The Effects of Environmental and Management Factors on the Quality of the Corpus Luteum and Subsequent Conception Rates of Beef and Dairy Cows in South Africa
Abstract
1. Introduction
2. Materials and Methods
2.1. Synchronization Protocol
| Breed | Total Cycles | Breed | Total Cycles |
|---|---|---|---|
| Ankole | 20 | Jersey | 454 |
| Ankole cross | 83 | Jersey cross | 19 |
| Brahman cross | 59 | Wagu cross | 18 |
| Bonsmara | 121 | Nguni | 242 |
| Bonsmara cross | 7 | Nguni cross | 2 |
| Boran double cross | 10 | Charolias | 1 |
| Boran cross | 14 | Charolias cross | 2 |
| Chianinia | 4 | DB | 1 |
| Chianina Jersey cross | 3 | Simbra | 1 |
| Holstein | 29 | Simentaler | 1 |
| Holstein cross | 11 | Tuli | 1 |
| Summer | Autumn | Winter | Spring |
|---|---|---|---|
| Bos indicus synchronization Cycle 1 n = 90 Cycle 2 n = 27 Cycle 3 n = 5 | Bos indicus synchronization Cycle 1 n = 25 Cycle 2 n = 30 Cycle 3 n = 24 | Bos indicus synchronizations Cycle 1 n = 53 Cycle 2 n = 15 Cycle 3 n = 6 | Bos indicus synchronization Cycle 1 n = 77 Cycle 2 n = 15 Cycle 3 n = 6 |
| Bos taurus synchronization Cycle 1 n = 5 Cycle 2 n = 5 Cycle 3 n = 5 | Bos taurus synchronization Cycle 1 n = 60 Cycle 2 n = 4 Cycle 3 n = 2 | Bos taurus synchronization Cycle 1 n = 82 Cycle 2 n = 13 Cycle 3 n = 6 | Bos taurus synchronization Cycle 1 n = 49 Cycle 2 n = 16 Cycle 3 n = 12 |
| Jersey heifer synchronization Cycle 1 n = 0 Cycle 2 n = 4 Cycle 3 n = 3 | Jersey heifer synchronization Cycle 1 n = 4 Cycle 2 n = 0 Cycle 3 n = 2 | Jersey heifer synchronization Cycle 1 n = 50 Cycle 2 n = 0 Cycle 3 n = 0 | Jersey heifer synchronization Cycle 1 n = 7 Cycle 2 n = 14 Cycle 3 n = 6 |
| Program without injection synchronization Cycle 1 n = 0 Cycle 2 n = 1 Cycle 3 n = 1 | Program without injection synchronization Cycle 1 n = 4 Cycle 2 n = 4 Cycle 3 n = 4 | Program without injection synchronization Cycle 1 n = 0 Cycle 2 n = 12 Cycle 3 n = 3 | Program without injection synchronization Cycle 1 n = 1 Cycle 2 n = 11 Cycle 3 n = 4 |
| No program Cycle 1 n = 2 Cycle 2 n = 2 Cycle 3 n = 7 | No program Cycle 1 n = 5 Cycle 2 n = 18 Cycle 3 n = 11 | No program Cycle 1 n = 2 Cycle 2 n = 42 Cycle 3 n = 17 | No program Cycle 1 n = 10 Cycle 2 n = 34 Cycle 3 n = 34 |
2.2. Embryo Transfer Procedure
2.3. Statistical Analyses
3. Results
| Cycle | Factor | n | Test | Value | df | Asymptotic Sig. (2-Sided) |
|---|---|---|---|---|---|---|
| 1 | Climatological season 1 | 514 | Pearson Chi-square | 5.04 | 3 | 0.17 |
| Synchronization program | 489 | Pearson Chi-square | 1.78 | 2 | 0.41 | |
| Breed type | 483 | Pearson Chi-square | 3.87 | 3 | 0.28 | |
| Production type 2 | 498 | Pearson Chi-square | 3.42 | 1 | 0.07 | |
| 2 | Climatological season 1 | 280 | Pearson Chi-square | 4.11 | 3 | 0.25 |
| Synchronization program | 161 | Fisher–Freeman–Halton Exact test | 3.77 | |||
| Breed type | 269 | Fisher–Freeman–Halton Exact test | 2.69 | |||
| Production type 2 | 273 | Pearson Chi-square | 0.03 | 1 | 0.89 | |
| 3 | Climatological season 1 | 139 | Pearson Chi-square | 7.369 | 3 | 0.06 |
| Synchronization program | 77 | Fisher–Freeman–Halton Exact test | 5.076 | |||
| Breed type | 138 | Fisher–Freeman–Halton Exact test | ||||
| Production type 2 | 139 | Pearson Chi-square | 2.667 | 1 | 0.10 |
| Fixed Effects | Beef | |||
|---|---|---|---|---|
| Source | F | Df1 | Df2 | Sig. |
| Corrected model | 14.342 | 67 | 313 | 0.000 |
| Average temperature | 1.201 | 3 | 313 | 0.309 |
| Change in temperature | 0.298 | 3 | 313 | 0.827 |
| Daily precipitation | 2.412 | 3 | 313 | 0.067 * |
| Average daily humidity | 1.904 | 3 | 313 | 0.129 |
| Maximum THI | 1.901 | 3 | 313 | 0.129 |
| Minimum THI | 0.071 | 3 | 313 | 0.975 |
| Average wind speed | 1.167 | 3 | 313 | 0.322 |
| Average temperature × daily rain | 2.406 | 3 | 313 | 0.067 * |
| Average temperature × average daily humidity | 2.508 | 3 | 313 | 0.059 |
| Average temperature × average wind speed | 1.298 | 3 | 313 | 0.275 |
| Change in temperature × daily precipitation | 1.343 | 3 | 313 | 0.260 |
| Change in temperature × average daily humidity | 2.957 | 3 | 313 | 0.033 ** |
| Change in temperature × average wind speed | 0.080 | 3 | 313 | 0.971 |
| Daily precipitation × average daily humidity | 0.318 | 3 | 313 | 0.813 |
| Daily precipitation × maximum THI | 2.109 | 3 | 313 | 0.099 * |
| Daily precipitation × minimum THI | 1.928 | 3 | 313 | 0.125 |
| Daily precipitation × average wind speed | 1.048 | 3 | 313 | 0.371 |
| Average daily humidity × average wind speed | 0.359 | 3 | 313 | 0.782 |
| Maximum THI × average wind speed | 1.269 | 3 | 313 | 0.285 |
| Minimum THI × average wind speed | 0.725 | 3 | 313 | 0.538 |
| Fixed Effects | Dairy | |||
| Source | F | Df1 | Df2 | Sig. |
| Corrected model | 0.604 | 41 | 285 | 0.974 |
| Average temperature | 1.288 | 2 | 285 | 0.277 |
| Change in temperature | 2.318 | 2 | 285 | 0.100 |
| Daily precipitation | 2.823 | 2 | 285 | 0.061 * |
| Average daily humidity | 1.338 | 2 | 285 | 0.264 |
| Maximum THI | 4.130 | 2 | 285 | 0.017 ** |
| Minimum THI | 0.343 | 2 | 285 | 0.710 |
| Average wind speed | 1.125 | 2 | 285 | 0.326 |
| Average temperature × daily rain | 2.516 | 2 | 285 | 0.083 * |
| Average temperature × average daily humidity | 5.729 | 2 | 285 | 0.004 ** |
| Average temperature × average wind speed | 1.782 | 2 | 285 | 0.170 |
| Change in temperature × daily precipitation | 0.824 | 2 | 285 | 0.440 |
| Change in temperature × average daily humidity | 3.913 | 2 | 285 | 0.021 ** |
| Change in temperature × average wind speed | 0.849 | 2 | 285 | 0.429 |
| Daily precipitation × average daily humidity | 0.076 | 2 | 285 | 0.927 |
| Daily precipitation × maximum THI | 1.206 | 2 | 285 | 0.301 |
| Daily precipitation × minimum THI | 2.075 | 2 | 285 | 0.127 |
| Daily precipitation × average wind speed | 0.742 | 2 | 285 | 0.477 |
| Average daily humidity × average wind speed | 2.350 | 2 | 285 | 0.097 * |
| Maximum THI × average wind speed | 3.327 | 2 | 285 | 0.037 ** |
| Minimum THI × average wind speed | 0.011 | 2 | 285 | 0.989 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
| CL | Corpus Luteum |
References
- Nogueira, É.; Cardoso, G.S.; Romero, H.M., Jr.; Dias, A.M.; Carlos, L.; Ítavo, V.; Borges, J.C. Effect of breed and corpus luteum on pregnancy rate of bovine embryo recipients. Rev. Bras. Zootec. 2012, 41, 2129–2133. [Google Scholar] [CrossRef]
- Singh, J.; Pierson, R.A.; Adams, G.P. Ultrasound image attributes of the bovine corpus luteum: Structural and functional correlates. Reproduction 1997, 109, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Ro, Y.; Choe, E.; Hong, L.; Lee, W.; Kim, D. Evaluation of Corpus Luteum and Plasma Progesterone the Day before Embryo Transfer as an Index for Recipient Selection in Dairy Cows. Vet. Sci. 2023, 10, 262. [Google Scholar] [CrossRef] [PubMed]
- Say, E.; Özmen, M.F.; SaĞirkay, H. The Influence of Corpus Luteum Size on the Conception in Embryo Transfer Recipient Cows. Livest. Stud. 2021, 61, 77–81. [Google Scholar] [CrossRef]
- Wolfenson, D.; Luft, O.; Berman, A.; Meidan, R. Effects of season, incubation temperature and cell age on progesterone and prostaglandin F2α production in bovine luteal cells. Anim. Reprod. Sci. 1993, 32, 27–40. [Google Scholar] [CrossRef]
- Senger, P.L. Pathways to Pregnancy and Parturition, 2nd ed.; McGraw-Hill Education: New York, NY, USA, 2003. [Google Scholar]
- Mann, G.E. Corpus luteum size and plasma progesterone concentration in cows. Anim. Reprod. Sci. 2009, 115, 296–299. [Google Scholar] [CrossRef]
- Webb, E.C.; Visagie, P.C.; Westhuizen, J.v.d. Effect of Bioregion on the Size and Production Efficiency of Bonsmara Cattle in Semi-Arid Parts of Southern Africa. In Ruminants—The Husbandry, Economic and Health Aspects; InTech: Houston, TX, USA, 2018. [Google Scholar] [CrossRef]
- Tshuma, T.; Fosgate, G.; Webb, E.; Swanepoel, C.; Holm, D. Effect of Temperature and Humidity on Milk Urea Nitrogen Concentration. Animals 2023, 13, 295. [Google Scholar] [CrossRef]
- Webb, E.C.; de Bruyn, E. Effects of milk urea nitrogen (Mun) and climatological factors on reproduction efficiency of Holstein Friesian and jersey cows in the subtropics. Animals 2021, 11, 3068. [Google Scholar] [CrossRef]
- Ongubo, M.; Rachuonyo, H.; Lusweti, F.; Kios, D.; Kitilit, J.; Musee, K.; Tonui, W.; Lokwaleput, I.; Oliech, G. Factors affecting conception rates in cattle following embryo transfer. Uganda J. Agric. Sci. 2016, 16, 19. [Google Scholar] [CrossRef]
- Ginther, O.J.; Nunes da Silva, P.; Gomez-León, V.E.; Domingues, R.R.; Inskeep, E.K. Side of ovulation at each end of two- and three-wave interovulatory intervals and before and after pregnancy in cattle. Anim. Reprod. Sci. 2021, 229, 106758. [Google Scholar] [CrossRef]
- Dangudubiyyam, S.V.; Ginther, O.J. Relationship between more follicles in right than left ovary in recently born calves and right ovary propensity for ovulation in cattle. Reprod. Biol. 2019, 19, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Foote, W.D.; Peterson, P.W. Relationships between side of pregnancy and side of subsequent ovarian activities in beef and dairy cattle. Reproduction 1968, 16, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Bilodeau-Goeseels, S.; Kastelic, J.P. Factors affecting embryo survival and strategies to reduce embryonic mortality in cattle. Can. J. Anim. Sci. 2003, 83, 659–671. [Google Scholar] [CrossRef]
- Hansen, P.J. The incompletely fulfilled promise of embryo transfer in cattle-why aren’t pregnancy rates greater and what can we do about it? J. Anim. Sci. 2020, 98, skaa288. [Google Scholar] [CrossRef]
- Wieczorkiewicz, M.; Jaśkowski, J.M.; Wichtowska, A.; Olszewska-Tomczyk, M.; Jaśkowski, B.M. Effectiveness of embryo transfer in cows—Risk factors including in vivo derived and in vitro produced embryos. Med. J. Cell Biol. 2021, 9, 123–131. [Google Scholar] [CrossRef]
- Pfeifer, L.F.M.; de Souza Leal, S.; del, C.B.; Schneider, A.; Schmitt, E.; Corrêa, M.N. Effect of the ovulatory follicle diameter and progesterone concentration on the pregnancy rate of fixed-time inseminated lactating beef cows. Rev. Bras. Zootec. 2012, 41, 1004–1008. [Google Scholar] [CrossRef]
- Sá Filho, M.F.; Crespilho, A.M.; Santos, J.E.P.; Perry, G.A.; Baruselli, P.S. Ovarian follicle diameter at timed insemination and estrous response influence likelihood of ovulation and pregnancy after estrous synchronization with progesterone or progestin-based protocols in suckled Bos indicus cows. Anim. Reprod. Sci. 2010, 120, 23–30. [Google Scholar] [CrossRef]
- De Tarso, S.G.S.; Apgar, G.A.; Gastal, M.O.; Gastal, E.L. Relationships between follicle and corpus luteum diameter, blood flow, and progesterone production in beef cows and heifers: Preliminary results. Anim. Reprod. 2016, 13, 81–92. [Google Scholar] [CrossRef]
- Cooke, R.F.; Cardoso, R.C.; Cerri, R.L.A.; Lamb, G.C.; Pohler, K.G.; Riley, D.G.; Vasconcelos, J.L.M. Cattle adapted to tropical and subtropical environments: Genetic and reproductive considerations. J. Anim. Sci. 2020, 98, skaa015. [Google Scholar] [CrossRef]
- Ott, G.C.; Freeman, S.R.; Poore, M.H.; Pickworth, C.L. Maternal Stress at Weaning Impacts Calf Growth. J. Anim. Sci. 2018, 96 (Suppl. 1), 14. [Google Scholar] [CrossRef]
- Klementová, K.; Filipčík, R.; Hošek, M. The effect of ambient temperature on conception and milk performance in breeding holstein cows. Acta Univ. Agric. Silvic. Mendel. Brun. 2017, 65, 1515–1520. [Google Scholar] [CrossRef]
- Darbaz, I.; Sayiner, S.; Ergene, O.; Intas, K.S.; Zabitler, F.; Evci, E.C.; Aslan, S. The effect of comfort-and hot-period on the blood flow of corpus luteum (CL) in cows treated by an Ovsynch protocol. Animals 2021, 11, 2272. [Google Scholar] [CrossRef] [PubMed]
- Echternkamp, S.E.; Thallman, R.M. Factors affecting pregnancy rate to estrous synchronization and fixed-time artificial insemination in beef cattle. J. Anim. Sci. 2011, 89, 3060–3068. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Novo, A.; Pérez-Garnelo, S.S.; Villagrá, A.; Pérez-Villalobos, N.; Astiz, S. The effect of stress on reproduction and reproductive technologies in beef cattle—A review. Animals 2020, 10, 2096. [Google Scholar] [CrossRef]
- Orihuela, A. Some factors affecting the behavioural manifestation of oestrus in cattle: A review. Appl. Anim. Behav. Sci. 2000, 70, 1–16. [Google Scholar] [CrossRef]
- Bearden, J.H.; Fuquay, J.W.; Willard, S.T. Applied Animal Reproduction, 6th ed.; Pearson Prentice Hall: Hoboken, NJ, USA, 2004. [Google Scholar]
- Summer, A.; Lora, I.; Formaggioni, P.; Gottardo, F. Impact of heat stress on milk and meat production. Anim. Front. 2019, 9, 39–46. [Google Scholar] [CrossRef]
- Grobler, S.M.; Scholtz, M.M.; Pyoos-Daniels, G.M.; Seshoka, M.M.; Theunissen, A. The negative effect of heat stress on fertility of extensive beef cattle in South Africa. Proc. Clim.-Smart Livest. Prod. Afr. Conf. 2021, 7–17. [Google Scholar]
- Du Preez, J.H. Parameters for the determination and evaluation of heat stress in dairy cattle in South Africa. In Onderstepoort Journal of Veterinary Research; AOSIS Publishing: Cape Town, South Africa, 2000; Volume 67. [Google Scholar]
- House, H.K. The Five Key Comfort Zones of the Dairy Cow. In Penn State Dairy Cattle Nutrition Workshop; Penn State Extension: Grantville, PA, USA, 2007. [Google Scholar]
- Toledo, I.M.; Dahl, G.E.; De Vries, A. Dairy cattle management and housing for warm environments. In Livestock Science; Elsevier B.V.: Amsterdam, The Netherlands, 2022; Volume 255. [Google Scholar] [CrossRef]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]


| Side | Grade | Day |
|---|---|---|
| R—Right Horn | 1. Large | 1. 8 days after standing estrus |
| L—Left Horn | 2. Medium | 2. 7 days after standing estrus |
| 3. Small | 3. 6 days after standing estrus |
| Climatological Factor | n | Minimum | Maximum | Mean | Standard Deviation |
|---|---|---|---|---|---|
| Precipitation (mm) | 141 | 0.54 | 29.47 | 8.30 | 18.40 |
| Humidity (%) | 483 | 0.36 | 10.71 | 1.79 | 2.38 |
| Maximum THI (%) | 486 | 58.59 | 81.14 | 73.89 | 5.42 |
| Minimum THI (%) | 483 | 42.55 | 57.45 | 50.84 | 3.73 |
| Wind Speed (km/h) | 483 | 0.04 | 1.99 | 0.65 | 0.51 |
| Dairy Breeds | Beef Breeds | |
|---|---|---|
| CA X JE | AN | CH |
| HO | AN X | CHX |
| HO X | BM X | DB |
| JE | BO | SI |
| JE X | BO X | SM |
| BXX | TU | |
| BX | NG | |
| KB X | BR X NG |
| Conception Result | Numerical Value | Percentage |
|---|---|---|
| In calf | 344 | 31.1 |
| Not in calf | 684 | 61.84 |
| Unknown | 78 | 7.05 |
| Cycle | Factor | n | Test | Value | df | Asymptotic Sig. (2-Sided) |
|---|---|---|---|---|---|---|
| 1 | Side | 520 | Pearson Chi-square | 0.016 | 1 | 0.899 |
| Grade | 520 | Linear-by-linear association | 2.068 | 1 | 0.150 | |
| Day | 498 | Linear-by-linear association | 1.142 | 1 | 0.285 | |
| 2 | Side | 282 | Pearson Chi-square | 1.439 | 1 | 0.230 |
| Grade | 282 | Linear-by-linear association | 1.142 | 1 | 0.285 | |
| Day | 276 | Linear-by-linear association | 1.809 | 1 | 0.179 | |
| 3 | Side | 140 | Pearson Chi-square | 0.146 | 1 | 0.703 |
| Grade | 140 | Linear-by-linear association | 2.607 | 1 | 0.106 | |
| Day | 138 | Linear-by-linear association | 0.131 | 1 | 0.717 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demont, K.; Webb, E.C.; Treadwell, R.; Masenge, A. The Effects of Environmental and Management Factors on the Quality of the Corpus Luteum and Subsequent Conception Rates of Beef and Dairy Cows in South Africa. Life 2025, 15, 1687. https://doi.org/10.3390/life15111687
Demont K, Webb EC, Treadwell R, Masenge A. The Effects of Environmental and Management Factors on the Quality of the Corpus Luteum and Subsequent Conception Rates of Beef and Dairy Cows in South Africa. Life. 2025; 15(11):1687. https://doi.org/10.3390/life15111687
Chicago/Turabian StyleDemont, Kaylee, Edward Cottington Webb, Robert Treadwell, and Andries Masenge. 2025. "The Effects of Environmental and Management Factors on the Quality of the Corpus Luteum and Subsequent Conception Rates of Beef and Dairy Cows in South Africa" Life 15, no. 11: 1687. https://doi.org/10.3390/life15111687
APA StyleDemont, K., Webb, E. C., Treadwell, R., & Masenge, A. (2025). The Effects of Environmental and Management Factors on the Quality of the Corpus Luteum and Subsequent Conception Rates of Beef and Dairy Cows in South Africa. Life, 15(11), 1687. https://doi.org/10.3390/life15111687

