Crosstalk Between Metabolic Dysfunction-Associated Steatotic Liver Disease and Atrial Fibrillation: Shared Mechanism, Diagnostic Integration, and Management Implications
Abstract
1. Introduction
2. Epidemiological Data on Coexistence of MASLD and AF
2.1. Risk of AF Development in MASLD-Affected Individuals
2.2. Controversies and Evidence Appraisal
3. Pathophysiological Mechanisms Contributing to Development and Progression of MASLD and AF
3.1. Inflammatory and Oxidative-Stress Pathways
3.2. Adipose Tissue and Epicardial Fat Signaling
3.3. Fibrosis and Structural Remodeling (Atrial Cardiomiopathy)
3.4. Genetic and Molecular Mediators
4. Diagnostic Measures for Detection of MASLD and AF
5. Potential Therapeutic Strategies Targeting MASLD and Atrial Fibrillation
5.1. Interventions Affecting Lifestyle and Body Weight
5.2. Pharmacotherapeutic Options—Where Are We Today?
5.2.1. GLP-1 Agonists
5.2.2. PPAR Agonists—Thiazolidinediones
5.2.3. Statins
5.2.4. SGLT-2 Inhibitors
5.2.5. Anticoagulants
5.2.6. Resmetirom
5.3. Steatosis Due to Amiodarone or Other Antiarrhythmic Drugs
6. Nutraceuticals’ Role in Prevention and Treatment of MASLD and AF
6.1. Omega-3 Polyunsaturated Fatty Acids
6.2. Vitamin E
6.3. Polyphenols
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chan, W.-K.; Chuah, K.-H.; Rajaram, R.B.; Lim, L.-L.; Ratnasingam, J.; Vethakkan, S.R. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. J. Obes. Metab. Syndr. 2023, 32, 197–213. [Google Scholar] [CrossRef]
- EASL; EASD; EASO. EASL-EASD-EASO Clinical Practice Guidelines on the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Obes. Facts 2024, 17, 374–444. [Google Scholar] [CrossRef]
- Targher, G.; Byrne, C.D.; Tilg, H. MASLD: A systemic metabolic disorder with cardiovascular and malignant complications. Gut 2024, 73, 691–702. [Google Scholar] [CrossRef]
- Quek, J.; Chan, K.E.; Wong, Z.Y.; Tan, C.; Tan, B.; Lim, W.H.; Tan, D.J.H.; Tang, A.S.P.; Tay, P.; Xiao, J.; et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2023, 8, 20–30. [Google Scholar] [CrossRef]
- Frankowski, R.; Kobierecki, M.; Wittczak, A.; Różycka-Kosmalska, M.; Pietras, T.; Sipowicz, K.; Kosmalski, M. Type 2 Diabetes Mellitus, Non-Alcoholic Fatty Liver Disease, and Metabolic Repercussions: The Vicious Cycle and Its Interplay with Inflammation. Int. J. Mol. Sci. 2023, 24, 9677. [Google Scholar] [CrossRef]
- Li, Y.; Yang, P.; Ye, J.; Xu, Q.; Wu, J.; Wang, Y. Updated mechanisms of MASLD pathogenesis. Lipids Health Dis. 2024, 23, 117. [Google Scholar] [CrossRef] [PubMed]
- Syed-Abdul, M.M. Lipid Metabolism in Metabolic-Associated Steatotic Liver Disease (MASLD). Metabolites 2023, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Hagström, H.; Shang, Y.; Hegmar, H.; Nasr, P. Natural history and progression of metabolic dysfunction-associated steatotic liver disease. Lancet Gastroenterol. Hepatol. 2024, 9, 944–956. [Google Scholar] [CrossRef]
- Lekakis, V.; Papatheodoridis, G.V. Natural history of metabolic dysfunction-associated steatotic liver disease. Eur. J. Intern. Med. 2024, 122, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-H.; Lee, H.A.; Kim, E.-J.; Kim, H.Y.; Kim, H.C.; Ahn, S.H.; Lee, H.; Kim, S.U. Metabolic dysfunction-associated steatotic liver disease and risk of cardiovascular disease. Gut 2024, 73, 533–540. [Google Scholar] [CrossRef]
- Bharaj, I.S.; Brar, A.S.; Kahlon, J.; Singh, A.; Hotwani, P.; Kumar, V.; Sohal, A.; Batta, A. Metabolic-dysfunction associated steatotic liver disease and atrial fibrillation: A review of pathogenesis. World J. Cardiol. 2025, 17, 106147. [Google Scholar] [CrossRef] [PubMed]
- Mellemkjær, A.; Kjær, M.B.; Haldrup, D.; Grønbæk, H.; Thomsen, K.L. Management of cardiovascular risk in patients with metabolic dysfunction-associated steatotic liver disease. Eur. J. Intern. Med. 2024, 122, 28–34. [Google Scholar] [CrossRef]
- Kwak, M.; Kim, H.; Jiang, Z.G.; Yeo, Y.H.; Trivedi, H.D.; Noureddin, M.; Yang, J.D. MASLD/MetALD and mortality in individuals with any cardio-metabolic risk factor: A population-based study with 26.7 years of follow-up. Hepatology 2025, 81, 228–237. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M.; Wang, T.J.; Leip, E.P.; Larson, M.G.; Levy, D.; Vasan, R.S.; D’Agostino, R.B.; Massaro, J.M.; Beiser, A.; Wolf, P.A.; et al. Lifetime Risk for Development of Atrial Fibrillation. Circulation 2004, 110, 1042–1046. [Google Scholar] [CrossRef] [PubMed]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation. J. Am. Coll. Cardiol. 2024, 83, 109–279. [Google Scholar] [CrossRef] [PubMed]
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef]
- Kang, M.K.; Park, J.G.; Kim, M.C. Association between Atrial Fibrillation and Advanced Liver Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease. Yonsei Med. J. 2020, 61, 860. [Google Scholar] [CrossRef]
- Wong, V.W.-S.; Ekstedt, M.; Wong, G.L.-H.; Hagström, H. Changing epidemiology, global trends and implications for outcomes of NAFLD. J. Hepatol. 2023, 79, 842–852. [Google Scholar] [CrossRef]
- Tang, Y.; Fan, J.; Hou, X.; Wu, H.; Zhang, J.; Wu, J.; Wang, Y.; Zhang, Z.; Lu, B.; Zheng, J. Metabolic dysfunction-associated steatotic liver disease and increased risk of atrial fibrillation in the elderly: A longitudinal cohort study. IJC Heart Vasc. 2025, 58, 101676. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef]
- Ryu, H.; Lee, S.-R.; Choi, E.-K.; Go, Y.-H.; Lee, K.-Y.; Choi, J.; Han, S.; Kim, J.-H.; Ahn, H.-J.; Kwon, S.; et al. Impact of steatotic liver diseases on diabetes mellitus risk in patients with atrial fibrillation: A nationwide population study. Cardiovasc. Diabetol. 2025, 24, 242. [Google Scholar] [CrossRef]
- Elliott, A.D.; Middeldorp, M.E.; Van Gelder, I.C.; Albert, C.M.; Sanders, P. Epidemiology and modifiable risk factors for atrial fibrillation. Nat. Rev. Cardiol. 2023, 20, 404–417. [Google Scholar] [CrossRef]
- Pastori, D.; Sciacqua, A.; Marcucci, R.; Farcomeni, A.; Perticone, F.; Del Ben, M.; Angelico, F.; Baratta, F.; Pignatelli, P.; Violi, F.; et al. Prevalence and Impact of Nonalcoholic Fatty Liver Disease in Atrial Fibrillation. Mayo Clin. Proc. 2020, 95, 513–520. [Google Scholar] [CrossRef]
- Riley, D.R.; Hydes, T.; Hernadez, G.; Zhao, S.S.; Alam, U.; Cuthbertson, D.J. The synergistic impact of type 2 diabetes and MASLD on cardiovascular, liver, diabetes-related and cancer outcomes. Liver Int. 2024, 44, 2538–2550. [Google Scholar] [CrossRef]
- Simon, T.G.; Ebrahimi, F.; Roelstraete, B.; Hagström, H.; Sundström, J.; Ludvigsson, J.F. Incident cardiac arrhythmias associated with metabolic dysfunction-associated steatotic liver disease: A nationwide histology cohort study. Cardiovasc. Diabetol. 2023, 22, 343. [Google Scholar] [CrossRef]
- Brunner, K.T.; Henneberg, C.J.; Wilechansky, R.M.; Long, M.T. Nonalcoholic Fatty Liver Disease and Obesity Treatment. Curr. Obes. Rep. 2019, 8, 220–228. [Google Scholar] [CrossRef]
- Kim, M.; Son, M.; Moon, S.Y.; Baek, Y.H. Metabolic Dysfunction–Associated Steatotic Liver Disease, Alcohol Consumption, and the Risk of Atrial Fibrillation: A Nationwide Population-Based Study. J. Am. Heart Assoc. 2025, 14, e042003. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.H.; Kim, G.; Lee, K.; Oh, R.; Kim, J.Y.; Jang, M.; Lee, Y.-B.; Jin, S.-M.; Hur, K.Y.; Han, K.; et al. Impact of steatotic liver disease categories on atrial fibrillation in type 2 diabetes: A nationwide study. Sci. Rep. 2025, 15, 11430. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Chonchol, M.; Pichiri, I.; Zoppini, G. Risk of cardiovascular disease and chronic kidney disease in diabetic patients with non-alcoholic fatty liver disease: Just a coincidence? J. Endocrinol. Investig. 2011, 34, 544–551. [Google Scholar]
- Jaiswal, V.; Ang, S.P.; Huang, H.; Momi, N.K.; Hameed, M.; Naz, S.; Batra, N.; Ishak, A.; Doshi, N.; Gera, A.; et al. Association between nonalcoholic fatty liver disease and atrial fibrillation and other clinical outcomes: A meta-analysis. J. Investig. Med. 2023, 71, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Morandin, R.; Sani, E.; Fiorio, V.; Shtembari, E.; Bonapace, S.; Petta, S.; Polyzos, S.A.; Byrne, C.D.; Targher, G. MASLD Is Associated With an Increased Long-Term Risk of Atrial Fibrillation: An Updated Systematic Review and Meta-Analysis. Liver Int. 2025, 45, e16218. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Z.; Wei, B.; Zhang, R.; Zhang, X.; Xu, W. Metabolic dysfunction associated steatotic liver disease is associated with atrial fibrillation recurrence following cryoballoon ablation. Sci. Rep. 2025, 15, 6287. [Google Scholar] [CrossRef]
- Moon, J.H.; Jeong, S.; Jang, H.; Koo, B.K.; Kim, W. Metabolic dysfunction-associated steatotic liver disease increases the risk of incident cardiovascular disease: A nationwide cohort study. eClinicalMedicine 2023, 65, 102292. [Google Scholar] [CrossRef]
- Anstee, Q.M.; Mantovani, A.; Tilg, H.; Targher, G. Risk of cardiomyopathy and cardiac arrhythmias in patients with nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 425–439. [Google Scholar] [CrossRef]
- Miller, J.D.; Aronis, K.N.; Chrispin, J.; Patil, K.D.; Marine, J.E.; Martin, S.S.; Blaha, M.J.; Blumenthal, R.S.; Calkins, H. Obesity, Exercise, Obstructive Sleep Apnea, and Modifiable Atherosclerotic Cardiovascular Disease Risk Factors in Atrial Fibrillation. J. Am. Coll. Cardiol. 2015, 66, 2899–2906. [Google Scholar] [CrossRef]
- Knezović, E.; Hefer, M.; Blažanović, S.; Petrović, A.; Tomičić, V.; Srb, N.; Kirner, D.; Smolić, R.; Smolić, M. Drug Pipeline for MASLD: What Can Be Learned from the Successful Story of Resmetirom. Curr. Issues Mol. Biol. 2025, 47, 154. [Google Scholar] [CrossRef]
- Cheung, J.; Cheung, B.M.-Y.; Yiu, K.-H.; Tse, H.-F.; Chan, Y.-H. Role of metabolic dysfunction-associated fatty liver disease in atrial fibrillation and heart failure: Molecular and clinical aspects. Front. Cardiovasc. Med. 2025, 12, 1573841. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, V.A.; Gheorghe, G.; Bacalbasa, N.; Diaconu, C.C. Metabolic Dysfunction-Associated Steatotic Liver Disease: Pathogenetic Links to Cardiovascular Risk. Biomolecules 2025, 15, 163. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Dauriz, M.; Sandri, D.; Bonapace, S.; Zoppini, G.; Tilg, H.; Byrne, C.D.; Targher, G. Association between non-alcoholic fatty liver disease and risk of atrial fibrillation in adult individuals: An updated meta-analysis. Liver Int. 2019, 39, 758–769. [Google Scholar] [CrossRef]
- Svobodová, G.; Horní, M.; Velecká, E.; Boušová, I. Metabolic dysfunction-associated steatotic liver disease-induced changes in the antioxidant system: A review. Arch. Toxicol. 2025, 99, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhao, J.; Xie, K.; Tang, C.; Gan, C.; Gao, J. MASLD development: From molecular pathogenesis toward therapeutic strategies. Chin. Med. J. 2025, 138, 1807–1824. [Google Scholar] [CrossRef]
- Lv, X.; Nie, C.; Shi, Y.; Qiao, Q.; Gao, J.; Zou, Y.; Yang, J.; Chen, L.; Hou, X. Ergothioneine ameliorates metabolic dysfunction-Associated Steatotic Liver Disease (MASLD) by enhancing autophagy, inhibiting oxidative damage and inflammation. Lipids Health Dis. 2024, 23, 395. [Google Scholar] [CrossRef]
- Qiu, X.; Shen, S.; Jiang, N.; Feng, Y.; Yang, G.; Lu, D. Associations between systemic inflammatory biomarkers and metabolic dysfunction associated steatotic liver disease: A cross-sectional study of NHANES 2017–2020. BMC Gastroenterol. 2025, 25, 42. [Google Scholar] [CrossRef]
- Cho, E.J.; Chung, G.E.; Yoo, J.-J.; Cho, Y.; Lee, K.N.; Shin, D.W.; Kim, Y.J.; Yoon, J.-H.; Han, K.; Yu, S.J. Association of nonalcoholic fatty liver disease with new-onset atrial fibrillation stratified by age groups. Cardiovasc. Diabetol. 2024, 23, 340. [Google Scholar] [CrossRef] [PubMed]
- Pfenniger, A.; Yoo, S.; Arora, R. Oxidative stress and atrial fibrillation. J. Mol. Cell. Cardiol. 2024, 196, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Sterling, K.; Wang, Z.; Zhang, Y.; Song, W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct. Target. Ther. 2024, 9, 10. [Google Scholar] [CrossRef]
- Xing, Y.; Yan, L.; Li, X.; Xu, Z.; Wu, X.; Gao, H.; Chen, Y.; Ma, X.; Liu, J.; Zhang, J. The relationship between atrial fibrillation and NLRP3 inflammasome: A gut microbiota perspective. Front. Immunol. 2023, 14, 1273524. [Google Scholar] [CrossRef] [PubMed]
- Sandireddy, R.; Sakthivel, S.; Gupta, P.; Behari, J.; Tripathi, M.; Singh, B.K. Systemic impacts of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH) on heart, muscle, and kidney related diseases. Front. Cell Dev. Biol. 2024, 12, 1433857. [Google Scholar] [CrossRef]
- Duan, F.; Wu, J.; Chang, J.; Peng, H.; Liu, Z.; Liu, P.; Han, X.; Sun, T.; Shang, D.; Yang, Y.; et al. Deciphering endocrine function of adipose tissue and its significant influences in obesity-related diseases caused by its dysfunction. Differentiation 2025, 141, 100832. [Google Scholar] [CrossRef]
- Hemat Jouy, S.; Mohan, S.; Scichilone, G.; Mostafa, A.; Mahmoud, A.M. Adipokines in the Crosstalk between Adipose Tissues and Other Organs: Implications in Cardiometabolic Diseases. Biomedicines 2024, 12, 2129. [Google Scholar] [CrossRef]
- Francisco, V.; Sanz, M.J.; Real, J.T.; Marques, P.; Capuozzo, M.; Ait Eldjoudi, D.; Gualillo, O. Adipokines in Non-Alcoholic Fatty Liver Disease: Are We on the Road toward New Biomarkers and Therapeutic Targets? Biology 2022, 11, 1237. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Wang, H.; Hu, J.; Liu, Z.; Hu, F. The role of novel adipokines and adipose-derived extracellular vesicles (ADEVs): Connections and interactions in liver diseases. Biochem. Pharmacol. 2024, 222, 116104. [Google Scholar] [CrossRef]
- Driessen, S.; Francque, S.M.; Anker, S.D.; Castro Cabezas, M.; Grobbee, D.E.; Tushuizen, M.E.; Holleboom, A.G. Metabolic dysfunction-associated steatotic liver disease and the heart. Hepatology 2025, 82, 487–503. [Google Scholar] [CrossRef]
- Godoy-Matos, A.F.; Valério, C.M.; Júnior, W.S.S.; de Araujo-Neto, J.M.; Sposito, A.C.; Suassuna, J.H.R. CARDIAL-MS (CArdio-Renal-DIAbetes-Liver-Metabolic Syndrome): A new proposition for an integrated multisystem metabolic disease. Diabetol. Metab. Syndr. 2025, 17, 218. [Google Scholar] [CrossRef] [PubMed]
- Meulendijks, E.R.; Janssen-Telders, C.; Hulsman, E.L.; Lobe, N.; Zappala, P.; Terpstra, M.M.; Wesselink, R.; de Vries, T.A.C.; Al-Shama, R.F.; van Veen, R.N.; et al. The change of epicardial adipose tissue characteristics and vulnerability for atrial fibrillation upon drastic weight loss. Adipocyte 2024, 13, 2395565. [Google Scholar] [CrossRef]
- Teixeira, B.L.; Cunha, P.S.; Jacinto, A.S.; Portugal, G.; Laranjo, S.; Valente, B.; Lousinha, A.; Cruz, M.C.; Delgado, A.S.; Brás, M.; et al. Epicardial adipose tissue volume assessed by cardiac CT as a predictor of atrial fibrillation recurrence following catheter ablation. Clin. Imaging 2024, 110, 110170. [Google Scholar] [CrossRef]
- Patel, K.H.K.; Hwang, T.; Se Liebers, C.; Ng, F.S. Epicardial adipose tissue as a mediator of cardiac arrhythmias. Am. J. Physiol.-Heart Circ. Physiol. 2022, 322, H129–H144. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, M.; Bai, L.; Zhao, J.; Gao, H.; Bai, M. Recent Advances in Inflammation-Associated Epicardial Adipose Tissue for Atrial Fibrillation Patients. Rev. Cardiovasc. Med. 2025, 26, 36598. [Google Scholar] [CrossRef]
- Mayorca-Guiliani, A.E.; Leeming, D.J.; Henriksen, K.; Mortensen, J.H.; Nielsen, S.H.; Anstee, Q.M.; Sanyal, A.J.; Karsdal, M.A.; Schuppan, D. ECM formation and degradation during fibrosis, repair, and regeneration. npj Metab. Health Dis. 2025, 3, 25. [Google Scholar] [CrossRef]
- van Riet, S.; Julien, A.; Atanasov, A.; Nordling, Å.; Ingelman-Sundberg, M. The role of sinusoidal endothelial cells and TIMP1 in the regulation of fibrosis in a novel human liver 3D NASH model. Hepatol. Commun. 2024, 8, e0374. [Google Scholar] [CrossRef]
- Lai, J.C.-T.; Liang, L.Y.; Wong, G.L.-H. Noninvasive tests for liver fibrosis in 2024: Are there different scales for different diseases? Gastroenterol. Rep. 2023, 12, goae024. [Google Scholar] [CrossRef]
- Kram, M. Galectin-3 inhibition as a potential therapeutic target in non-alcoholic steatohepatitis liver fibrosis. World J. Hepatol. 2023, 15, 201–207. [Google Scholar] [CrossRef]
- Karakasis, P.; Theofilis, P.; Vlachakis, P.K.; Korantzopoulos, P.; Patoulias, D.; Antoniadis, A.P.; Fragakis, N. Atrial Fibrosis in Atrial Fibrillation: Mechanistic Insights, Diagnostic Challenges, and Emerging Therapeutic Targets. Int. J. Mol. Sci. 2024, 26, 209. [Google Scholar] [CrossRef] [PubMed]
- Boeckmans, J.; Michel, M.; Gieswinkel, A.; Tüscher, O.; Konstantinides, S.V.; König, J.; Münzel, T.; Lackner, K.J.; Kerahrodi, J.G.; Schuster, A.K.; et al. Inflammation in liver fibrosis and atrial fibrillation: A prospective population-based proteomic study. JHEP Rep. 2024, 6, 101171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liang, H.; Liu, J.; Huang, Z.; Shi, X.; Zhu, Y. The association between inflammatory, metabolic, and hepatic fibrosis-related biomarkers and atrial fibrillation in older patients with metabolic dysfunction-associated steatotic liver disease. BMC Geriatr. 2025, 25, 459. [Google Scholar] [CrossRef] [PubMed]
- Sveinbjornsson, G.; Ulfarsson, M.O.; Thorolfsdottir, R.B.; Jonsson, B.A.; Einarsson, E.; Gunnlaugsson, G.; Rognvaldsson, S.; Arnar, D.O.; Baldvinsson, M.; Bjarnason, R.G.; et al. Multiomics study of nonalcoholic fatty liver disease. Nat. Genet. 2022, 54, 1652–1663. [Google Scholar] [CrossRef]
- Amangurbanova, M.; Huang, D.Q.; Loomba, R. Review article: The role of HSD17B13 on global epidemiology, natural history, pathogenesis and treatment of NAFLD. Aliment. Pharmacol. Ther. 2023, 57, 37–51. [Google Scholar] [CrossRef]
- Ajmera, V.; Loomba, R. Advances in the genetics of nonalcoholic fatty liver disease. Curr. Opin. Gastroenterol. 2023, 39, 150–155. [Google Scholar] [CrossRef]
- Sun, L.; Yue, Z.; Wang, L. Research on the function of epigenetic regulation in the inflammation of non-alcoholic fatty liver disease. Life Med. 2024, 3, lnae030. [Google Scholar] [CrossRef]
- Aghaei, S.M.; Hosseini, S.M. Inflammation-related miRNAs in obesity, CVD, and NAFLD. Cytokine 2024, 182, 156724. [Google Scholar] [CrossRef] [PubMed]
- Vad, O.B.; Monfort, L.M.; Paludan-Müller, C.; Kahnert, K.; Diederichsen, S.Z.; Andreasen, L.; Lotta, L.A.; Nielsen, J.B.; Lundby, A.; Svendsen, J.H.; et al. Rare and Common Genetic Variation Underlying Atrial Fibrillation Risk. JAMA Cardiol. 2024, 9, 732. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Su, X.; He, J.; Gu, Y.; Chen, M.; Wei, Y.; Yi, Y.; Chen, P.; Lin, X.; Li, T.; et al. A Mendelian randomization study reveals a causal association between NASH and the risk of atrial fibrillation. Front. Endocrinol. 2025, 16, 1390259. [Google Scholar] [CrossRef] [PubMed]
- Clayton-Chubb, D.; Roberts, S.K.; Majeed, A.; Woods, R.L.; Tonkin, A.M.; Nelson, M.R.; Chan, A.T.; Ryan, J.; Tran, C.; Hodge, A.; et al. Associations between MASLD, atrial fibrillation, cardiovascular events, mortality and aspirin use in older adults. GeroScience 2024, 47, 1303–1318. [Google Scholar] [CrossRef]
- Attenberger, U.I.; Morelli, J.; Budjan, J.; Henzler, T.; Sourbron, S.; Bock, M.; Riffel, P.; Hernando, D.; Ong, M.M.; Schoenberg, S.O. Fifty Years of Technological Innovation. Investig. Radiol. 2015, 50, 584–593. [Google Scholar] [CrossRef]
- Kosmalski, M.; Mokros, Ł. Non-Alcoholic Fatty Liver Disease in Everyday Clinical Practice: From Diagnosis to Therapy. Life 2025, 15, 363. [Google Scholar] [CrossRef]
- Dawod, S.; Brown, K. Non-invasive testing in metabolic dysfunction-associated steatotic liver disease. Front. Med. 2024, 11, 1499013. [Google Scholar] [CrossRef]
- Long, L.; Wu, Y.; Tang, H.; Xiao, Y.; Wang, M.; Shen, L.; Shi, Y.; Feng, S.; Li, C.; Lin, J.; et al. Development and validation of a scoring system to predict MASLD patients with significant hepatic fibrosis. Sci. Rep. 2025, 15, 9639. [Google Scholar] [CrossRef]
- Cao, K.; Miao, X.; Chen, X. Association of inflammation and nutrition-based indicators with chronic obstructive pulmonary disease and mortality. J. Health Popul. Nutr. 2024, 43, 209. [Google Scholar] [CrossRef]
- Sun, H.; Liu, H.; Li, J.; Kou, J.; Yang, C. Analysis of the Clinical Predictive Value of the Novel Inflammatory Indices SII, SIRI, MHR and NHR in Patients with Acute Myocardial Infarction and Their Extent of Coronary Artery Disease. J. Inflamm. Res. 2024, 17, 7325–7338. [Google Scholar] [CrossRef]
- Cao, Y.; Guo, S.; Dong, Y.; Liu, C.; Zhu, W. Comparison of liver fibrosis scores for predicting mortality and morbidity in heart failure with preserved ejection fraction. ESC Heart Fail. 2023, 10, 1771–1780. [Google Scholar] [CrossRef]
- Raposeiras-Roubín, S.; Parada Barcia, J.A.; Lizancos Castro, A.; Noriega Caro, V.; Ledo Piñeiro, A.; González Bermúdez, I.; González Ferreiro, R.; Íñiguez-Romo, A.; Abu-Assi, E. Liver fibrosis and outcomes of atrial fibrillation: The FIB-4 index. Clin. Res. Cardiol. 2024, 113, 313–323. [Google Scholar] [CrossRef]
- Clayton-Chubb, D.; Commins, I.; Roberts, S.K.; Majeed, A.; Woods, R.L.; Ryan, J.; Schneider, H.G.; Lubel, J.S.; Hodge, A.D.; McNeil, J.J.; et al. Scores to predict steatotic liver disease—Correlates and outcomes in older adults. npj Gut Liver 2025, 2, 9. [Google Scholar] [CrossRef] [PubMed]
- Dimala, C.A.; Nso, N.; Wasserlauf, J.; Njei, B. Electrocardiographic abnormalities in patients with metabolic dysfunction-associated steatotic liver disease: A systematic review and meta-analysis. Curr. Probl. Cardiol. 2024, 49, 102580. [Google Scholar] [CrossRef] [PubMed]
- Awashra, A.; Nouri, A.; Hamdan, A.; Said, H.; Rajab, I.; Hussein, A.; Abu Rmilah, A. Metabolic Dysfunction-Associated Steatotic Liver Disease as a Cardiovascular Risk Factor: Focus on Atrial Fibrillation. Cardiol. Rev. 2025. [Google Scholar] [CrossRef] [PubMed]
- Koutoukidis, D.A.; Astbury, N.M.; Tudor, K.E.; Morris, E.; Henry, J.A.; Noreik, M.; Jebb, S.A.; Aveyard, P. Association of Weight Loss Interventions With Changes in Biomarkers of Nonalcoholic Fatty Liver Disease. JAMA Intern. Med. 2019, 179, 1262. [Google Scholar] [CrossRef]
- Pathak, R.K.; Middeldorp, M.E.; Meredith, M.; Mehta, A.B.; Mahajan, R.; Wong, C.X.; Twomey, D.; Elliott, A.D.; Kalman, J.M.; Abhayaratna, W.P.; et al. Long-Term Effect of Goal-Directed Weight Management in an Atrial Fibrillation Cohort. J. Am. Coll. Cardiol. 2015, 65, 2159–2169. [Google Scholar] [CrossRef]
- Haghbin, H. Nonalcoholic fatty liver disease and atrial fibrillation: Possible pathophysiological links and therapeutic interventions. Ann. Gastroenterol. 2020, 33, 1–12. [Google Scholar] [CrossRef]
- Askarpour, M.; Khani, D.; Sheikhi, A.; Ghaedi, E.; Alizadeh, S. Effect of Bariatric Surgery on Serum Inflammatory Factors of Obese Patients: A Systematic Review and Meta-Analysis. Obes. Surg. 2019, 29, 2631–2647. [Google Scholar] [CrossRef]
- Ratziu, V.; Francque, S.; Sanyal, A. Breakthroughs in therapies for NASH and remaining challenges. J. Hepatol. 2022, 76, 1263–1278. [Google Scholar] [CrossRef]
- Tacke, F.; Puengel, T.; Loomba, R.; Friedman, S.L. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J. Hepatol. 2023, 79, 552–566. [Google Scholar] [CrossRef]
- Newsome, P.N.; Ambery, P. Incretins (GLP-1 receptor agonists and dual/triple agonists) and the liver. J. Hepatol. 2023, 79, 1557–1565. [Google Scholar] [CrossRef]
- Nevola, R.; Epifani, R.; Imbriani, S.; Tortorella, G.; Aprea, C.; Galiero, R.; Rinaldi, L.; Marfella, R.; Sasso, F.C. GLP-1 Receptor Agonists in Non-Alcoholic Fatty Liver Disease: Current Evidence and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 1703. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Gaunt, P.; Aithal, G.P.; Barton, D.; Hull, D.; Parker, R.; Hazlehurst, J.M.; Guo, K.; Abouda, G.; Aldersley, M.A.; et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): A multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 2016, 387, 679–690. [Google Scholar] [CrossRef]
- Zhong, J.; Chen, H.; Liu, Q.; Zhou, S.; Liu, Z.; Xiao, Y. GLP-1 receptor agonists and myocardial metabolism in atrial fibrillation. J. Pharm. Anal. 2024, 14, 100917. [Google Scholar] [CrossRef]
- Saglietto, A.; Falasconi, G.; Penela, D.; Francia, P.; Sau, A.; Ng, F.S.; Dusi, V.; Castagno, D.; Gaita, F.; Berruezo, A.; et al. Glucagon-like peptide-1 receptor agonist semaglutide reduces atrial fibrillation incidence: A systematic review and meta-analysis. Eur. J. Clin. Investig. 2024, 54, e14292. [Google Scholar] [CrossRef]
- Karakasis, P.; Fragakis, N.; Patoulias, D.; Theofilis, P.; Kassimis, G.; Karamitsos, T.; El-Tanani, M.; Rizzo, M. Effects of Glucagon-Like Peptide 1 Receptor Agonists on Atrial Fibrillation Recurrence After Catheter Ablation: A Systematic Review and Meta-analysis. Adv. Ther. 2024, 41, 3749–3756. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Boyle, T.A.; Lyu, B.; Ballew, S.H.; Selvin, E.; Chang, A.R.; Inker, L.A.; Grams, M.E.; Shin, J.-I. Glucagon-like peptide-1 receptor agonists and the risk of atrial fibrillation in adults with diabetes: A real-world study. J. Gen. Intern. Med. 2024, 39, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Belfort, R.; Harrison, S.A.; Brown, K.; Darland, C.; Finch, J.; Hardies, J.; Balas, B.; Gastaldelli, A.; Tio, F.; Pulcini, J.; et al. A Placebo-Controlled Trial of Pioglitazone in Subjects with Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2006, 355, 2297–2307. [Google Scholar] [CrossRef] [PubMed]
- Boettcher, E.; Csako, G.; Pucino, F.; Wesley, R.; Loomba, R. Meta-analysis: Pioglitazone improves liver histology and fibrosis in patients with non-alcoholic steatohepatitis. Aliment. Pharmacol. Ther. 2012, 35, 66–75. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Korantzopoulos, P.; Letsas, K.P.; Tse, G.; Gong, M.; Meng, L.; Li, G.; Liu, T. Thiazolidinedione use and atrial fibrillation in diabetic patients: A meta-analysis. BMC Cardiovasc. Disord. 2017, 17, 96. [Google Scholar] [CrossRef]
- Gu, J.; Liu, X.; Wang, X.; Shi, H.; Tan, H.; Zhou, L.; Gu, J.; Jiang, W.; Wang, Y. Beneficial effect of pioglitazone on the outcome of catheter ablation in patients with paroxysmal atrial fibrillation and type 2 diabetes mellitus. Europace 2011, 13, 1256–1261. [Google Scholar] [CrossRef] [PubMed]
- Xi, L.; Sun, H.; Yang, N.; Wang, Q.; Zhang, L.; Song, J.; Taiwaikuli, D.; Shang, L.; Zhou, X.H. Pioglitazone Alleviates β1-adrenergic Receptor Antibody-induced Atrial Fibrillation Susceptivity via Mitigation of PPAR-γ-mediated Metabolic Inflexibility. Curr. Med. Chem. 2025, 32, 5861–5878. [Google Scholar] [CrossRef]
- Cusi, K.; Orsak, B.; Bril, F.; Lomonaco, R.; Hecht, J.; Ortiz-Lopez, C.; Tio, F.; Hardies, J.; Darland, C.; Musi, N.; et al. Long-Term Pioglitazone Treatment for Patients With Nonalcoholic Steatohepatitis and Prediabetes or Type 2 Diabetes Mellitus. Ann. Intern. Med. 2016, 165, 305–315. [Google Scholar] [CrossRef]
- O’Malley, P.G.; Arnold, M.J.; Kelley, C.; Spacek, L.; Buelt, A.; Natarajan, S.; Donahue, M.P.; Vagichev, E.; Ballard-Hernandez, J.; Logan, A.; et al. Management of Dyslipidemia for Cardiovascular Disease Risk Reduction: Synopsis of the 2020 Updated, U.S. Department of Veterans Affairs and U.S. Department of Defense Clinical Practice Guideline. Ann. Intern. Med. 2020, 173, 822–829. [Google Scholar] [CrossRef]
- Schreiner, A.D.; Zhang, J.; Petz, C.A.; Moran, W.P.; Koch, D.G.; Marsden, J.; Bays, C.; Mauldin, P.D.; Gebregziabher, M. Statin prescriptions and progression of advanced fibrosis risk in primary care patients with MASLD. BMJ Open Gastroenterol. 2024, 11, e001404. [Google Scholar] [CrossRef]
- Zhou, X.-D.; Kim, S.U.; Yip, T.C.-F.; Petta, S.; Nakajima, A.; Tsochatzis, E.; Boursier, J.; Bugianesi, E.; Hagström, H.; Chan, W.K.; et al. Long-term liver-related outcomes and liver stiffness progression of statin usage in steatotic liver disease. Gut 2024, 73, 1883–1892. [Google Scholar] [CrossRef]
- Wang, J.; Wang, A.-R.; Zhang, M.-J.; Li, Y. Effects of Atorvastatin on Serum High-Sensitive C-Reactive Protein and Total Cholesterol Levels in Asian Patients With Atrial Fibrillation. Am. J. Ther. 2017, 24, e20–e29. [Google Scholar] [CrossRef]
- Engström, A.; Wintzell, V.; Melbye, M.; Hviid, A.; Eliasson, B.; Gudbjörnsdottir, S.; Hveem, K.; Jonasson, C.; Svanström, H.; Pasternak, B.; et al. Sodium–Glucose Cotransporter 2 Inhibitor Treatment and Risk of Atrial Fibrillation: Scandinavian Cohort Study. Diabetes Care 2023, 46, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Nespoux, J.; Vallon, V. Renal effects of SGLT2 inhibitors. Curr. Opin. Nephrol. Hypertens. 2020, 29, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Suzuki, K.; Kato, K.; Jojima, T.; Iijima, T.; Murohisa, T.; Iijima, M.; Takekawa, H.; Usui, I.; Hiraishi, H.; et al. Evaluation of the effects of dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on hepatic steatosis and fibrosis using transient elastography in patients with type 2 diabetes and non-alcoholic fatty liver disease. Diabetes Obes. Metab. 2019, 21, 285–292. [Google Scholar] [CrossRef]
- Harrison, S.A.; Manghi, F.P.; Smith, W.B.; Alpenidze, D.; Aizenberg, D.; Klarenbeek, N.; Chen, C.-Y.; Zuckerman, E.; Ravussin, E.; Charatcharoenwitthaya, P.; et al. Licogliflozin for nonalcoholic steatohepatitis: A randomized, double-blind, placebo-controlled, phase 2a study. Nat. Med. 2022, 28, 1432–1438. [Google Scholar] [CrossRef]
- Zelniker, T.A.; Bonaca, M.P.; Furtado, R.H.M.; Mosenzon, O.; Kuder, J.F.; Murphy, S.A.; Bhatt, D.L.; Leiter, L.A.; McGuire, D.K.; Wilding, J.P.H.; et al. Effect of Dapagliflozin on Atrial Fibrillation in Patients With Type 2 Diabetes Mellitus. Circulation 2020, 141, 1227–1234. [Google Scholar] [CrossRef]
- Li, P.; Chen, W.; Chen, R.; Zhang, H.; Yu, Z.; Yan, H.; Du, B.; Yang, P. Long-term effects of SGLT2 inhibitors on arrhythmias: A systematic review and meta-analysis. Front. Pharmacol. 2025, 16, 1558367. [Google Scholar] [CrossRef]
- Zhao, Z.; Jiang, C.; He, L.; Zheng, S.; Wang, Y.; Gao, M.; Lai, Y.; Zhang, J.; Li, M.; Dai, W.; et al. Impact of Sodium-Glucose Cotransporter 2 Inhibitor on Recurrence After Catheter Ablation for Atrial Fibrillation in Patients With Diabetes: A Propensity-Score Matching Study and Meta-Analysis. J. Am. Heart Assoc. 2023, 12, e031269. [Google Scholar] [CrossRef]
- Zachou, M.; Flevari, P.; Nasiri-Ansari, N.; Varytimiadis, C.; Kalaitzakis, E.; Kassi, E.; Androutsakos, T. The role of anti-diabetic drugs in NAFLD. Have we found the Holy Grail? A narrative review. Eur. J. Clin. Pharmacol. 2024, 80, 127–150. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic. Biol. Med. 2020, 152, 116–141. [Google Scholar] [CrossRef] [PubMed]
- Deaton, J.G.; Nappe, T.M. Warfarin Toxicity; StatPearls Publishing: Petersburg, FL, USA, 2025. [Google Scholar]
- Margetić, S.; Goreta, S.Š.; Ćelap, I.; Razum, M. Direct oral anticoagulants (DOACs): From the laboratory point of view. Acta Pharm. 2022, 72, 459–482. [Google Scholar] [CrossRef] [PubMed]
- Bucci, T.; Nabrdalik, K.; Baratta, F.; Pastori, D.; Pignatelli, P.; Hydes, T.; Alam, U.; Violi, F.; Lip, G.Y.H. Risk of Adverse Events in Anticoagulated Patients With Atrial Fibrillation and Nonalcoholic Fatty Liver Disease. J. Clin. Endocrinol. Metab. 2024, 110, 208–217. [Google Scholar] [CrossRef]
- Costache, R.S.; Dragomirică, A.S.; Gheorghe, B.E.; Balaban, V.D.; Stanciu, S.M.; Jinga, M.; Costache, D.O. Oral Anticoagulation in Patients with Chronic Liver Disease. Medicina 2023, 59, 346. [Google Scholar] [CrossRef]
- Qamar, A.; Antman, E.M.; Ruff, C.T.; Nordio, F.; Murphy, S.A.; Grip, L.T.; Greenberger, N.J.; Yin, O.Q.P.; Choi, Y.; Lanz, H.J.; et al. Edoxaban Versus Warfarin in Patients With Atrial Fibrillation and History of Liver Disease. J. Am. Coll. Cardiol. 2019, 74, 179–189. [Google Scholar] [CrossRef]
- Menichelli, D.; Ronca, V.; Di Rocco, A.; Pignatelli, P.; Marco Podda, G. Direct oral anticoagulants and advanced liver disease: A systematic review and meta-analysis. Eur. J. Clin. Investig. 2021, 51, e13397. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, W.; Wang, L.; Chai, L.; Ageno, W.; Romeiro, F.G.; Li, H.; Qi, X. Risk of Bleeding in Liver Cirrhosis Receiving Direct Oral Anticoagulants: A Systematic Review and Meta-analysis. Thromb. Haemost. 2023, 123, 1072–1088. [Google Scholar] [CrossRef] [PubMed]
- Puengel, T.; Tacke, F. Pharmacotherapeutic options for metabolic dysfunction-associated steatotic liver disease: Where are we today? Expert Opin. Pharmacother. 2024, 25, 1249–1263. [Google Scholar] [CrossRef]
- Miele, L.; Liguori, A.; Marrone, G.; Biolato, M.; Araneo, C.; Vaccaro, F.G.; Gasbarrini, A.; Grieco, A. Fatty liver and drugs: The two sides of the same coin. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 86–94. [Google Scholar]
- López-Pascual, E.; Rienda, I.; Perez-Rojas, J.; Rapisarda, A.; Garcia-Llorens, G.; Jover, R.; Castell, J.V. Drug-Induced Fatty Liver Disease (DIFLD): A Comprehensive Analysis of Clinical, Biochemical, and Histopathological Data for Mechanisms Identification and Consistency with Current Adverse Outcome Pathways. Int. J. Mol. Sci. 2024, 25, 5203. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.-L.; Lian, Y.-E.; Wu, J.-Y.; Wang, Y.-D.; Bai, Y.-N. Verapamil induces autophagy to improve liver regeneration in non-alcoholic fatty liver mice. Adipocyte 2021, 10, 532–545. [Google Scholar] [CrossRef]
- Aronson, J.K. Defining ‘nutraceuticals’: Neither nutritious nor pharmaceutical. Br. J. Clin. Pharmacol. 2017, 83, 8–19. [Google Scholar] [CrossRef]
- Chandra, S.; Saklani, S.; Kumar, P.; Kim, B.; Coutinho, H.D.M. Nutraceuticals: Pharmacologically Active Potent Dietary Supplements. BioMed Res. Int. 2022, 2022, 2051017. [Google Scholar] [CrossRef]
- Yue, H.; Zhao, X.; Liang, W.; Qin, X.; Bian, L.; He, K.; Wu, Z. Curcumin, novel application in reversing myocardial fibrosis in the treatment for atrial fibrillation from the perspective of transcriptomics in rat model. Biomed. Pharmacother. 2022, 146, 112522. [Google Scholar] [CrossRef]
- Hu, J.; Wang, X.; Cui, X.; Kuang, W.; Li, D.; Wang, J. Quercetin prevents isoprenaline-induced myocardial fibrosis by promoting autophagy via regulating miR-223-3p/FOXO. Cell Cycle 2021, 20, 1253–1269. [Google Scholar] [CrossRef] [PubMed]
- Sokal-Dembowska, A.; Jarmakiewicz-Czaja, S.; Ferenc, K.; Filip, R. Can Nutraceuticals Support the Treatment of MASLD/MASH, and thus Affect the Process of Liver Fibrosis? Int. J. Mol. Sci. 2024, 25, 5238. [Google Scholar] [CrossRef] [PubMed]
- Vrentzos, E.; Pavlidis, G.; Korakas, E.; Kountouri, A.; Pliouta, L.; Dimitriadis, G.D.; Lambadiari, V. Nutraceutical Strategies for Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A Path to Liver Health. Nutrients 2025, 17, 1657. [Google Scholar] [CrossRef]
- Scorletti, E.; Byrne, C.D. Omega-3 fatty acids and non-alcoholic fatty liver disease: Evidence of efficacy and mechanism of action. Mol. Asp. Med. 2018, 64, 135–146. [Google Scholar] [CrossRef]
- Šmíd, V.; Dvořák, K.; Šedivý, P.; Kosek, V.; Leníček, M.; Dezortová, M.; Hajšlová, J.; Hájek, M.; Vítek, L.; Bechyňská, K.; et al. Effect of Omega-3 Polyunsaturated Fatty Acids on Lipid Metabolism in Patients With Metabolic Syndrome and NAFLD. Hepatol. Commun. 2022, 6, 1336–1349. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, M.A.; Oliveira, C.P.; Ferreira Alves, V.A.; Stefano, J.T.; dos Reis Rodrigues, L.S.; Torrinhas, R.S.; Cogliati, B.; Barbeiro, H.; Carrilho, F.J.; Waitzberg, D.L. Omega-3 polyunsaturated fatty acids in treating non-alcoholic steatohepatitis: A randomized, double-blind, placebo-controlled trial. Clin. Nutr. 2016, 35, 578–586. [Google Scholar] [CrossRef]
- Vanderbilt, C.; Free, M.; Li, J.; Gebretsadik, T.; Bian, A.; Shintani, A.; McBride, B.F.; Solus, J.; Milne, G.; Crossley, G.H.; et al. Effect of Omega-Three Polyunsaturated Fatty Acids on Inflammation, Oxidative Stress, and Recurrence of Atrial Fibrillation. Am. J. Cardiol. 2015, 115, 196–201. [Google Scholar] [CrossRef]
- Macchia, A.; Grancelli, H.; Varini, S.; Nul, D.; Laffaye, N.; Mariani, J.; Ferrante, D.; Badra, R.; Figal, J.; Ramos, S.; et al. Omega-3 Fatty Acids for the Prevention of Recurrent Symptomatic Atrial Fibrillation. J. Am. Coll. Cardiol. 2013, 61, 463–468. [Google Scholar] [CrossRef]
- Aleksova, A.; Masson, S.; Maggioni, A.P.; Lucci, D.; Fabbri, G.; Beretta, L.; Mos, L.; Paino, A.M.; Nicolosi, G.L.; Marchioli, R.; et al. n -3 polyunsaturated fatty acids and atrial fibrillation in patients with chronic heart failure: The GISSI-HF trial. Eur. J. Heart Fail. 2013, 15, 1289–1295. [Google Scholar] [CrossRef]
- Sorice, M.; Tritto, F.P.; Sordelli, C.; Gregorio, R.; Piazza, L. N-3 polyunsaturated fatty acids reduces post-operative atrial fibrillation incidence in patients undergoing “on-pump” coronary artery bypass graft surgery. Monaldi Arch. Chest Dis. 2015, 76, 93–98. [Google Scholar] [CrossRef]
- Wilbring, M.; Ploetze, K.; Bormann, S.; Waldow, T.; Matschke, K. Omega-3 Polyunsaturated Fatty Acids Reduce the Incidence of Postoperative Atrial Fibrillation in Patients with History of Prior Myocardial Infarction Undergoing Isolated Coronary Artery Bypass Grafting. Thorac. Cardiovasc. Surg. 2014, 62, 569–574. [Google Scholar] [CrossRef]
- Niki, E. Evidence for beneficial effects of vitamin E. Korean J. Intern. Med. 2015, 30, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, N.; Niki, E. Vitamin E nomenclature. Is RRR-α-tocopherol the only vitamin E? Free Radic. Biol. Med. 2024, 221, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Ni, W.; Zheng, M.; Sheng, H.; Wang, J.; Xie, S.; Yang, Y.; Chi, X.; Chen, J.; He, F.; et al. Vitamin E (300 mg) in the treatment of MASH: A multi-center, randomized, double-blind, placebo-controlled study. Cell Rep. Med. 2025, 6, 101939. [Google Scholar] [CrossRef]
- Al-Baiaty, F.D.R.; Ishak, S.; Mohd Zaki, F.; Masra, F.; Abdul Aziz, D.A.; Wan Md Zin, W.N.; Yee Hing, E.; Kuthubul Zaman, A.S.; Abdul Wahab, N.; Muhammad Nawawi, K.N.; et al. Assessing the efficacy of tocotrienol-rich fraction vitamin E in obese children with non-alcoholic fatty liver disease: A single-blind, randomized clinical trial. BMC Pediatr. 2024, 24, 529. [Google Scholar] [CrossRef]
- Rodrigo, R.; Korantzopoulos, P.; Cereceda, M.; Asenjo, R.; Zamorano, J.; Villalabeitia, E.; Baeza, C.; Aguayo, R.; Castillo, R.; Carrasco, R.; et al. A Randomized Controlled Trial to Prevent Post-Operative Atrial Fibrillation by Antioxidant Reinforcement. J. Am. Coll. Cardiol. 2013, 62, 1457–1465. [Google Scholar] [CrossRef]
- Rodrigo, R.; Gutierrez, R.; Fernandez, R.; Guzman, P. Ageing improves the antioxidant response against postoperative atrial fibrillation: A randomized controlled trial. Interact. Cardiovasc. Thorac. Surg. 2012, 15, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Yaikwawong, M.; Jansarikit, L.; Jirawatnotai, S.; Chuengsamarn, S. Curcumin for Inflammation Control in Individuals with Type 2 Diabetes Mellitus and Metabolic Dysfunction-Associated Steatotic Liver Disease: A Randomized Controlled Trial. Nutrients 2025, 17, 1972. [Google Scholar] [CrossRef]
- Tehrani, S.D.; Hosseini, A.; Shahzamani, M.; Heidari, Z.; Askari, G.; Majeed, M.; Sahebkar, A.; Bagherniya, M. Evaluation of the effectiveness of curcumin and piperine co-supplementation on inflammatory factors, cardiac biomarkers, atrial fibrillation, and clinical outcomes after coronary artery bypass graft surgery. Clin. Nutr. ESPEN 2024, 62, 57–65. [Google Scholar] [CrossRef]
- Mury, P.; Dagher, O.; Fortier, A.; Diaz, A.; Lamarche, Y.; Noly, P.; Ibrahim, M.; Pagé, P.; Demers, P.; Bouchard, D.; et al. Quercetin Reduces Vascular Senescence and Inflammation in Symptomatic Male but Not Female Coronary Artery Disease Patients. Aging Cell 2025, 24, e70108. [Google Scholar] [CrossRef]
- Li, N.; Cui, C.; Xu, J.; Mi, M.; Wang, J.; Qin, Y. Quercetin intervention reduced hepatic fat deposition in patients with nonalcoholic fatty liver disease: A randomized, double-blind, placebo-controlled crossover clinical trial. Am. J. Clin. Nutr. 2024, 120, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Ali Sangouni, A.; Abdollahi, S.; Mozaffari-Khosravi, H. Effect of resveratrol supplementation on hepatic steatosis and cardiovascular indices in overweight subjects with type 2 diabetes: A double-blind, randomized controlled trial. BMC Cardiovasc. Disord. 2022, 22, 212. [Google Scholar] [CrossRef] [PubMed]
- Faghihzadeh, F.; Adibi, P.; Hekmatdoost, A. The effects of resveratrol supplementation on cardiovascular risk factors in patients with non-alcoholic fatty liver disease: A randomised, double-blind, placebo-controlled study. Br. J. Nutr. 2015, 114, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Farzin, L.; Asghari, S.; Rafraf, M.; Asghari-Jafarabadi, M.; Shirmohammadi, M. No beneficial effects of resveratrol supplementation on atherogenic risk factors in patients with nonalcoholic fatty liver disease. Int. J. Vitam. Nutr. Res. 2020, 90, 279–289. [Google Scholar] [CrossRef]





| First Author, Year | Population and AF Outcome (Incident/Prevalent/Recurrence) | Exposure Definition (NAFLD/MASLD; Enzymes vs. Imaging vs. Histology) | Adjustments | Effect Size (95% CI) | Heterogeneity (I2)/Publication Bias | Stated Limitations/Notes |
|---|---|---|---|---|---|---|
| Kang et al., 2020 [17] | Health-screen cohort n = 6293 with US-defined NAFLD; prevalent AF (ECG) | Ultrasound; advanced fibrosis by NFS/FIB-4 | Sex, HA, obesity; + glucose, GGT, hs-CRP; + lipids | Advanced fibrosis (high cut-offs): OR 3.84–12.29 for prevalent AF | NA | Cross-sectional; single ECG may miss paroxysmal AF |
| Pastori et al., 2020 [23] | AF clinic cohort n = 1735 with OAC; prevalent AF (cross-sectional) + incident CV outcomes | NAFLD by FLI ≥ 60 | Age, sex, BMI, HA, T2DM, HF, smoking, prior CV/CVA, renal function, meds | Bleeding HR 0.85 (0.52–1.37); CV events HR 0.91 (0.64–1.29) | NA | FLI surrogate; White European; not AF incidence study |
| Riley et al., 2024 [24] | TriNetX EHR > 114 M; incident AF among CV outcomes; MASLD ± T2DM | ICD-based MASLD with metabolic criteria | Propensity matching incl. age, sex, BMI, HA, IHD, HF, CKD, cirrhosis, meds; HbA1c in diabetes | T2D + MASLD vs. MASLD: AF HR 1.09 (1.03–1.16); MASLD in T2D: AF HR 0.97 (0.85–1.11) | NA | ICD-based misclassification; unmeasured confounding; medication time-updating absent |
| Simon et al., 2023 [25] | Nationwide matched cohort (Sweden) n = 11,206 biopsy-confirmed MASLD + 51,856 controls; incident AF | Histology (steatosis→cirrhosis) | Age, sex, education, T2DM, obesity, HA, lipids, CKD, hospitalizations, alcohol disorder + meds (sens.) | aHR AF 1.26 (1.18–1.35); rises to 1.59 (1.15–2.19) in cirrhosis | NA (single study); sibling/sensitivity analyses robust | Residual confounding; limited ethnic diversity; possible undiagnosed MASLD in controls |
| Brunner et al., 2019 [26] | Narrative systematic review; no direct AF endpoint | Imaging/biopsy/biomarkers across cited studies | Varied; typically, age, sex, BMI, T2DM, HA, lipids, alcohol | Weight loss ≥ 10% linked with NASH resolution; fibrosis regression ~45% (not AF-specific) | NA | No pooled estimates; heterogeneous designs; AF not specifically assessed |
| Cho et al., 2025 [28] | Nationwide T2DM cohort n ≈ 2.48 M; incident AF | FLI ≥ 60 + metabolic risk to define MASLD; categories incl. MetALD/ALD | Age, sex, income, lifestyle, BMI, DM duration/therapy, CKD, ASCVD, CHA2DS2-VASc | MASLD aHR 1.10 (1.08–1.11); MetALD 1.26 (1.22–1.29); ALD + met 1.48 (1.41–1.55) | NA (single cohort) | FLI-based; possible AF underdiagnosis; Asian-only cohort |
| Targher et al., 2011 [29] | Narrative review (diabetics); CVD and CKD (AF not isolated) | Imaging/enzymes; 1 biopsy study in cited works | Age, sex, BMI/waist, BP, HbA1c, lipids, meds; sometimes HOMA-IR | Representative: incident CVD HR ~1.87; CKD HR ~1.49 (study-level) | NA | Heterogeneous definitions; observational; AF not specifically studied |
| Jaiswal et al., 2023 [30] | Meta-analysis of 12 cohorts (~18 M); incident AF | NAFLD by imaging (US/CT) or ICD codes | Age, sex, BMI/obesity, HA, T2DM, lipids, smoking | RR 1.42 (1.191.68) for AF; stroke 1.26 (1.16–1.36); HF 1.43 (1.03–2.00) | AF I2 = 91% (high); funnel plots~symmetric | Variable NAFLD definitions; residual confounding; limited fibrosis data |
| Mantovani et al., 2024 [31] | Meta-analysis of 16 cohort studies; outcome: incident AF | NAFLD/MASLD by imaging, FLI/HSI, ICD codes; 1 study biopsy | Most studies adjusted for age, sex, BMI, T2DM, HA, lipids, smoking/alcohol | Pooled HR 1.18 (1.10–1.32) overall; fully adjusted ≈ 1.11 (1.05–1.18) | I2 ≈ 92% (primary), subgroups lower; Egger p > 0.05 (no bias) | Observational data; heterogeneity; limited histology-based evidence |
| Wang et al., 2025 [32] | Single-center prospective ablation cohort n = 303; outcome: AF recurrence post-cryoballoon (median 14 mo) | MASLD: FLI ≥ 60 + ≥1 metabolic risk factor | Age, sex, AF type/duration, LAD, LVEF, alcohol, CHD, HF | AF recurrence: HR 2.24 (1.35–3.74); paroxysmal 2.38; persistent 2.55 | NA (single-center) | No imaging/biopsy; short follow-up; residual confounding |
| Moon et al., 2023 [33] | Nationwide cohort n = 351,068; primary CVD composite (AF not primary) | Steatosis by FLI; MASLD/MetALD/ALD per 2023 consensus | Age, sex, BMI, income, HA, T2DM, lipids, smoking, alcohol, activity, meds; competing risks | Incident CVD: MASLD SHR 1.19 (1.15–1.24); MetALD 1.28; ALD 1.29 | NA | FLI-based diagnosis; Asian-only; AF not isolated as endpoint |
| Type of Study | Examined Medication(s)/Intervention(s) | Participants | Results | Ref. |
|---|---|---|---|---|
| Phase 2 clinical trial (LEAN) | Liraglutide (1.8 mg/day administered by subcutaneous injection) | 52 overweight participants with NASH monitored for 48 weeks | improved NASH resolution (↓ steatosis, ↓ hepatocyte ballooning) decreased risk of fibrosis progression decreased levels of ALT and GGT in blood plasma decreased body weight and BMI values improved HbA1c values | [93] |
| Systematic review and meta-analysis of RCTs | Semaglutide (oral 14 mg/day; subcutaneous 0.5–1.0 mg weekly, up to 2.4 mg weekly in some trials) | 10 randomized clinical trials; 12,651 total participants (7285 on semaglutide, 5366 on placebo); median follow-up ~68 months | decreased incidence of AF by 42% in individuals with high cardiovascular risk | [95] |
| Systematic review and meta-analysis (propensity-matched observational studies) | GLP-1 receptor agonists (liraglutide 1.2–1.8 mg daily; semaglutide 0.5–1.0 mg weekly; dulaglutide 0.75–1.5 mg weekly) | 3 studies; 6031 participants after AF ablation; follow-up: 12 months | decreased risk of AF recurrence after ablation (HR = 0.55) | [96] |
| Real-world cohort study | GLP-1 receptor agonists (liraglutide 1.2–1.8 mg daily; semaglutide 0.5–1.0 mg weekly; dulaglutide 0.75–1.5 mg weekly) vs. DPP-4i vs. SGLT-2 inhibitors | 14,566 participants GLP-1RA vs. DPP4i; 9424 participants GLP-1RA vs. SGLT-2 inhibitors; follow-up: 3–4 years | decreased risk of new AF in GLP-1RA group vs. DPP4i group (HR = 0.82). | [97] |
| Type of Study | Examined Medication(s)/Intervention(s) | Participants/Animal Model | Results | Ref. |
|---|---|---|---|---|
| Randomized, placebo-controlled proof-of-concept trial | Pioglitazone (45 mg daily, administered orally) + hypocaloric diet | 55 patients with impaired glucose tolerance or T2DM and NASH monitored for 6 months | improved resolution of steatosis, ballooning necrosis, and inflammation in liver decreased blood plasma levels of AST and ALT decreased hepatic fat content beneficial effects were stronger in patients receiving pioglitazone + hypocaloric diet than in group receiving sole pioglitazone statistically significant | [98] |
| Meta-analysis of RCTs and observational studies | Thiazolidinediones, especially pioglitazone (15–45 mg/day administered orally) but also rosiglitazone (4–8 mg/day administered orally) | 7 studies (3 RCTs + 4 observational); 130,854 diabetic participants (11,781 thiazolidinediones users, 119,073 controls); follow-up ranging between 30 days and 12 years | decreased risk of incident AF among thiazolidinediones users (OR = 0.73) decreased risk of new-onset AF among thiazolidinediones users: (OR = 0.77) decreased risk of recurrent AF among thiazolidinediones users: (OR = 0.41) | [100] |
| Observational study | pioglitazone (30 mg/day administered orally) | 101 participants with PAF and T2DM undergoing catheter ablation monitored for 15 months | improved preservation of sinus rhythm decreased AF recurrence decreased rate of re-ablation | [101] |
| Preclinical in vivo (animal) study | pioglitazone (administered orally for 2 weeks) | rats immunized with β1-adrenergic receptor peptide to induce AF susceptibility | decreased AF vulnerability improved atrial structure and metabolism | [102] |
| Type of Study | Examined Medication(s)/Intervention(s) | Participants | Results | Ref. |
|---|---|---|---|---|
| Retrospective cohort study | Statins (exposure estimated based on medical prescriptions, exact preparations names and doses not specified) | 1238 patients with MASLD, with baseline FIB-4 < 2.67 (determining low or indeterminate fibrosis risk); mean follow-up: 3.3 years | moderate and high intensity of statin prescription decreased risk of progression to high-risk FIB-4 (HR = 0.6 and 0.61, respectively) | [105] |
| Longitudinal, multi-center cohort study | Statins (simvastatin, atorvastatin, pravastatin, rosuvastatin, fluvastatin, lovastatin, pitavastatin; exact dosage not specified) | 7988 patients with MASLD having ≥ 2 VCTE (baseline LSM median 5.9 kPa IQR 4.6–8.2); mean follow-up: 4.6 years | statin usage reduced all-cause mortality (aHR = 0.233) statin usage reduced liver-related events (aHR = 0.380) statin usage reduced liver stiffness progression (cACLD: HR = 0.542; non-cACLD: HR = 0.450) | [106] |
| Prospective, controlled clinical trial | Atorvastatin (20 mg/day administered orally) | 105 participants with AF receiving amiodarone, monitored for 12 months | decreased levels of hs-CRP and TC in blood plasma decreased recurrence of AF | [107] |
| Type of Study | Examined Medication(s)/Intervention(s) | Participants | Results | Ref. |
|---|---|---|---|---|
| Observational study | SGLT-2 inhibitors (59.2% dapagliflozin, 40.0% empagliflozin, 0.8% canagliflozin, <0.1% ertugliflozin; exact dosage not specified) | 136,956 participants with T2DM (79,343 new users of SGLT-2 inhibitors vs. 57,613 new users of GLP-1 receptor agonists); follow-up: 0.7–3.8 years | Decreased risk of new-onset AF in participants using SGLT-2 inhibitors when compared with participants using GLP-1 receptor agonists (aHR = 0.89) | [108] |
| Randomized, active-controlled, open label trial | dapagliflozin (5 mg/day administered orally) | 57 participants with T2DM and NAFLD monitored for 24 weeks | decreased steatosis in liver decreased visceral fat accumulation decreased liver stiffness in group with significant liver fibrosis (baseline LSM ≥ 8.0 kPa) | [110] |
| Sub-analysis of DECLARE-TIMI 58 RCT | dapagliflozin (10 mg/day administered orally) | 17,160 participants with T2DM and high risk of CVD; median follow-up: 4.2 years | decreased incidence of AF/AFL adverse events | [112] |
| Systematic review and meta-analysis, RCTs ≥ 52 weeks follow-up | SGLT-2 inhibitors (dapagliflozin 5–10mg/day; empagliflozin 10–25 mg/day; canagliflozin 100–300 mg/day; ertugliflozin 5–15 mg/day; sotagliflozin 200–400 mg/day; administered orally) | 39 RCT studies (107,770 users of SGLT-2 inhibitors); follow-up: ≥52 weeks | decreased risk of AF/AFL among SGLT-2 users (RR = 0.86) no statistically significant difference between high- vs. low-dose groups, though trend favoring high dose. no significant impact on VT, VF, or sinus bradycardia | [113] |
| Propensity-score matched observational study + meta-analysis | SGLT-2 inhibitors (exact preparation and dosage not specified) | 525 participants with T2DM after AF catheter ablation; follow-up: 18 months | decreased AF recurrence among SGLT-2 users (HR = 0.63) | [114] |
| Meta-analysis of prospective observational studies | SGLT-2 inhibitors (canagliflozin, dapagliflozin, tofogliflozin or empagliflozin; dosage not specified) | 4715 participants with T2DM after AF catheter ablation | decreased AF recurrence among SGLT-2 users (HR = 0.61) | [115] |
| Type of Study | Examined Medication(s)/Intervention(s) | Participants | Results | Ref. |
|---|---|---|---|---|
| Sub-analysis of the ENGAGE AF-TIMI 48 RCT | Edoxaban (15–60 mg/day; administered orally) vs. warfarin (doses adjusted to INR of 2–3; administered orally) | 21,105 participants with AF (1083 with history of liver disease); mean follow-up: 2.8 years | Among AF patients, those with liver disease had similar efficacy of edoxaban vs. warfarin for preventing systemic embolic events, but had increased bleeding risk compared with patients without liver disease (aHR for major bleeding = 1.38 for those with liver disease vs. no liver disease) | [121] |
| Systematic review and meta-analysis of observational/cohort studies | DOACs, warfarin, or LMWH (exact dosage not specified) | 43,532 participants with advanced liver disease or cirrhosis (27,574 on DOACs; 15,958 on warfarin or LMWH); follow-up: mean or median time not specified | Decreased risk of major bleeding (HR = 0.39) and intracranial hemorrhage (HR = 0.48) among DOAC users when compared with warfarin/LMWH users. | [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morawska, A.; Frankowski, R.; Grabarczyk, M.; Kosmalski, M.; Różycka-Kosmalska, M. Crosstalk Between Metabolic Dysfunction-Associated Steatotic Liver Disease and Atrial Fibrillation: Shared Mechanism, Diagnostic Integration, and Management Implications. Life 2025, 15, 1713. https://doi.org/10.3390/life15111713
Morawska A, Frankowski R, Grabarczyk M, Kosmalski M, Różycka-Kosmalska M. Crosstalk Between Metabolic Dysfunction-Associated Steatotic Liver Disease and Atrial Fibrillation: Shared Mechanism, Diagnostic Integration, and Management Implications. Life. 2025; 15(11):1713. https://doi.org/10.3390/life15111713
Chicago/Turabian StyleMorawska, Agata, Rafał Frankowski, Mikołaj Grabarczyk, Marcin Kosmalski, and Monika Różycka-Kosmalska. 2025. "Crosstalk Between Metabolic Dysfunction-Associated Steatotic Liver Disease and Atrial Fibrillation: Shared Mechanism, Diagnostic Integration, and Management Implications" Life 15, no. 11: 1713. https://doi.org/10.3390/life15111713
APA StyleMorawska, A., Frankowski, R., Grabarczyk, M., Kosmalski, M., & Różycka-Kosmalska, M. (2025). Crosstalk Between Metabolic Dysfunction-Associated Steatotic Liver Disease and Atrial Fibrillation: Shared Mechanism, Diagnostic Integration, and Management Implications. Life, 15(11), 1713. https://doi.org/10.3390/life15111713

