, F.K.; Ng, S.C. Gut Microbiota in Patients with Obesity and Metabolic Disorders—A Systematic Review. Genes. Nutr. 2022, 17, 2. [Google Scholar] [CrossRef]
- Zhang, X.; Grosfeld, A.; Williams, E.; Vasiliauskas, D.; Barretto, S.; Smith, L.; Mariadassou, M.; Philippe, C.; Devime, F.; Melchior, C.; et al. Fructose Malabsorption Induces Cholecystokinin Expression in the Ileum and Cecum by Changing Microbiota Composition and Metabolism. FASEB J. 2019, 33, 7126–7142. [Google Scholar] [CrossRef]
- Jang, J.; Hwang, S.; Oh, A.-R.; Park, S.; Yaseen, U.; Kim, J.G.; Park, S.; Jung, Y.; Cha, J.-Y. Correction to: Fructose Malabsorption in ChREBP-Deficient Mice Disrupts the Small Intestine Immune Microenvironment and Leads to Diarrhea-Dominant Bowel Habit Changes. Inflamm. Res. 2023, 72, 1325. [Google Scholar] [CrossRef]
- Gänzle, M.G.; Follador, R. Metabolism of Oligosaccharides and Starch in Lactobacilli: A Review. Front. Microbiol. 2012, 3, 33219. [Google Scholar] [CrossRef]
- Rehfeld, J.F. Cholecystokinin-From Local Gut Hormone to Ubiquitous Messenger. Front. Endocrinol. 2017, 8, 244840. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Iizuka, K.; Takao, K.; Horikawa, Y.; Kitamura, T.; Takeda, J. ChREBP-Knockout Mice Show Sucrose Intolerance and Fructose Malabsorption. Nutrients 2018, 10, 340. [Google Scholar] [CrossRef]
- Oh, A.R.; Sohn, S.; Lee, J.; Park, J.M.; Nam, K.T.; Hahm, K.B.; Kim, Y.B.; Lee, H.J.; Cha, J.Y. ChREBP Deficiency Leads to Diarrhea-Predominant Irritable Bowel Syndrome. Metabolism 2018, 85, 286–297. [Google Scholar] [CrossRef]
- Ledochowski, M.; Widner, B.; Murr, C.; Sperner-Unterweger, B.; Fuchs, D. Fructose Malabsorption Is Associated with Decreased Plasma Tryptophan. Scand. J. Gastroenterol. 2001, 36, 367–371. [Google Scholar] [CrossRef]
- Ledochowski, M.; Widner, B.; Bair, H.; Probst, T.; Fuchs, D. Fructose- and Sorbitol-Reduced Diet Improves Mood and Gastrointestinal Disturbances in Fructose Malabsorbers. Scand. J. Gastroenterol. 2000, 35, 1048–1052. [Google Scholar] [CrossRef]
- Hou, Y.; Li, J.; Ying, S. Tryptophan Metabolism and Gut Microbiota: A Novel Regulatory Axis Integrating the Microbiome, Immunity, and Cancer. Metabolites 2023, 13, 1166. [Google Scholar] [CrossRef]
- Lukić, I.; Ivković, S.; Mitić, M.; Adžić, M. Tryptophan Metabolites in Depression: Modulation by Gut Microbiota. Front. Behav. Neurosci. 2022, 16, 987697. [Google Scholar] [CrossRef] [PubMed]
- DeChristopher, L.R.; Tucker, K.L. Excess Free Fructose, Apple Juice, High Fructose Corn Syrup and Childhood Asthma Risk—The National Children’s Study. Nutr. J. 2020, 19, 60. [Google Scholar] [CrossRef] [PubMed]
- DeChristopher, L.R. 40 Years of Adding More Fructose to High Fructose Corn Syrup than Is Safe, through the Lens of Malabsorption and Altered Gut Health–Gateways to Chronic Disease. Nutr. J. 2024, 23, 16. [Google Scholar] [CrossRef]
- Phuong-Nguyen, K.; McNeill, B.A.; Aston-Mourney, K.; Rivera, L.R. Advanced Glycation End-Products and Their Effects on Gut Health. Nutrients 2023, 15, 405. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Hu, H.; Ju, Y.; Liu, J.; Wang, M.; Liu, B.; Zhang, Y. Gut Microbiota-Derived Short-Chain Fatty Acids and Depression: Deep Insight into Biological Mechanisms and Potential Applications. Gen. Psychiatr. 2024, 37, e101374. [Google Scholar] [CrossRef]
- Tang, C.-F.; Wang, C.-Y.; Wang, J.-H.; Wang, Q.-N.; Li, S.-J.; Wang, H.-O.; Zhou, F.; Li, J.-M. Short-Chain Fatty Acids Ameliorate Depressive-like Behaviors of High Fructose-Fed Mice by Rescuing Hippocampal Neurogenesis Decline and Blood–Brain Barrier Damage. Nutrients 2022, 14, 1882. [Google Scholar] [CrossRef]
- Kawabata, K.; Kanmura, S.; Morinaga, Y.; Tanaka, A.; Makino, T.; Fujita, T.; Arima, S.; Sasaki, F.; Nasu, Y.; Tanoue, S.; et al. A High-fructose Diet Induces Epithelial Barrier Dysfunction and Exacerbates the Severity of Dextran Sulfate Sodium-induced Colitis. Int. J. Mol. Med. 2018, 43, 1487–1496. [Google Scholar] [CrossRef]
- Nier, A.; Brandt, A.; Rajcic, D.; Bruns, T.; Bergheim, I. Short-Term Isocaloric Intake of a Fructose- but Not Glucose-Rich Diet Affects Bacterial Endotoxin Concentrations and Markers of Metabolic Health in Normal Weight Healthy Subjects. Mol. Nutr. Food Res. 2019, 63, e1800868. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, X.; Huangfu, B.; Hu, Y.; Xu, J.; Gao, R.; Huang, K.; He, X. Sulforaphane Ameliorates Nonalcoholic Fatty Liver Disease Induced by High-Fat and High-Fructose Diet via LPS/TLR4 in the Gut–Liver Axis. Nutrients 2023, 15, 743. [Google Scholar] [CrossRef]
- Yin, R.; Zhang, K.; Li, Y.; Tang, Z.; Zheng, R.; Ma, Y.; Chen, Z.; Lei, N.; Xiong, L.; Guo, P.; et al. Lipopolysaccharide-Induced Depression-like Model in Mice: Meta-Analysis and Systematic Evaluation. Front. Immunol. 2023, 14, 1181973. [Google Scholar] [CrossRef] [PubMed]
- Spruss, A.; Bergheim, I. Dietary Fructose and Intestinal Barrier: Potential Risk Factor in the Pathogenesis of Nonalcoholic Fatty Liver Disease. J. Nutr. Biochem. 2009, 20, 657–662. [Google Scholar] [CrossRef]
- Lee, Y.J. Irritable Bowel Syndrome: Emerging Paradigm in Pathophysiology. World J. Gastroenterol. 2014, 20, 2456. [Google Scholar] [CrossRef] [PubMed]
- Melchior, C.; Gourcerol, G.; Déchelotte, P.; Leroi, A.-M.; Ducrotté, P. Symptomatic Fructose Malabsorption in Irritable Bowel Syndrome: A Prospective Study. United Eur. Gastroenterol. J. 2014, 2, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Goebel-Stengel, M.; Stengel, A.; Schmidtmann, M.; van der Voort, I.; Kobelt, P.; Mönnikes, H. Unclear Abdominal Discomfort: Pivotal Role of Carbohydrate Malabsorption. J. Neurogastroenterol. Motil. 2014, 20, 228–235. [Google Scholar] [CrossRef]
- Sharma, A.; Srivastava, D.; Verma, A.; Misra, A.; Ghoshal, U.C. Fructose Malabsorption Is Not Uncommon among Patients with Irritable Bowel Syndrome in India: A Case–Control Study. Indian J. Gastroenterol. 2014, 33, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.K.; Kraft, N.; Zimmerman, B.; Jackson, M.; Rao, S.S.C. Fructose Intolerance in IBS and Utility of Fructose-Restricted Diet. J. Clin. Gastroenterol. 2008, 42, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Katsagoni, C.N.; Karagianni, V.-M.; Papadopoulou, A. Efficacy of Different Dietary Patterns in the Treatment of Functional Gastrointestinal Disorders in Children and Adolescents: A Systematic Review of Intervention Studies. Nutrients 2023, 15, 2708. [Google Scholar] [CrossRef]
- De Roest, R.H.; Dobbs, B.R.; Chapman, B.A.; Batman, B.; O’Brien, L.A.; Leeper, J.A.; Hebblethwaite, C.R.; Gearry, R.B. The Low FODMAP Diet Improves Gastrointestinal Symptoms in Patients with Irritable Bowel Syndrome: A Prospective Study. Int. J. Clin. Pract. 2013, 67, 895–903. [Google Scholar] [CrossRef]
- Kortlever, T.L.; Ten Bokkel Huinink, S.; Offereins, M.; Hebblethwaite, C.; O’Brien, L.; Leeper, J.; Mulder, C.J.J.; Barrett, J.S.; Gearry, R.B. Low-FODMAP Diet Is Associated with Improved Quality of Life in IBS Patients—A Prospective Observational Study. Nutr. Clin. Pract. 2019, 34, 623–630. [Google Scholar] [CrossRef]
- Cuff, C.; Lin, L.D.; Mahurkar-Joshi, S.; Jacobs, J.P.; Lagishetty, V.; Jaffe, N.; Smith, J.; Dong, T.; Sohn, J.; Chang, L. Randomized Controlled Pilot Study Assessing Fructose Tolerance during Fructose Reintroduction in Non-constipated Irritable Bowel Syndrome Patients Successfully Treated with a Low FODMAP Diet. Neurogastroenterol. Motil. 2023, 35, e14575. [Google Scholar] [CrossRef]
- Bertin, L.; Zanconato, M.; Crepaldi, M.; Marasco, G.; Cremon, C.; Barbara, G.; Barberio, B.; Zingone, F.; Savarino, E.V. The Role of the FODMAP Diet in IBS. Nutrients 2024, 16, 370. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, J.; Li, Y.; Xu, T.; Quan, G.; Xu, P.; Yang, X.; Liu, Z.; Xie, W. Therapeutic Efficacy of Fecal Microbiota Transplantation in Severe Food Intolerance: A Case Report. Front. Nutr. 2025, 12, 1594022. [Google Scholar] [CrossRef]
- Komericki, P.; Akkilic-Materna, M.; Strimitzer, T.; Weyermair, K.; Hammer, H.F.; Aberer, W. Oral Xylose Isomerase Decreases Breath Hydrogen Excretion and Improves Gastrointestinal Symptoms in Fructose Malabsorption—A Double-blind, Placebo-controlled Study. Aliment. Pharmacol. Ther. 2012, 36, 980–987. [Google Scholar] [CrossRef] [PubMed]

| Study | Intervention | Fructose Content | Gut Microbiota Effects 1 |
|---|---|---|---|
| Do et al., 2018 [47] | 12-week intervention; mice | 65% of calories from glucose or fructose and sucrose | ↑ Desulfovibrio vulgaris (Proteobacteria) ↓ Muribaculum intestinale (Bacteroidetes) |
| Watanabe et al., 2021 [48] | 12-week intervention; mice | 72% of the energy from fructose | ↑ Desulfovibrionaceae (Proteobacteria), ↑ Lachnospiraceae, Coprococcus, Ruminococcus (Firmicutes), ↑ Deferribacteraceae (Deferribacterota) ↓ Parabacteroides (Bacteroidetes) |
| Li et al., 2019 [49] | 8-week intervention; mice | 35% of energy from fructose | ↑ Proteobacteria ↑ Deferribacteraceae (Mucispirillum) ↑ Helicobacteraceae (Helicobacter) ↓ Bacteroidetes |
| Volynets et al., 2017 [50] | 12-weeks; mice; Western-style diet + tap water or fructose supplemented water | Water 30% fructose | ↓ Parabacteroides, Barnesiella (Bacteroidetes) |
| Di Luccia et al., 2015 [51] | 8-week intervention; rats | 20% of energy from fructose | ↑ Coprococcus, Roseburia, Ruminococcus, Coprobacillus (Firmicutes) ↑ Coriobacteriaceae (Actinobacteria) ↓ Bacteroides (Bacteroidetes) ↓ Lactobacillus, Clostridium, and rc4-4 (Firmicutes) |
| Beisner et al., 2020 [52] | 4-week intervention; humans; n = 12 Week 1: low-fructose diet Week 2: Fruits and vegetables diet Week 3: low-fructose diet Week 4: High-fructose corn syrup diet | Week 1: 10 g fructose/day Week 2: 100 g fructose/day Week 3: 10 g fructose/day Week 4: 100 g high-fructose syrup diet/day | ↑ Faecalibacterium, ↑ Anaerostipes, ↓ Barnesiella, ↓ Parabacteroides ↓ Ruminococcus, ↓ Faecalibacterium, ↓ Erysipelatoclostridium, ↑ Barnesiella |
| Study | Description | Gut Microbiota Effects 1 |
|---|---|---|
| Zhang et al. [71] | ketohexokinase mutant (KHK)−/− and wild-type mice were fed an isocaloric diet containing an additional 20% fructose for 8 weeks | ↓ Desulfovibrionaceae ↑ Coriobacteriaceae, Corynebacteriaceae, Bacteroidales, Lactobacillaceae |
| Jang et al. [72] | Chrebp-KO mice fed either a control diet or a high-fructose diet with 60% fructose for 3 days | ↓ Bacteroidetes, ↓ Gamma/delta Proteobacteria ↑ Actinobacteria, ↑ Betaproteobacteria, ↑ Deferribacteres |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simões, C.D.; Sousa, A.S.; Fernandes, S.; Sarmento, A. Fructose Malabsorption, Gut Microbiota and Clinical Consequences: A Narrative Review of the Current Evidence. Life 2025, 15, 1720. https://doi.org/10.3390/life15111720
Simões CD, Sousa AS, Fernandes S, Sarmento A. Fructose Malabsorption, Gut Microbiota and Clinical Consequences: A Narrative Review of the Current Evidence. Life. 2025; 15(11):1720. https://doi.org/10.3390/life15111720
Chicago/Turabian StyleSimões, Catarina D., Ana Sofia Sousa, Sofia Fernandes, and Amélia Sarmento. 2025. "Fructose Malabsorption, Gut Microbiota and Clinical Consequences: A Narrative Review of the Current Evidence" Life 15, no. 11: 1720. https://doi.org/10.3390/life15111720
APA StyleSimões, C. D., Sousa, A. S., Fernandes, S., & Sarmento, A. (2025). Fructose Malabsorption, Gut Microbiota and Clinical Consequences: A Narrative Review of the Current Evidence. Life, 15(11), 1720. https://doi.org/10.3390/life15111720

