Exploring TANK-Binding Kinase 1 in Amyotrophic Lateral Sclerosis: From Structural Mechanisms to Machine Learning-Guided Therapeutics
Abstract
1. Introduction
2. Genetics of TBK1 in ALS
2.1. Discovery, Frequency, and Population Variation
2.2. Classes of Variants and Domain-Specific Effects
2.3. Penetrance, Expressivity, and Oligogenicity
2.4. Variant Classification and Clinical Interpretation
2.5. Implications for Patient Stratification and Therapeutic Development
3. TBK1 Structure, Domains, and Biochemical Features
3.1. Overall Architecture and Kinase Domain
3.2. Regulatory and Scaffold Domains
3.3. Post-Translational Regulation and Structural Complexes
3.4. Structural Consequences of Variants and Therapeutic Implications
4. Molecular and Cellular Functions of TBK1 Relevant to ALS
4.1. TBK1 in Selective Autophagy and Mitophagy
4.2. TBK1 in Innate Immunity and Neuroinflammation
4.3. TBK1, Proteostasis, and Experimental Readouts
4.4. Summary and Implications for ALS Pathogenesis
5. Mechanistic Insights from Patient Variants
5.1. Loss-of-Function and Missense Variants
5.2. Cellular and In Vivo Phenotypes of TBK1 Variants
5.3. Variant Mapping, Pathway Interactions, and Modifiers
5.4. Therapeutic Implications
6. TBK1 in Animal and Cellular Models of ALS
6.1. Mouse Models of TBK1 Deficiency
6.2. Patient-Derived and Non-Mammalian Models
6.3. Mechanistic Insights and Limitations of Current Models
7. Therapeutic Opportunities: Structure-Based Drug Discovery and Repurposing
7.1. Rationale and ATP-Competitive Inhibitors
7.2. Allosteric, Covalent, and Computational Strategies
7.3. Drug Repurposing and Biologic Strategies
7.4. Combination Strategies and Translational Readouts
7.5. Machine and Deep Learning Approaches in TBK1 Drug Discovery
8. Challenges, Biomarkers, Delivery, and Isoform Specificity
8.1. Isoform Specificity and Therapeutic Strategy
8.2. Biomarkers and Drug Delivery Challenges
8.3. Safety and Clinical Trial Design
9. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Redler, R.L.; Dokholyan, N.V. The complex molecular biology of amyotrophic lateral sclerosis (ALS). Prog. Mol. Biol. Transl. Sci. 2012, 107, 215–262. [Google Scholar]
- Masrori, P.; Van Damme, P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol. 2020, 27, 1918–1929. [Google Scholar] [CrossRef] [PubMed]
- Riva, N.; Agosta, F.; Lunetta, C.; Filippi, M.; Quattrini, A. Recent advances in amyotrophic lateral sclerosis. J. Neurol. 2016, 263, 1241–1254. [Google Scholar] [CrossRef] [PubMed]
- Longinetti, E.; Fang, F. Epidemiology of amyotrophic lateral sclerosis: An update of recent literature. Curr. Opin. Neurol. 2019, 32, 771–776. [Google Scholar] [CrossRef]
- Quigley, S.E.; Quigg, K.H.; Goutman, S.A. Genetic and Mechanistic Insights Inform Amyotrophic Lateral Sclerosis Treatment and Symptomatic Management: Current and Emerging Therapeutics and Clinical Trial Design Considerations. CNS Drugs 2025, 39, 949–993. [Google Scholar] [CrossRef]
- Eisen, A. Amyotrophic Lateral Sclerosis: Recent Considerations for Diagnosis, Pathogenesis and Therapy. Brain Sci. 2025, 15, 498. [Google Scholar] [CrossRef]
- Ahmed, R.M.; Bocchetta, M.; Todd, E.G.; Tse, N.Y.; Devenney, E.M.; Tu, S.; Caga, J.; Hodges, J.R.; Halliday, G.M.; Irish, M.; et al. Tackling clinical heterogeneity across the amyotrophic lateral sclerosis-frontotemporal dementia spectrum using a transdiagnostic approach. Brain Commun. 2021, 3, fcab257. [Google Scholar] [CrossRef]
- Vasta, R.; Chia, R.; Traynor, B.J.; Chiò, A. Unraveling the complex interplay between genes, environment, and climate in ALS. EBioMedicine 2022, 75, 103795. [Google Scholar] [CrossRef]
- Bozzoni, V.; Pansarasa, O.; Diamanti, L.; Nosari, G.; Cereda, C.; Ceroni, M. Amyotrophic lateral sclerosis and environmental factors. Funct. Neurol. 2016, 31, 7–19. [Google Scholar] [CrossRef]
- De Marchi, F.; Lombardi, I.; Bombaci, A.; Diamanti, L.; Olivero, M.; Perciballi, E.; Tornabene, D.; Vulcano, E.; Ferrari, D.; Mazzini, L. Recent therapeutic advances in the treatment and management of amyotrophic lateral sclerosis: The era of regenerative medicine. Expert Rev. Neurother. 2025, 25, 773–789. [Google Scholar] [CrossRef]
- Raas, Q.; Haouy, G.; de Calbiac, H.; Pasho, E.; Marian, A.; Guerrera, I.C.; Rosello, M.; Oeckl, P.; Del Bene, F.; Catanese, A.; et al. TBK1 is involved in programmed cell death and ALS-related pathways in novel zebrafish models. Cell Death Discov. 2025, 11, 98. [Google Scholar] [CrossRef]
- Gurfinkel, Y.; Polain, N.; Sonar, K.; Nice, P.; Mancera, R.L.; Rea, S.L. Functional and structural consequences of TBK1 missense variants in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurobiol. Dis. 2022, 174, 105859. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-Q.; Chen, J.-M.; Lin, H.; Feng, S.-Y.; Che, C.-H.; Liu, C.-Y.; Huang, H.-P.; Zou, Z.-Y. Novel Intronic Mutations of TBK1 Promote Aberrant Splicing Modes in Amyotrophic Lateral Sclerosis. Front. Mol. Neurosci. 2022, 15, 691534. [Google Scholar] [CrossRef] [PubMed]
- Gijselinck, I.; Van Mossevelde, S.; van der Zee, J.; Sieben, A.; Philtjens, S.; Heeman, B.; Engelborghs, S.; Vandenbulcke, M.; De Baets, G.; Bäumer, V.; et al. Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology 2015, 85, 2116–2125. [Google Scholar] [CrossRef]
- Tohnai, G.; Nakamura, R.; Sone, J.; Nakatochi, M.; Yokoi, D.; Katsuno, M.; Watanabe, H.; Watanabe, H.; Ito, M.; Li, Y.; et al. Frequency and characteristics of the TBK1 gene variants in Japanese patients with sporadic amyotrophic lateral sclerosis. Neurobiol. Aging 2018, 64, 158.e15–158.e19. [Google Scholar] [CrossRef]
- Lu, Y.; Almeida, S.; Gao, F.B. TBK1 haploinsufficiency in ALS and FTD compromises membrane trafficking. Acta Neuropathol. 2021, 142, 217–221. [Google Scholar] [CrossRef]
- Duan, W.; Guo, M.; Yi, L.; Zhang, J.; Bi, Y.; Liu, Y.; Li, Y.; Li, Z.; Ma, Y.; Zhang, G.; et al. Deletion of Tbk1 disrupts autophagy and reproduces behavioral and locomotor symptoms of FTD-ALS in mice. Aging 2019, 11, 2457–2476. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, H.-J.; Kim, S.-Y.; Roh, J.; Yun, J.H.; Kim, C.-H. TBK1 is a signaling hub in coordinating stress-adaptive mechanisms in head and neck cancer progression. Autophagy 2025, 21, 1744–1766. [Google Scholar] [CrossRef]
- Herhaus, L. TBK1 (TANK-binding kinase 1)-mediated regulation of autophagy in health and disease. Matrix Biol. 2021, 100–101, 84–98. [Google Scholar] [CrossRef]
- Shu, C.; Sankaran, B.; Chaton, C.T.; Herr, A.B.; Mishra, A.; Peng, J.; Li, P. Structural insights into the functions of TBK1 in innate antimicrobial immunity. Structure 2013, 21, 1137–1148. [Google Scholar] [CrossRef]
- Paul, S.; Biswas, S.R.; Milner, J.P.; Tomsick, P.L.; Pickrell, A.M. Adaptor-Mediated Trafficking of Tank Binding Kinase 1 During Diverse Cellular Processes. Traffic 2025, 26, e70000. [Google Scholar] [CrossRef]
- Richter, B.; Sliter, D.A.; Herhaus, L.; Stolz, A.; Wang, C.; Beli, P.; Zaffagnini, G.; Wild, P.; Martens, S.; Wagner, S.A.; et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl. Acad. Sci. USA 2016, 113, 4039–4044. [Google Scholar] [CrossRef]
- Matsumoto, G.; Shimogori, T.; Hattori, N.; Nukina, N. TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Hum. Mol. Genet. 2015, 24, 4429–4442. [Google Scholar] [CrossRef] [PubMed]
- White, J.; Choi, Y.B.; Zhang, J.; Vo, M.T.; He, C.; Shaikh, K.; Harhaj, E.W. Phosphorylation of the selective autophagy receptor TAX1BP1 by TBK1 and IKBKE/IKKi promotes ATG8-family protein-dependent clearance of MAVS aggregates. Autophagy 2025, 21, 160–177. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Cheung, J.; Gerbino, V.; Ahlsén, G.; Zimanyi, C.; Hirsh, D.; Maniatis, T. Effects of ALS-associated TANK binding kinase 1 mutations on protein–protein interactions and kinase activity. Proc. Natl. Acad. Sci. USA 2019, 116, 24517–24526. [Google Scholar] [CrossRef]
- Menge, S.; Decker, L.; Freischmidt, A. Genetics of ALS—Genes and modifier. Curr. Opin. Neurol. 2025, 38, 568–573. [Google Scholar] [CrossRef]
- Nag, N.; Tripathi, T. Mislocalization of Nup62 contributes to TDP-43 proteinopathy in ALS/FTLD. ACS Chem. Neurosci. 2022, 13, 2544–2546. [Google Scholar] [CrossRef]
- Watanabe, S.; Murata, Y.; Oka, Y.; Oiwa, K.; Horiuchi, M.; Iguchi, Y.; Komine, O.; Sobue, A.; Katsuno, M.; Ogi, T.; et al. Mitochondria-associated membrane collapse impairs TBK1-mediated proteostatic stress response in ALS. Proc. Natl. Acad. Sci. USA 2023, 120, e2315347120. [Google Scholar] [CrossRef]
- Oakes, J.A.; Davies, M.C.; Collins, M.O. TBK1: A new player in ALS linking autophagy and neuroinflammation. Mol. Brain 2017, 10, 5. [Google Scholar] [CrossRef]
- Pozzi, L.; Valenza, F.; Mosca, L.; Dal Mas, A.; Domi, T.; Romano, A.; Tarlarini, C.; Falzone, Y.M.; Tremolizzo, L.; Sorarù, G.; et al. TBK1 mutations in Italian patients with amyotrophic lateral sclerosis: Genetic and functional characterisation. J. Neurol. Neurosurg. Psychiatry 2017, 88, 869–875. [Google Scholar] [CrossRef]
- Ahmad, L.; Zhang, S.-Y.; Casanova, J.-L.; Sancho-Shimizu, V. Human TBK1: A gatekeeper of neuroinflammation. Trends Mol. Med. 2016, 22, 511–527. [Google Scholar] [CrossRef] [PubMed]
- Mputhia, Z.; Hone, E.; Tripathi, T.; Sargeant, T.; Martins, R.; Bharadwaj, P. Autophagy modulation as a treatment of amyloid diseases. Molecules 2019, 24, 3372. [Google Scholar] [CrossRef] [PubMed]
- Sung, W.; Nahm, M.; Lim, S.M.; Noh, M.-Y.; Lee, S.; Hwang, S.-M.; Kim, Y.H.; Park, J.; Oh, K.-W.; Ki, C.-S. Clinical and genetic characteristics of amyotrophic lateral sclerosis patients with ANXA11 variants. Brain Commun. 2022, 4, fcac299. [Google Scholar] [CrossRef]
- De Majo, M. Genetic and Functional Characterisation of ALS-Linked Genes: TBK1, OPTN and MATR3. Ph.D Thesis, Institute of Psychiatry, Psychology and Neuroscience, London, UK, 2017. [Google Scholar]
- Lattante, S.; Doronzio, P.N.; Marangi, G.; Conte, A.; Bisogni, G.; Bernardo, D.; Russo, T.; Lamberti, D.; Patrizi, S.; Apollo, F.P. Coexistence of variants in TBK1 and in other ALS-related genes elucidates an oligogenic model of pathogenesis in sporadic ALS. Neurobiol. Aging 2019, 84, 239.e9–239.e14. [Google Scholar] [CrossRef]
- Brenner, D.; Müller, K.; Lattante, S.; Yilmaz, R.; Knehr, A.; Freischmidt, A.; Ludolph, A.C.; Andersen, P.M.; Weishaupt, J.H. FUS mutations dominate TBK1 mutations in FUS/TBK1 double-mutant ALS/FTD pedigrees. Neurogenetics 2022, 23, 59–65. [Google Scholar] [CrossRef]
- Freischmidt, A.; Wieland, T.; Richter, B.; Ruf, W.; Schaeffer, V.; Müller, K.; Marroquin, N.; Nordin, F.; Hübers, A.; Weydt, P.; et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 2015, 18, 631–636. [Google Scholar] [CrossRef]
- Pottier, C.; Bieniek, K.F.; Finch, N.; van de Vorst, M.; Baker, M.; Perkersen, R.; Brown, P.; Ravenscroft, T.; van Blitterswijk, M.; Nicholson, A.M.; et al. Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol. 2015, 130, 77–92. [Google Scholar] [CrossRef]
- Freischmidt, A.; Müller, K.; Ludolph, A.C.; Weishaupt, J.H.; Andersen, P.M. Association of mutations in TBK1 with sporadic and familial amyotrophic lateral sclerosis and frontotemporal dementia. JAMA Neurol. 2017, 74, 110–113. [Google Scholar] [CrossRef]
- Cui, R.; Tuo, M.; Li, P.; Zhou, C. Association between TBK1 mutations and risk of amyotrophic lateral sclerosis/frontotemporal dementia spectrum: A meta-analysis. Neurol. Sci. 2018, 39, 811–820. [Google Scholar] [CrossRef]
- Guo, W.; Vandoorne, T.; Steyaert, J.; Staats, K.A.; Van Den Bosch, L. The multifaceted role of kinases in amyotrophic lateral sclerosis: Genetic, pathological and therapeutic implications. Brain 2020, 143, 1651–1673. [Google Scholar] [CrossRef] [PubMed]
- Larabi, A.; Devos, J.M.; Ng, S.-L.; Nanao, M.H.; Round, A.; Maniatis, T.; Panne, D. Crystal structure and mechanism of activation of TANK-binding kinase 1. Cell Rep. 2013, 3, 734–746. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Helgason, E.; Phung, Q.T.; Quan, C.L.; Iyer, R.S.; Lee, M.W.; Bowman, K.K.; Starovasnik, M.A.; Dueber, E.C. Molecular basis of Tank-binding kinase 1 activation by transautophosphorylation. Proc. Natl. Acad. Sci. USA 2012, 109, 9378–9383. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Zhang, Q.; Xu, P. TBK1, a central kinase in innate immune sensing of nucleic acids and beyond. Acta Biochim. Biophys. Sin. 2020, 52, 757–767. [Google Scholar] [CrossRef]
- Zhang, C.; Shang, G.; Gui, X.; Zhang, X.; Bai, X.-c.; Chen, Z.J. Structural basis of STING binding with and phosphorylation by TBK1. Nature 2019, 567, 394–398. [Google Scholar] [CrossRef]
- Herhaus, L.; Dikic, I. Expanding the ubiquitin code through post—Translational modification. EMBO Rep. 2015, 16, 1071–1083. [Google Scholar] [CrossRef]
- Wang, L.; Qi, H.; Tang, Y.; Shen, H.-M. Post-translational modifications of key machinery in the control of mitophagy. Trends Biochem. Sci. 2020, 45, 58–75. [Google Scholar] [CrossRef]
- Liu, J.; Qian, C.; Cao, X. Post-translational modification control of innate immunity. Immunity 2016, 45, 15–30. [Google Scholar] [CrossRef]
- Yasir, M.; Tripathi, A.S.; Shukla, P.; Maurya, R.K. Immunogenicity of Therapeutic Proteins. In Protein-Based Therapeutics; Springer: New York, NY, USA, 2023; pp. 251–273. [Google Scholar]
- Taft, J.; Markson, M.; Legarda, D.; Patel, R.; Chan, M.; Malle, L.; Richardson, A.; Gruber, C.; Martín-Fernández, M.; Mancini, G.M. Human TBK1 deficiency leads to autoinflammation driven by TNF-induced cell death. Cell 2021, 184, 4447–4463.e4420. [Google Scholar] [CrossRef]
- Zhao, C.; Liao, Y.; Rahaman, A.; Kumar, V. Towards understanding the relationship between ER stress and unfolded protein response in amyotrophic lateral sclerosis. Front. Aging Neurosci. 2022, 14, 892518. [Google Scholar] [CrossRef]
- Moore, A.S.; Holzbaur, E.L. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc. Natl. Acad. Sci. USA 2016, 113, E3349–E3358. [Google Scholar] [CrossRef] [PubMed]
- Chua, J.P.; De Calbiac, H.; Kabashi, E.; Barmada, S.J. Autophagy and ALS: Mechanistic insights and therapeutic implications. Autophagy 2022, 18, 254–282. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Long, H.; Hou, L.; Feng, B.; Ma, Z.; Wu, Y.; Zeng, Y.; Cai, J.; Zhang, D.-w.; Zhao, G. The mitophagy pathway and its implications in human diseases. Signal Transduct. Target. Ther. 2023, 8, 304. [Google Scholar] [CrossRef]
- Yang, Z.; Yoshii, S.R.; Sakai, Y.; Zhang, J.; Chino, H.; Knorr, R.L.; Mizushima, N. Autophagy adaptors mediate Parkin-dependent mitophagy by forming sheet-like liquid condensates. EMBO J. 2024, 43, 5613–5634. [Google Scholar] [CrossRef]
- Adriaenssens, E.; Nguyen, T.N.; Sawa-Makarska, J.; Khuu, G.; Schuschnig, M.; Shoebridge, S.; Skulsuppaisarn, M.; Watts, E.M.; Csalyi, K.D.; Padman, B.S. Control of mitophagy initiation and progression by the TBK1 adaptors NAP1 and SINTBAD. Nat. Struct. Mol. Biol. 2024, 31, 1717–1731. [Google Scholar] [CrossRef]
- Villarroel Campos, D. Regulation of intracellular traffic by TBK1 and its relevance to ALS. Ph.D Thesis, UCL (University College London), London, UK, 2020. [Google Scholar]
- García-García, R.; Martín-Herrero, L.; Blanca-Pariente, L.; Pérez-Cabello, J.; Roodveldt, C. Immune signaling kinases in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Int. J. Mol. Sci. 2021, 22, 13280. [Google Scholar] [CrossRef]
- Gerbino, V.; Kaunga, E.; Ye, J.; Canzio, D.; O’Keeffe, S.; Rudnick, N.D.; Guarnieri, P.; Lutz, C.M.; Maniatis, T. The Loss of TBK1 Kinase Activity in Motor Neurons or in All Cell Types Differentially Impacts ALS Disease Progression in SOD1 Mice. Neuron 2020, 106, 789–805.e785. [Google Scholar] [CrossRef]
- Haouy, G. Defining the Functional Role of TBK1 Using a Novel Zebrafish Model in the Context of Amyotrophic Lateral Sclerosis. Définir le Rôle Fonctionnel de TBK1 en Utilisant un Nouveau Modèle Poisson Zèbre Dans le Contexte de la Sclérose Latérale Amyotrophique—Démence Fronto-Temporale. Ph.D Thesis, Sorbonne Université, Paris, France, 2023. [Google Scholar]
- Shao, W.; Todd, T.W.; Wu, Y.; Jones, C.Y.; Tong, J.; Jansen-West, K.; Daughrity, L.M.; Park, J.; Koike, Y.; Kurti, A. Two FTD-ALS genes converge on the endosomal pathway to induce TDP-43 pathology and degeneration. Science 2022, 378, 94–99. [Google Scholar] [CrossRef]
- Foster, A.D.; Downing, P.; Figredo, E.; Polain, N.; Stott, A.; Layfield, R.; Rea, S.L. ALS-associated TBK1 variant p.G175S is defective in phosphorylation of p62 and impacts TBK1-mediated signalling and TDP-43 autophagic degradation. Mol. Cell. Neurosci. 2020, 108, 103539. [Google Scholar] [CrossRef]
- de Majo, M.; Topp, S.D.; Smith, B.N.; Nishimura, A.L.; Chen, H.-J.; Gkazi, A.S.; Miller, J.; Wong, C.H.; Vance, C.; Baas, F.; et al. ALS-associated missense and nonsense TBK1 mutations can both cause loss of kinase function. Neurobiol. Aging 2018, 71, 266.e1–266.e10. [Google Scholar] [CrossRef]
- Naruse, H.; Iseki, C.; Mitsui, J.; Miki, J.; Nagasawa, H.; Kurokawa, K.; Kobayashi, R.; Sato, H.; Goto, J.; Satake, W.; et al. A novel TBK1 loss-of-function variant associated with ALS and parkinsonism phenotypes. Amyotroph. Lateral Scler. Front. Degener. 2024, 25, 791–794. [Google Scholar] [CrossRef] [PubMed]
- Harding, O.; Evans, C.S.; Ye, J.; Cheung, J.; Maniatis, T.; Holzbaur, E.L.F. ALS- and FTD-associated missense mutations in TBK1 differentially disrupt mitophagy. Proc. Natl. Acad. Sci. USA 2021, 118, e2025053118. [Google Scholar] [CrossRef] [PubMed]
- Mayl, K.; Sreedharan, J. Blowing Hot and Cold in ALS: The Duality of TBK1. Neuron 2020, 106, 705–707. [Google Scholar] [CrossRef]
- Arshad, F.; Vengalil, S.; Nalini, A.; Polavarapu, K.; Shamim, U.; Jabeen, S.; Nagaraj, C.; Ramakrishnan, S.; Faruq, M.; Alladi, S. Novel TBK1 variant associated with Frontotemporal Dementia overlap syndrome. Acta Neurol. Scand. 2022, 145, 399–406. [Google Scholar] [CrossRef]
- Duan, Q.-Q.; Wang, H.; Su, W.-M.; Gu, X.-J.; Shen, X.-F.; Jiang, Z.; Ren, Y.-L.; Cao, B.; Li, G.-B.; Wang, Y.; et al. TBK1, a prioritized drug repurposing target for amyotrophic lateral sclerosis: Evidence from druggable genome Mendelian randomization and pharmacological verification in vitro. BMC Med. 2024, 22, 96. [Google Scholar] [CrossRef]
- Palomo, V.; Nozal, V.; Rojas-Prats, E.; Gil, C.; Martinez, A. Protein kinase inhibitors for amyotrophic lateral sclerosis therapy. Br. J. Pharmacol. 2021, 178, 1316–1335. [Google Scholar] [CrossRef]
- Brenner, D.; Sieverding, K.; Bruno, C.; Lüningschrör, P.; Buck, E.; Mungwa, S.; Fischer, L.; Brockmann, S.J.; Ulmer, J.; Bliederhäuser, C.; et al. Heterozygous Tbk1 loss has opposing effects in early and late stages of ALS in mice. J. Exp. Med. 2019, 216, 267–278. [Google Scholar] [CrossRef]
- Duan, W.; Yi, L.; Tian, Y.; Huang, H.-p.; Li, Z.; Bi, Y.; Guo, M.; Li, Y.; Liu, Y.; Ma, Y.; et al. Myeloid TBK1 Deficiency Induces Motor Deficits and Axon Degeneration Through Inflammatory Cell Infiltration. Mol. Neurobiol. 2021, 58, 2435–2446. [Google Scholar] [CrossRef]
- Brenner, D.; Sieverding, K.; Srinidhi, J.; Zellner, S.; Secker, C.; Yilmaz, R.; Dyckow, J.; Amr, S.; Ponomarenko, A.; Tunaboylu, E.; et al. A TBK1 variant causes autophagolysosomal and motoneuron pathology without neuroinflammation in mice. J. Exp. Med. 2024, 221, e20221190. [Google Scholar] [CrossRef]
- Munoz-Ruiz, R. Novel Aspects of TDP-43’s Interaction with ALS-Related Autophagy Genes. Nouveaux Aspects Interactionnels Entre TDP-43 et des Gènes de L’autophagie Liés à la SLA. Ph.D Thesis, Sorbonne Université, Paris, France, 2019. [Google Scholar]
- Van Damme, P.; Robberecht, W.; Van Den Bosch, L. Modelling amyotrophic lateral sclerosis: Progress and possibilities. Dis. Model. Mech. 2017, 10, 537–549. [Google Scholar] [CrossRef]
- Zhu, L.; Li, S.; Li, X.-J.; Yin, P. Pathological insights from amyotrophic lateral sclerosis animal models: Comparisons, limitations, and challenges. Transl. Neurodegener. 2023, 12, 46. [Google Scholar] [CrossRef]
- Benn, C.L.; Dawson, L.A. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front. Aging Neurosci. 2020, 12, 242. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, J.; Zhou, E.; Wang, J.; Wang, Y. Small-Molecule Receptor-Interacting Protein 1 (RIP1) Inhibitors as Therapeutic Agents for Multifaceted Diseases: Current Medicinal Chemistry Insights and Emerging Opportunities. J. Med. Chem. 2022, 65, 14971–14999. [Google Scholar] [CrossRef]
- Serafim, R.A.M.; Elkins, J.M.; Zuercher, W.J.; Laufer, S.A.; Gehringer, M. Chemical Probes for Understudied Kinases: Challenges and Opportunities. J. Med. Chem. 2022, 65, 1132–1170. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Yang, X.; Duan, Y.; Han, J.; Liao, C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J. Med. Chem. 2021, 64, 1283–1345. [Google Scholar] [CrossRef] [PubMed]
- Carroll, E.; Scaber, J.; Huber, K.V.M.; Brennan, P.E.; Thompson, A.G.; Turner, M.R.; Talbot, K. Drug repurposing in amyotrophic lateral sclerosis (ALS). Expert Opin. Drug Discov. 2025, 20, 447–464. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Li, Q.; Jiang, X.; Lu, X.; Feng, F.; Qu, W.; Chen, Y.; Sun, H. Design of Small Molecule Autophagy Modulators: A Promising Druggable Strategy. J. Med. Chem. 2018, 61, 4656–4687. [Google Scholar] [CrossRef]
- Yang, P.; Shuai, W.; Wang, X.; Hu, X.; Zhao, M.; Wang, A.; Wu, Y.; Ouyang, L.; Wang, G. Mitophagy in Neurodegenerative Diseases: Mechanisms of Action and the Advances of Drug Discovery. J. Med. Chem. 2025, 68, 3970–3994. [Google Scholar] [CrossRef]
- Ramadass, V.; Vaiyapuri, T.; Tergaonkar, V. Small Molecule NF-κB Pathway Inhibitors in Clinic. Int. J. Mol. Sci. 2020, 21, 5164. [Google Scholar] [CrossRef]
- Banjare, P.; Wamanrao Matore, B.; Murmu, A.; Kumar, V.; Singh, J.; Roy, P.P. In silico Strategy: A Promising Implement in the Development of Multitarget Drugs against Neurodegenerative Diseases. Curr. Top. Med. Chem. 2023, 23, 2765–2791. [Google Scholar] [CrossRef]
- Choudhury, C.; Murugan, N.A.; Priyakumar, U.D. Structure-based drug repurposing: Traditional and advanced AI/ML-aided methods. Drug Discov. Today 2022, 27, 1847–1861. [Google Scholar] [CrossRef]
- Özçelik, R.; van Tilborg, D.; Jiménez-Luna, J.; Grisoni, F. Structure—Based Drug Discovery with Deep Learning. ChemBioChem 2023, 24, e202200776. [Google Scholar] [CrossRef]
- Kong, W.; Hu, Y.; Zhang, J.; Tan, Q. Application of SMILES-based molecular generative model in new drug design. Front. Pharmacol. 2022, 13, 1046524. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.T.; Yang, J.-S.; Liao, K.Y.; Tseng, W.C.; Lee, C.; Gill, M.; Compas, C.; See, S.; Tsai, F.-J. Predicting blood–brain barrier permeability of molecules with a large language model and machine learning. Sci. Rep. 2024, 14, 15844. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Li, K.; Chen, Y.; Li, Y.; Jiang, W.; Cao, W.; Yu, H.; Fan, D.; Deng, B. Gene therapy breakthroughs in ALS: A beacon of hope for 20% of ALS patients. Transl. Neurodegener. 2025, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Beckers, J.; Van Damme, P. The role of autophagy in the pathogenesis and treatment of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Autophagy Rep. 2025, 4, 2474796. [Google Scholar] [CrossRef]
- Malaspina, A. Chapter Six—Use of biomarkers in clinical trials and future developments that will help identify novel biomarkers. In International Review of Neurobiology; Shaw, P.J., Kirby, J., Eds.; Academic Press: Cambridge, MA, USA, 2024; Volume 176, pp. 171–207. [Google Scholar]



| Variant Type | Domain(s) | Molecular Consequence | Functional Effect | Clinical/Phenotypic Correlates |
|---|---|---|---|---|
| Nonsense/Frameshift (LoF) | Kinase, UbL, CCD1/2 | Nonsense-mediated decay → ↓ TBK1 dosage | ↓ autophagy-receptor phosphorylation; impaired mitophagy and immune signaling | Classical ALS/ALS-FTD; incomplete penetrance |
| Splice-site | Near exon–intron boundaries | Exon skipping or frameshift | Loss of full-length TBK1 | ALS ± FTD; often later onset |
| Missense (Kinase) | KD (ATP pocket/activation loop) | Catalytic defect ± dominant-negative effect | ↓ ATP binding/autophosphorylation | ALS/ALS-FTD; higher penetrance |
| Missense (UbL) | UbL (308–383) | Disrupted KD–UbL interface | ↓ stability/altered activation threshold | Variable onset; partial penetrance |
| Missense/In-frame (CCD1–2) | Scaffold/Adaptor-binding | Impaired dimerization or adaptor docking (OPTN, NAP1, TANK) | Selective mitophagy defect | ALS-FTD overlap; behavioral variant |
| Compound/Oligogenic | Multi-gene (e.g., OPTN, SQSTM1) | Additive impairment of proteostasis and immunity | Enhanced aggregation/stress | Early onset; variable expressivity |
| Domain/Region | Key Features | Representative Variants | Functional Impact | Therapeutic Implications |
|---|---|---|---|---|
| Kinase (1–307) | Bilobed fold; ATP pocket; Ser172 activation loop | Active-site missense | ↓ catalysis/dominant-negative | ATP-competitive inhibitors/activators |
| UbL (308–383) | Ub-like fold; KD–UbL interface | Interface-destabilizing missense | ↓ stability/activation control | Stabilizers/proteostasis enhancers |
| CCD1 (384–657) | α-helical coiled-coil; dimerization | Helix-disrupting indels | ↓ dimerization → ↓ autophosphorylation | PPI modulators/gene replacement |
| CCD2 (658–729) | Adaptor docking (OPTN, TANK, NAP1) | E696K, others | Impaired adaptor binding → ↓ mitophagy | Peptide mimetics/bypass activators |
| Inter-domain and PTM sites | Surfaces coupling domains; phosphorylation, ubiquitination | Distributed | Mis-regulated activity set-point | Allosteric regulators/PTM normalization |
| Function/Pathway | Key Substrates/Effectors | Physiological Role | TBK1 Dysfunction Effect | Experimental/Clinical Readouts |
|---|---|---|---|---|
| Selective autophagy | OPTN, p62 | Receptor phosphorylation → cargo sequestration | Aggregate buildup | p-OPTN/p-p62 WB; flux assays |
| Mitophagy | OPTN, NDP52, PINK1–Parkin | Damaged-mito clearance | Defective mitochondrial removal | mt-Keima/mito-QC reporters |
| Innate immunity | STING, IRF3, NF-κB | IFN and cytokine signaling | Chronic glial activation | p-IRF3 WB; cytokine qPCR |
| Proteostasis/Stress | LC3, stress-granule factors | Maintain proteostasis | ER stress, axonal transport loss | Aggregation assays; axonal transport |
| Neuroinflammation | Microglial/astrocytic genes | Immune homeostasis | Primed pro-inflammatory state | RNA-seq signatures; TSPO PET |
| Approach | Mechanistic Rationale | Advantages | Key Challenges/Limitations | Status |
|---|---|---|---|---|
| ATP-competitive inhibitors | Block KD ATP pocket → suppress immune signaling | Tractable; structural templates | Isoform selectivity; BBB penetration | Preclinical |
| Allosteric modulators | Stabilize inter-domain/adaptor interactions | Pathway-specific control | Allosteric sites less defined | Early discovery |
| Covalent/reversible binders | Long-lived engagement | High potency | Off-target reactivity; chronic safety | Concept stage |
| Gene replacement (AAV) | Restore TBK1 dosage | Durable correction | CNS delivery; immunogenicity | Preclinical proof-of-concept |
| Allele-specific silencing + replacement | Neutralize DN alleles + re-express WT | Mechanistic precision | Design complexity | Preclinical |
| Drug repurposing | Reuse known TBK1 modulators (e.g., amlexanox) | Known PK/safety | Limited CNS exposure | Early exploration |
| Combination strategies | Target mitophagy + inflammation | Synergistic potential | Trial design complexity | Emerging concept |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anjum, F.; Hulbah, M.J.; Shamsi, A.; Mohammad, T. Exploring TANK-Binding Kinase 1 in Amyotrophic Lateral Sclerosis: From Structural Mechanisms to Machine Learning-Guided Therapeutics. Life 2025, 15, 1665. https://doi.org/10.3390/life15111665
Anjum F, Hulbah MJ, Shamsi A, Mohammad T. Exploring TANK-Binding Kinase 1 in Amyotrophic Lateral Sclerosis: From Structural Mechanisms to Machine Learning-Guided Therapeutics. Life. 2025; 15(11):1665. https://doi.org/10.3390/life15111665
Chicago/Turabian StyleAnjum, Farah, Maram Jameel Hulbah, Anas Shamsi, and Taj Mohammad. 2025. "Exploring TANK-Binding Kinase 1 in Amyotrophic Lateral Sclerosis: From Structural Mechanisms to Machine Learning-Guided Therapeutics" Life 15, no. 11: 1665. https://doi.org/10.3390/life15111665
APA StyleAnjum, F., Hulbah, M. J., Shamsi, A., & Mohammad, T. (2025). Exploring TANK-Binding Kinase 1 in Amyotrophic Lateral Sclerosis: From Structural Mechanisms to Machine Learning-Guided Therapeutics. Life, 15(11), 1665. https://doi.org/10.3390/life15111665

