Safety in Spine Surgery: Risk Factors for Intraoperative Blood Loss and Management Strategies
Abstract
1. Introduction
2. Epidemiology of Intraoperative Blood Loss
3. Incidence and Definition of Massive Intraoperative Blood Loss
4. Risk Factors
4.1. Patient-Related Factors
4.2. Operative Factors
4.3. Relevant Anatomy
4.4. Thoracolumbar and Lumbosacral Regions
4.5. Cervical Spine
5. Pathophysiology
5.1. Venous Bleeding: Epidural Venous Plexus
5.2. Arterial Bleeding: Segmental and Iliac Vessels
5.3. Tumor and Vascular Lesion Surgery
5.4. Tumor Vascularity and Bone Bleeding
6. Intraoperative Recognition and Timing of Bleeding Events
6.1. Intraoperative Bleeding Is Typically Phase-Specific
6.2. Intraoperative Recognition of Hemorrhage
6.3. Pathophysiology of Hemorrhage and Coagulopathy
6.4. Impact of Anticoagulant and Antiplatelet Medications on Bleeding Risk
6.5. Clinical Implications and Risk Stratification
7. Management Strategies
7.1. Preoperative Assessment and Optimization
7.2. Intraoperative Hemostatic Strategies
7.3. Blood Conservation and Transfusion Management
7.4. Advanced Hemostatic Monitoring
7.5. Massive Transfusion Protocol Guidelines for Spine Surgery
8. Postoperative and Long-Term Management
9. Patient Blood Management (PBM)
9.1. Preoperative Optimization
9.2. Strategies of Conservation During Surgery
9.3. Postoperative Optimization
10. Sequelae
11. Prevention
12. Summary of Evidence on Reducing the Risk of IBL
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haddad, S.; Vila-Casademunt, A.; Yilgor, Ç.; Nuñez-Pereira, S.; Ramirez, M.; Pizones, J.; Alanay, A.; Kleinstuck, F.; Obeid, I.; Pérez-Grueso, F.J.S.; et al. Combined anterior-posterior versus all-posterior approaches for adult spinal deformity correction: A matched control study. Eur. Spine J. 2022, 31, 1754–1764. [Google Scholar] [CrossRef] [PubMed]
- Zuckerman, S.L.; Berven, S.; Streiff, M.B.; Kerolus, M.; Buchanan, I.A.; Ha, A.; Bonfield, C.M.; Buchholz, A.L.; Buchowski, J.M.; Burch, S.; et al. Management of Anticoagulation/Antiplatelet Medication and Venous Thromboembolism Prophylaxis in Elective Spine Surgery: Concise Clinical Recommendations Based on a Modified Delphi Process. Spine 2023, 48, 301–309. [Google Scholar] [CrossRef]
- Ichinose, T.; Takami, T.; Yamamoto, N.; Tsuyuguchi, N.; Ohata, K. Intratumoral hemorrhage of spinal schwannoma of the cauda equina manifesting as acute paraparesis—Case report. Neurol. Med. Chir. 2009, 49, 255–257. [Google Scholar] [CrossRef]
- Hu, S.S. Blood loss in adult spinal surgery. Eur. Spine J. 2004, 13, S3–S5. [Google Scholar] [CrossRef]
- Hickey, K.S.; Smith, M.; Karam, O.; Demetres, M.; Faraoni, D.; Duron, V.; Wu, Y.S.; Nellis, M.E. The Effect of Prophylactic Use of Antifibrinolytics During Pediatric Non-Cardiac Surgeries on Bleeding and Transfusions: A Systematic Review and Meta-Analysis. Paediatr. Anaesth. 2025, 35, 668–683. [Google Scholar] [CrossRef]
- Kelly, M.P.; Zebala, L.P.; Kim, H.J.; Sciubba, D.M.; Smith, J.S.; Shaffrey, C.I.; Bess, S.; Klineberg, E.; Mundis, G., Jr.; Burton, D.; et al. Effectiveness of preoperative autologous blood donation for protection against allogeneic blood exposure in adult spinal deformity surgeries: A propensity-matched cohort analysis. J. Neurosurg. Spine 2016, 24, 124–130. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Z.; An, J.; Luo, Z. Comparative efficacy and safety of high-dose versus low-dose tranexamic acid in adolescent idiopathic scoliosis: A systematic review and meta-analysis. PLoS ONE 2025, 20, e0320391. [Google Scholar] [CrossRef]
- Hung, C.W.; Hassan, F.M.; Lee, N.J.; Roth, S.G.; Scheer, J.K.; Lewerenz, E.; Lombardi, J.M.; Sardar, Z.M.; Lehman, R.A.; Lenke, L.G. Higher intraoperative blood loss is associated with increased risk of intraoperative neuromonitoring data loss for the type 3 spinal cord shape during spinal deformity surgery. Spine Deform. 2025, 13, 1573–1583. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Z.; Wang, H.; Zhang, X.; Li, S.; Zhang, M.; An, J.; Luo, Z. Effectiveness and Safety of High-Dose Tranexamic Acid in Adolescent Idiopathic Scoliosis Surgery: A Meta-Analysis and Systematic Review. World Neurosurg. 2024, 191, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Łajczak, P.; Ayesha, A.; Ahmed, A.R.M.; Chochoł, P.; von Quednow, E.; Rocha, F.V.V.; Sahin, O.K.; Rajab, N.; Kotochinksy, M.; Silva, Y.P.; et al. Optimal Tranexamic Acid Dosing for Adolescent Idiopathic Scoliosis Surgery: A Frequentist Network Meta-Analysis. Spine 2025, 50, E438–E448. [Google Scholar] [CrossRef] [PubMed]
- Willner, D.; Spennati, V.; Stohl, S.; Tosti, G.; Aloisio, S.; Bilotta, F. Spine Surgery and Blood Loss: Systematic Review of Clinical Evidence. Anesth. Analg. 2016, 123, 1307–1315. [Google Scholar] [CrossRef]
- Hatter, M.J.; Pennington, Z.; Hsu, T.I.; Shooshani, T.; Yale, O.; Pooladzandi, O.; Solomon, S.S.; Picton, B.; Ramanis, M.; Brown, N.J.; et al. Effect of the administration route on the hemostatic efficacy of tranexamic acid in patients undergoing short-segment posterior lumbar interbody fusion: A systematic review and meta-analysis. J. Neurosurg. Spine 2024, 41, 224–235. [Google Scholar] [CrossRef]
- Huang, L.; Li, P.; Gu, X.; Zhao, R.; Ma, X.; Wei, X. The administration of tranexamic acid for corrective surgery involving eight or more spinal levels: A systematic review and meta-analysis. Asian J. Surg. 2022, 45, 681–688. [Google Scholar] [CrossRef]
- Koehne, N.H.B.; Locke, A.R.; Song, J.; Gerber, A.R.B.; Alasadi, Y.B.; Yendluri, A.B.; Corvi, J.J.; Namiri, N.K.; Kim, J.S.; Cho, S.K.; et al. The Statistical Fragility of Tranexamic Acid in Spinal Surgery: A Systematic Review of Randomized Controlled Trials. Clin. Spine Surg. 2025. online ahead of print. [Google Scholar] [CrossRef]
- Khan, M.F.; Patel, S.; Gensler, R.; Brown, N.J.; Khan, H.I.; Munjal, V.; Gendreau, J.; Cohen-Gadol, A. Neuro-oncologic Applications of Tranexamic Acid: Systematic Review and Meta-Analysis. J. Clin. Neurosci. 2025, 140, 111541. [Google Scholar] [CrossRef] [PubMed]
- Mikhail, C.; Pennington, Z.; Arnold, P.M.; Brodke, D.S.; Chapman, J.R.; Chutkan, N.; Daubs, M.D.; DeVine, J.G.; Fehlings, M.G.; Gelb, D.E.; et al. Minimizing Blood Loss in Spine Surgery. Glob. Spine J. 2020, 10, 71S–83S. [Google Scholar] [CrossRef]
- Shander, A. Emerging risks and outcomes of blood transfusion in surgery. Semin. Hematol. 2004, 41, 117–124. [Google Scholar] [CrossRef]
- Shim, S.R.; Han, S.; Jeong, J.H.; Hwang, I.; Cha, Y.; Ihm, C. Effect of tranexamic acid in spine surgeries: A systematic review and network meta-analysis. Front. Surg. 2025, 12, 1550854. [Google Scholar] [CrossRef] [PubMed]
- Aleid, A.M.; Saeed, H.S.; Aldanyowi, S.N.; Albinsaad, L.; Alessa, M.; AlAidarous, H.; Aleid, Z.; Almutair, A. Efficacy of high-dose versus low-dose tranexamic acid for reduction of blood loss in adolescent idiopathic scoliosis surgery: A systematic review and meta-analysis. Surg. Neurol. Int. 2024, 15, 473. [Google Scholar] [CrossRef] [PubMed]
- Tumber, S.; Bacon, A.; Stondell, C.; Tafoya, S.; Taylor, S.L.; Javidan, Y.; Klineberg, E.; Roberto, R. High- versus low-dose tranexamic acid as part of a Patient Blood Management strategy for reducing blood loss in patients undergoing surgery for adolescent idiopathic scoliosis. Spine Deform. 2022, 10, 107–113. [Google Scholar] [CrossRef]
- Bichmann, K.; Guven, E.; Klotz, C.; Pumberger, M.; Schömig, F. Tranexamic acid reduces perioperative blood loss in pediatric spinal deformity surgery: A retrospective analysis in nonidiopathic scoliosis patients. Clin. Spine Surg. 2025. [Google Scholar] [CrossRef]
- Peters, A.; Verma, K.; Slobodyanyuk, K.; Cheriyan, T.; Hoelscher, C.; Schwab, F.; Lonner, B.; Huncke, T.; Lafage, V.; Errico, T. Antifibrinolytics reduce blood loss in adult spinal deformity surgery: A prospective, randomized controlled trial. Spine 2015, 40, E443–E449. [Google Scholar] [CrossRef]
- Mohme, M.; Mende, K.C.; Pantel, T.; Viezens, L.; Westphal, M.; Eicker, S.O.; Dreimann, M.; Krätzig, T.; Stangenberg, M. Intraoperative blood loss in oncological spine surgery. Neurosurg. Focus 2021, 50, E14. [Google Scholar] [CrossRef]
- Grabala, P.; Helenius, I.J.; Buchowski, J.M.; Shah, S.A. The Efficacy of a Posterior Approach to Surgical Correction for Neglected Idiopathic Scoliosis: A Comparative Analysis According to Health-Related Quality of Life, Pulmonary Function, Back Pain and Sexual Function. Children 2023, 10, 299. [Google Scholar] [CrossRef] [PubMed]
- Grabala, P.; Fani, N.; Gregorczyk, J.; Grabala, M. Posterior-Only T11 Vertebral Column Resection for Pediatric Congenital Kyphosis Surgical Correction. Medicina 2024, 60, 897. [Google Scholar] [CrossRef] [PubMed]
- Perez, J.J.; Yanamadala, V.; Wright, A.K.; Bohl, M.A.; Leveque, J.A.; Sethi, R.K. Outcomes Surrounding Perioperative Transfusion Rates and Hemoglobin Nadir Values Following Complex Spine Surgery. World Neurosurg. 2019, 126, e1287–e1292. [Google Scholar] [CrossRef]
- Auerbach, J.D.; Lenke, L.G.; Bridwell, K.H.; Sehn, J.K.; Milby, A.H.; Bumpass, D.; Crawford, C.H., 3rd; O’Shaughnessy, B.A.; Buchowski, J.M.; Chang, M.S.; et al. Major complications and comparison between 3-column osteotomy techniques in 105 consecutive spinal deformity procedures. Spine 2012, 37, 1198–1210. [Google Scholar] [CrossRef]
- Joseph, S.A., Jr.; Berekashvili, K.; Mariller, M.M.; Rivlin, M.; Sharma, K.; Casden, A.; Bitan, F.; Kuflik, P.; Neuwirth, M. Blood conservation techniques in spinal deformity surgery: A retrospective review of patients refusing blood transfusion. Spine 2008, 33, 2310–2315. [Google Scholar] [CrossRef]
- Becker, L.; Adl Amini, D.; Ziegeler, K.; Muellner, M.; Diekhoff, T.; Hughes, A.P.; Pumberger, M. Approach-related anatomical differences in patients with lumbo-sacral transitional vertebrae undergoing lumbar fusion surgery at level L4/5. Arch. Orthop. Trauma Surg. 2023, 143, 1753–1759. [Google Scholar] [CrossRef]
- Halpern, L.M.; Bronson, W.E.; Kogan, C.J. A New Low Dose of Tranexamic Acid for Decreasing the Rate of Blood Loss in Posterior Spinal Fusion for Adolescent Idiopathic Scoliosis. J. Pediatr. Orthop. 2021, 41, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.J.; Johnson, C.C.; Goobie, S.M.; Nami, N.; Wetzler, J.A.; Sponseller, P.D.; Frank, S.M. High-dose Versus Low-dose Tranexamic Acid to Reduce Transfusion Requirements in Pediatric Scoliosis Surgery. J. Pediatr. Orthop. 2017, 37, e552–e557. [Google Scholar] [CrossRef]
- Grant, J.A.; Howard, J.; Luntley, J.; Harder, J.; Aleissa, S.; Parsons, D. Perioperative blood transfusion requirements in pediatric scoliosis surgery: The efficacy of tranexamic acid. J. Pediatr. Orthop. 2009, 29, 300–304. [Google Scholar] [CrossRef]
- Takeuchi, T.; Arima, H.; Asada, T.; Demura, S.; Doi, T.; Matsumura, A.; Oba, H.; Sugawara, R.; Suzuki, S.; Takahashi, S.; et al. Morbidity and Mortality of Adult Spinal Deformity Surgery Using the Japanese Orthopedic Association National Registry/Japanese Society for Spine Surgery and Related Research Database (JOANR/JSSR-DB). Spine Surg. Relat. Res. 2025, 9, 426–435. [Google Scholar] [CrossRef]
- Kisilevsky, A.E.; Stobart, L.; Roland, K.; Flexman, A.M. Spine tumor resection among patients who refuse blood product transfusion: A retrospective case series. J. Clin. Anesth. 2016, 35, 434–440. [Google Scholar] [CrossRef]
- Lewis, S.J.; Keshen, S.G.; Kato, S.; Gazendam, A.M. Posterior Versus Three-Column Osteotomy for Late Correction of Residual Coronal Deformity in Patients With Previous Fusions for Idiopathic Scoliosis. Spine Deform. 2017, 5, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Shirasawa, E.; Saito, W.; Miyagi, M.; Imura, T.; Nakazawa, T.; Mimura, Y.; Yokozeki, Y.; Kuroda, A.; Kawakubo, A.; Uchida, K.; et al. Intraoperative Blood Loss at Different Surgical-Procedure Stages during Posterior Spinal Fusion for Idiopathic Scoliosis. Medicina 2023, 59, 387. [Google Scholar] [CrossRef]
- Bouare, F.; Varnier, Q.; Noureldine, M.H.A.; Moser, P.O.; Boetto, J.; Szabo, V.; Costalat, V.; Lonjon, N. Minimizing Intraoperative Blood Loss During Lumbar Vertebrectomy for Spinal Metastasis of Renal Neoplasm: Specific Radiological Embolization Technique. World Neurosurg. 2025, 201, 124243. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, S.B.; Quinlan, N.D.; Althoff, A.D.; Werner, B.C. Iron Deficiency Anemia is Associated with Increased Early Postoperative Surgical and Medical Complications Following Total Hip Arthroplasty. J. Arthroplast. 2021, 36, 1023–1028. [Google Scholar] [CrossRef] [PubMed]
- Boylan, J.F.; Klinck, J.R.; Sandler, A.N.; Arellano, R.; Greig, P.D.; Nierenberg, H.; Roger, S.L.; Glynn, M.F. Tranexamic acid reduces blood loss, transfusion requirements, and coagulation factor use in primary orthotopic liver transplantation. Anesthesiology 1996, 85, 1043–1048. [Google Scholar] [CrossRef]
- Schömig, F.; Bürger, J.; Hu, Z.; Pruß, A.; Klotz, E.; Pumberger, M.; Hipfl, C. Intraoperative blood loss as indicated by haemoglobin trend is a predictor for the development of postoperative spinal implant infection—A matched-pair analysis. J. Orthop. Surg. Res. 2021, 16, 393. [Google Scholar] [CrossRef]
- Lasocki, S.; Krauspe, R.; von Heymann, C.; Mezzacasa, A.; Chainey, S.; Spahn, D.R. PREPARE: The prevalence of perioperative anaemia and need for patient blood management in elective orthopaedic surgery: A multicentre, observational study. Eur. J. Anaesthesiol. 2015, 32, 160–167. [Google Scholar] [CrossRef]
- Bailey, A.; Eisen, I.; Palmer, A.; Ottawa Arthroplasty Blood Preservation Group; Beaulé, P.E.; Fergusson, D.A.; Grammatopoulos, G. Preoperative Anemia in Primary Arthroplasty Patients—Prevalence, Influence on Outcome, and the Effect of Treatment. J. Arthroplast. 2021, 36, 2281–2289. [Google Scholar] [CrossRef]
- Cheriyan, T.; Maier, S.P., 2nd; Bianco, K.; Slobodyanyuk, K.; Rattenni, R.N.; Lafage, V.; Schwab, F.J.; Lonner, B.S.; Errico, T.J. Efficacy of tranexamic acid on surgical bleeding in spine surgery: A meta-analysis. Spine J. 2015, 15, 752–761. [Google Scholar] [CrossRef] [PubMed]
- Rybaczek, M.; Prokop, K.; Sawicki, K.; Rutkowski, R.; Lebejko, A.; Perestret, G.; Mariak, Z.; Grabala, P.; Łysoń, T. Long-Term Clinical Efficacy of the Disc-FX Procedure in Contained Disc Herniation: A 7-Year Follow-Up from a Single-Center Cohort Study. J. Clin. Med. 2025, 14, 6378. [Google Scholar] [CrossRef] [PubMed]
- Rybaczek, M.; Mariak, Z.; Grabala, P.; Łysoń, T. Minimally Invasive Percutaneous Techniques for the Treatment of Cervical Disc Herniation: A Systematic Review and Meta-Analysis. J. Clin. Med. 2025, 14, 3280. [Google Scholar] [CrossRef]
- Luan, H.; Liu, K.; Peng, C.; Tian, Q.; Song, X. Efficacy and safety of tranexamic acid in posterior lumbar interbody fusion: A meta-analysis of randomized controlled trials. J. Orthop. Surg. Res. 2023, 18, 14. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, D.; Mammi, M.; Daniels, K.; Lamba, N.; Petrucci, K.; Cerecedo-Lopez, C.D.; Doucette, J.; Hulsbergen, A.F.C.; Papatheodorou, S.; Aglio, L.S.; et al. The Safety and Efficacy of Tranexamic Acid in Adult Spinal Deformity Surgery: A Systematic Review and Meta-Analysis. Drugs 2019, 79, 1679–1688. [Google Scholar] [CrossRef]
- Slattery, C.; Kark, J.; Wagner, T.; Verma, K. The Use of Tranexamic Acid to Reduce Surgical Blood Loss: A Review Basic Science, Subspecialty Studies, and The Evolution of Use in Spine Deformity Surgery. Clin. Spine Surg. 2019, 32, 46–50. [Google Scholar] [CrossRef]
- Cui, Y.; Li, H.; Mi, C.; Wang, B.; Pan, Y.; Yu, W.; Shi, X. Tranexamic Acid Demonstrated a Trend Toward Decreased Perioperative Blood Loss in Posterior Decompression Surgery of Patient with Metastatic Spinal Tumor. Ther. Clin. Risk Manag. 2025, 21, 951–962. [Google Scholar] [CrossRef]
- Klein, A.A.; Bailey, C.R.; Charlton, A.J.; Evans, E.; Guckian-Fisher, M.; McCrossan, R.; Nimmo, A.F.; Payne, S.; Shreeve, K.; Smith, J.; et al. Association of Anaesthetists guidelines: Cell salvage for peri-operative blood conservation 2018. Anaesthesia 2018, 73, 1141–1150. [Google Scholar] [CrossRef]
- Dzik, W.H. Predicting hemorrhage using preoperative coagulation screening assays. Curr. Hematol. Rep. 2004, 3, 324–330. [Google Scholar]
- Borges Martins, A.; Dos Santos Borges, A.; Gosch Berton, G.; Ferreira Vieira, P.; Machado Gomes de Sousa, M.; Chaves Vieira, J.; Fukunaga, K.; Karlinski Vizentin, K.; Rodrigues Macedo, A.; Guida, F. Continuation versus interruption of oral anticoagulation during TAVI: A systematic review and meta-analysis oral anticoagulation management in TAVI. Catheter. Cardiovasc. Interv. 2025, 106, 644–653. [Google Scholar] [CrossRef]
- Chen, C.; Phan, H.; Pasupuleti, P.; Roman, Y.; Hernandez, Z. Interrupted versus uninterrupted anticoagulation for cardiac rhythm management device insertion. Cochrane Database Syst. Rev. 2025, 2025, CD013816. [Google Scholar] [CrossRef]
- Pititto, R.; Maraziti, L.; Squizzato, A.; Becattini, C. Direct oral anticoagulants for prevention of venous thromboembolism after cancer-related surgery: Systematic review and network meta-analysis. Thromb. Haemost. 2025. [Google Scholar] [CrossRef]
- He, H.; Yin, Y.; Xu, X.; Zhong, Z. Rivaroxaban vs. enoxaparin for preventing venous thromboembolism and wound complications after knee surgery: A meta-analysis. J. Coll. Physicians Surg. Pak. 2025, 35, 1318–1324. [Google Scholar] [CrossRef]
- Bicudo, B.; Rodrigues de Oliveira-Filho, R.; Ivano, V.; Dallegrave Marchesini, D.; Cazzo, E. Efficacy and safety of direct oral anticoagulants (DOACs) for postoperative thromboprophylaxis in patients after bariatric surgery: A systematic review and meta-analysis. Surg. Obes. Relat. Dis. 2025, 21, 1073–1083. [Google Scholar] [CrossRef]
- Chee, Y.L.; Crawford, J.C.; Watson, H.G.; Greaves, M. Guidelines on the assessment of bleeding risk prior to surgery or invasive procedures. Br. Comm. Stand. Haematol. Br. J. Haematol. 2008, 140, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Watson, H.G.; Greaves, M. Can we predict bleeding? Semin. Thromb. Hemost. 2008, 34, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Houry, S.; Georgeac, C.; Hay, J.M.; Fingerhut, A.; Boudet, M.J. A prospective multicenter evaluation of preoperative hemostatic screening tests. The French Associations for Surgical Research. Am. J. Surg. 1995, 170, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Mishima, M.; Townsend, T.; Clifton, C.; Butt, A.; Vandyck, V.; Stewart, S.; Boylan, B.; Tanaka, T. Andexanet-induced heparin resistance in cardiac surgery-a rapid review of case reports and series. J. Thromb. Haemost. 2025, 23, 1522–1530. [Google Scholar] [CrossRef]
- Choi, C.; Huynh, N.; Shepherd, J.; Shanmugalingam, R.; Gavegan, S.; Shedden, R.; Cao, C.; Pathmanathan, S.; El-Khoury, M.; Hitos, K. The efficacy and safety of extended thromboprophylaxis after colorectal surgery: A systematic review and meta-analysis. Int. J. Color. Dis. 2025, 40, 211. [Google Scholar] [CrossRef]
- Tariq, T.; Ali, A.; Baig, B.; Kajal, K.; Raj, R.; Afzal-Tohid, H.; Elochukwu Ndubuisi, E.; Goit, G. Outcomes of antithrombotic therapy in patients undergoing gastrointestinal surgery: A meta-analysis. Cureus 2025, 17, e88473. [Google Scholar] [CrossRef]
- Tang, T.; Zhang, Z.; Liu, L.; Yao, Y.; Zhang, X.; Ye, Y.; Liu, Z.; Liang, L.; Yang, Y.; Armstrong, A. Effects of pre-operative continuing oral anticoagulants or antiplatelets on health outcomes among older patients with hip fracture: A systematic review and meta-analysis. Osteoporos. Int. 2025, 36, 1347–1357. [Google Scholar] [CrossRef] [PubMed]
- Terpstra, T.; de Vries, D.; Oortwijn, O.; de Lind van Wijngaarden, L.; de Groot, D. Does the type of oral anticoagulant matter for stroke prevention or bleeding in patients with atrial fibrillation after cardiac surgery? A systematic review and meta-analysis. Eur. Heart J. Open 2025, 5, oeaf062. [Google Scholar] [CrossRef]
- Yefet, Y.; Givol, G.; Pesis, O. Direct oral anticoagulant use in oral surgery: Insights from a systematic review. Oral Maxillofac. Surg. 2025, 29, 51. [Google Scholar] [CrossRef]
- Lin, J.D.; Lenke, L.G.; Shillingford, J.N.; Laratta, J.L.; Tan, L.A.; Fischer, C.R.; Weller, M.A.; Lehman, R.A., Jr. Safety of a High-Dose Tranexamic Acid Protocol in Complex Adult Spinal Deformity: Analysis of 100 Consecutive Cases. Spine Deform. 2018, 6, 189–194. [Google Scholar] [CrossRef]
- Verma, K.; Lonner, B.; Dean, L.; Vecchione, D.; Lafage, V. Reduction of Mean Arterial Pressure at Incision Reduces Operative Blood Loss in Adolescent Idiopathic Scoliosis. Spine Deform. 2013, 1, 115–122. [Google Scholar] [CrossRef]
- Gong, M.; Liu, G.; Chen, L.; Chen, R.; Xiang, Z. The Efficacy and Safety of Intravenous Tranexamic Acid in Reducing Surgical Blood Loss in Posterior Lumbar Interbody Fusion for the Adult: A Systematic Review and a Meta-Analysis. World Neurosurg. 2019, 122, 559–568. [Google Scholar] [CrossRef]
- Al-Mistarehi, A.H.; Slika, H.; El Baba, B.; Sattari, S.A.; Weber-Levine, C.; Jiang, K.; Lee, S.H.; Redmond, K.J.; Theodore, N.; Lubelski, D. Optimizing surgical strategies: A systematic review of the effectiveness of preoperative arterial embolization for hyper vascular metastatic spinal tumors. Spine J. 2025, 25, 1400–1417. [Google Scholar] [CrossRef] [PubMed]
- Henry, D.A.; Carless, P.A.; Moxey, A.J.; O’Connell, D.; Stokes, B.J.; Fergusson, D.A.; Ker, K. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst. Rev. 2011, CD001886. [Google Scholar] [CrossRef]
- American Academy of Orthopaedic Surgeons. VTE Prophylaxis in Orthopaedic Surgery; American Academy of Orthopaedic Surgeons: Rosemont, IL, USA, 2022. [Google Scholar]
- Bangash, A.H.; Ryvlin, J.; Fourman, M.S.; Gelfand, Y.; Murthy, S.G.; Yassari, R.; Ramos, R.D.l.G. Safety and efficacy of tranexamic acid in oncologic surgery for spinal metastases: A systematic review. N. Am. Spine Soc. J. 2025, 22, 100613. [Google Scholar] [CrossRef] [PubMed]
- Faraoni, D.; Comes, R.F.; Geerts, W.; Wiles, M.D.; ESA VTE Guidelines Task Force. European guidelines on perioperative venous thromboembolism prophylaxis: Neurosurgery. Eur. J. Anaesthesiol. 2018, 35, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Norris, C.; Zabat, M.; Patel, N.; Mottole, M.; Ashayeri, K.; Balouch, M.; Maglaras, L.; Protopsaltis, T.; Buckland, A.; Fischer, J. Multidisciplinary conference for complex surgery leads to improved quality and safety. Spine Deform. 2023, 11, 1001–1008. [Google Scholar] [CrossRef]
- Yokoi, H.; Chakravarthy, V.B.; Winkleman, J.; Manlapaz, M.R.; Krishnaney, A.A. Incorporation of blood and fluid management within an enhanced recovery after surgery protocol in complex spine surgery. Glob. Spine J. 2024, 14, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.S.; Ahn, J.; Karmarkar, S.S.; Lamoutte, E.H.; Singh, K. The use of tranexamic acid in spine surgery. Ann. Transl. Med. 2019, 7, S172. [Google Scholar] [CrossRef]
- Aghajanian, S.; Mohammadifard, F.; Kohandel Gargari, O.; Naeimi, A.; Bahadorimonfared, A.; Elsamadicy, A.A. Efficacy and utility of antifibrinolytics in pediatric spine surgery: A systematic review and network meta-analysis. Neurosurg. Rev. 2024, 47, 177. [Google Scholar] [CrossRef]
- Chung Wong, Y.; Kit Lau, T.; Wang Chau, W.; On Kwok, K.; Wai Law, S. Safety of Continuing Aspirin Use in Cervical Laminoplasty: A Propensity Score-Matched Analysis. Spine Surg. Relat. Res. 2022, 7, 142–148. [Google Scholar] [CrossRef]
- Gutierrez, Y.V.; Martin, B.; Nwose, J.; Sepulveda, A.L.; Shaju, R.A.; Ahmad, A.; Ablove, R. Exploring the Efficacy of Various Minimally Invasive Surgery (MIS) Techniques in Spinal Fusion for Degenerative Spondylolisthesis: A Systematic Review. Cureus 2025, 17, e88723. [Google Scholar] [CrossRef]
- Kitaguchi, K.; Hashimoto, K.; Kaito, T.; Oshima, K.; Wada, E. Comparison of topical and intravenous tranexamic acid for reducing postoperative blood loss in single-level posterior lumbar interbody fusion: A retrospective study from Japan. Asian Spine J. 2025, 19, 553–560. [Google Scholar] [CrossRef]
- Inoue, T. Safety of Continuous Low-Dose Aspirin Therapy for Lumbar Decompression Alone. Spine Surg. Relat. Res. 2024, 9, 195–201. [Google Scholar] [CrossRef]
- Wang, M.; Che, J.X.; Chen, L.; Song, T.T.; Qu, J.T. Effect of Dexmedetomidine on Intraoperative Hemodynamics and Blood Loss in Patients Undergoing Spine Surgery: A Systematic Review and Meta-Analysis. Chin. Med. Sci. J. 2024, 39, 54–68. [Google Scholar] [CrossRef] [PubMed]
- Epstein, N.E. Hemostasis and other benefits of fibrin sealants/glues in spine surgery beyond cerebrospinal fluid leak repairs. Surg. Neurol. Int. 2014, 5, S304–S314. [Google Scholar] [CrossRef]
- Deng, B.; Li, X.; Xie, P.; Luo, X.; Yan, X. Intravenous versus topical tranexamic acid in spinal surgery: A systematic review and meta-analysis. J. Orthop. Surg. Res. 2024, 61, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Raitio, A.; Heiskanen, S.; Soini, V.; Helenius, L.; Syvänen, J.; Helenius, I. Hidden blood loss and bleeding characteristics in children with congenital scoliosis undergoing spinal osteotomies. Int. Orthop. 2024, 48, 1569–1577. [Google Scholar] [CrossRef] [PubMed]
- Schupper, A.J.; Kaufman, M.; Reidler, J.S.; Arginteanu, M.S.; Moore, F.M.; Steinberger, A.; Syed, O.N.; Yao, K.C.; Gologorsky, Y. Spinal deformity surgery in patients for whom blood transfusion is not an option: A single-center experience. J. Neurosurg. Spine 2022, 38, 348–356. [Google Scholar] [CrossRef]
- Brown, N.J.; Choi, E.H.; Gendreau, J.L.; Ong, V.; Himstead, A.; Lien, B.V.; Shahrestani, S.; Ransom, S.C.; Tran, K.; Tafreshi, A.R.; et al. Association of tranexamic acid with decreased blood loss in patients undergoing laminectomy and fusion with posterior instrumentation: A systematic review and meta-analysis. J. Neurosurg. Spine 2021, 36, 686–693. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Z.; Fang, H. Acute normovolemic hemodilution in combination with tranexamic acid is an effective strategy for blood management in lumbar spinal fusion surgery. J. Orthop. Surg. Res. 2022, 17, 71. [Google Scholar] [CrossRef]
- Wan, S.; Sparring, V.; Cabrales, D.A.; Jansson, K.Å.; Wikman, A. Clinical and Budget Impact of Treating Preoperative Anemia in Major Orthopedic Surgery—A Retrospective Observational Study. J. Arthroplast. 2020, 35, 3084–3088. [Google Scholar] [CrossRef]
- Cuenca, J.; García-Erce, J.A.; Martínez, F.; Pérez-Serrano, L.; Herrera, A.; Muñoz, M. Perioperative intravenous iron, with or without erythropoietin, plus restrictive transfusion protocol reduce the need for allogeneic blood after knee replacement surgery. Transfusion 2006, 46, 1112–1119. [Google Scholar] [CrossRef]
- Kuklo, T.R.; Owens, B.D.; Polly, D.W., Jr. Perioperative blood and blood product management for spinal deformity surgery. Spine J. 2003, 3, 388–393. [Google Scholar] [CrossRef]
- Rocos, B.; Kato, S.; Oitment, C.; Smith, J.; Jentszch, T.; Martin, A.; Rienmuller, A.; Nielsen, C.; Shaffrey, C.I.; Lenke, L.G.; et al. Blood Management and Conservation During Adult Spine Deformity Surgery. Glob. Spine J. 2025, 15, 95S–107S. [Google Scholar] [CrossRef]
- Qureshi, R.; Puvanesarajah, V.; Jain, A.; Hassanzadeh, H. Perioperative Management of Blood Loss in Spine Surgery. Clin. Spine Surg. 2017, 30, 383–388. [Google Scholar] [CrossRef]
- Dutton, R.P. Controlled hypotension for spinal surgery. Eur. Spine J. 2004, 13, S66–S71. [Google Scholar] [CrossRef]
- Lennon, R.L.; Hosking, M.P.; Gray, J.R.; Klassen, R.A.; Popovsky, M.A.; Warner, M.A. The effects of intraoperative blood salvage and induced hypotension on transfusion requirements during spinal surgical procedures. Mayo Clin. Proc. 1987, 62, 1090–1094. [Google Scholar] [CrossRef]
- Fowler, A.J.; Ahmad, T.; Phull, M.K.; Allard, S.; Gillies, M.A.; Pearse, R.M. Meta-analysis of the association between preoperative anaemia and mortality after surgery. Br. J. Surg. 2015, 102, 1314–1324. [Google Scholar] [CrossRef] [PubMed]
- de Reus, R.; Kuijten, M.; Saha, S.; Lastoria, A.; Warr-Esser, N.; Taylor, A.; Groot, M.; Lui, A.; Verlaan, J.; Tobert, D. External validation of a machine learning prediction model for massive blood loss during surgery for spinal metastases: A multi-institutional study using 880 patients. Spine J. 2025, 102, 1314–1324. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Hyun, S.J.; Kim, K.J.; Jahng, T.A.; Kim, H.J.; Lee, B.H.; Choi, H.Y. Multilevel Posterior Column Osteotomies Are Not Inferior For the Correction of Rigid Adult Spinal Deformity Compared with Pedicle Subtraction Osteotomy. World Neurosurg. 2017, 107, 839–845. [Google Scholar] [CrossRef]
- Leveque, J.C.; Yanamadala, V.; Buchlak, Q.D.; Sethi, R.K. Correction of severe spinopelvic mismatch: Decreased blood loss with lateral hyperlordotic interbody grafts as compared with pedicle subtraction osteotomy. Neurosurg. Focus 2017, 43, E15. [Google Scholar] [CrossRef] [PubMed]
- Lu, V.M.; Ho, Y.T.; Nambiar, M.; Mobbs, R.J.; Phan, K. The Perioperative Efficacy and Safety of Antifibrinolytics in Adult Spinal Fusion Surgery: A Systematic Review and Meta-analysis. Spine 2018, 43, E949–E958. [Google Scholar] [CrossRef]
- Yuan, L.; Zeng, Y.; Chen, Z.Q.; Zhang, X.L.; Mai, S.; Song, P.; Tao, L.Y. Efficacy and safety of antifibrinolytic agents in spinal surgery: A network meta-analysis. Chin. Med. J. 2019, 132, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Verma, K.; Kohan, E.; Ames, C.P.; Cruz, D.L.; Deviren, V.; Berven, S.; Errico, T.J. A Comparison of Two Different Dosing Protocols for Tranexamic Acid in Posterior Spinal Fusion for Spinal Deformity: A Prospective, Randomized Trial. Int. J. Spine Surg. 2015, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- Fercho, F.; Krakowiak, A.; Yuser, A.; Szmuda, T.; Zieliński, R.; Szarek, J.; Miękisiak, M. The incidence and risk factors for allogeneic blood transfusions in pediatric spine surgery: National data. Healthcare 2023, 11, 533. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, X.; Tian, Y.; Jiang, Z.; Ni, J.; Xu, H.; Wei, G.; Yuan, Y. CT delta-radiomics predicts the risks of blood transfusion and massive bleeding during spinal tumor surgery. Cancer Imaging 2025, 25, 79. [Google Scholar] [CrossRef]
- Delaforce, A.; Galeel, L.; Poon, E.; Hurst, C.; Duff, J.; Munday, J.; Hardy, J. Preoperative Anemia Screening and Treatment Practices in Patients Having Total Joint Replacement Surgery: A Retrospective, Observational Audit. J. Blood Med. 2020, 11, 259–265. [Google Scholar] [CrossRef]
- Elhenawy, A.M.; Meyer, S.R.; Bagshaw, S.M.; MacArthur, R.G.; Carroll, L.J. Role of preoperative intravenous iron therapy to correct anemia before major surgery: A systematic review and meta-analysis. Syst. Rev. 2021, 10, 36. [Google Scholar] [CrossRef]
- Kang, T.; Park, S.Y.; Nam, J.J.; Lee, S.H.; Park, J.H.; Suh, S.W. Patient Blood Management During Lumbar Spinal Fusion Surgery. World Neurosurg. 2019, 130, e566–e572. [Google Scholar] [CrossRef]
- Takahashi, K.; Funayama, T.; Noguchi, R.; Miura, S.; Mataki, T.; Shibao, S.; Eto, H.; Sato, M.; Asada, Y.; Gamada, H.; et al. Utilization of SURGIFLO® hemostatic matrix reduces intraoperative blood loss during posterior instrumented thoracolumbar spinal surgery for patients with adult spinal deformity. Cureus 2025, 17, e77478. [Google Scholar] [CrossRef]
- Liu, J.; Farid, H.; Linden, A.; Cook, C.; Birch, J.; Hresko, M.; Hedequist, D.; Hogue, C. Utility of postoperative laboratory testing after posterior spinal fusion for adolescent idiopathic scoliosis. Spine Deform. 2024, 12, 375–381. [Google Scholar] [CrossRef]
- Abdullah, H.R.; Thamnachit, T.; Hao, Y.; Lim, W.Y.; Teo, L.M.; Sim, Y.E. Real-world results of the implementation of preoperative anaemia clinic with intravenous iron therapy for treating iron-deficiency anaemia: A propensity-matched case-control study. Ann. Transl. Med. 2021, 9, 6. [Google Scholar] [CrossRef]
- Paul, J.E.; Ling, E.; Lalonde, C.; Thabane, L. Deliberate hypotension in orthopedic surgery reduces blood loss and transfusion requirements: A meta-analysis of randomized controlled trials. Can. J. Anaesth. 2007, 54, 799–810. [Google Scholar] [CrossRef]
- Fergusson, D.A.; Hébert, P.C.; Mazer, C.D.; Fremes, S.; MacAdams, C.; Murkin, J.M.; Teoh, K.; Duke, P.C.; Arellano, R.; Blajchman, M.A.; et al. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N. Engl. J. Med. 2008, 358, 2319–2331. [Google Scholar] [CrossRef] [PubMed]
- Fatima, N.; Barra, M.E.; Roberts, R.J.; Massaad, E.; Hadzipasic, M.; Shankar, G.M.; Shin, J.H. Advances in surgical hemostasis: A comprehensive review and meta-analysis on topical tranexamic acid in spinal deformity surgery. Neurosurg. Rev. 2021, 44, 163–175. [Google Scholar] [CrossRef]
- Purvis, T.E.; Wang, T.Y.; Sankey, E.W.; Frank, S.M.; Goodwin, C.R.; Sciubba, D.M. Defining Usage and Clinical Outcomes Following Perioperative Fresh Frozen Plasma and Platelet Administration in Spine Surgery Patients. Clin. Spine Surg. 2019, 32, E246–E251. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Klineberg, E.; Lafage, V.; Shaffrey, C.I.; Schwab, F.; Lafage, R.; Hostin, R.; Mundis, G.M., Jr.; Errico, T.J.; Kim, H.J.; et al. Prospective multicenter assessment of perioperative and minimum 2-year postoperative complication rates associated with adult spinal deformity surgery. J. Neurosurg. Spine 2016, 25, 1–14. [Google Scholar] [CrossRef]
- Lotan, R.; Lengenova, S.; Rijini, N.; Hershkovich, O. Intravenous Tranexamic Acid Reduces Blood Loss in Multilevel Spine Surgeries. J. Am. Acad. Orthop. Surg. 2023, 31, e226–e230. [Google Scholar] [CrossRef]
- Kara, G.K.; Kavak, H.; Gökçen, B.; Turan, K.; Öztürk, Ç.; Aydınlı, U. The effects of patient related factors on hidden and total blood loss in single-level open transforaminal lumbar interbody fusion surgery. Acta Orthop. Traumatol. Turc. 2022, 56, 262–267. [Google Scholar] [CrossRef] [PubMed]
- McVey, M.J.; Camp, M.; Malcolmson, C.; Lebel, D.E. Improving Patient Outcomes by Reducing Anemia and Bleeding in Pediatric Spine Surgery. J. Am. Acad. Orthop. Surg. 2025, 33, 793–803. [Google Scholar] [CrossRef]
- Turczynowicz, A.; Jakubów, P.; Niedźwiecka, K.; Kondracka, J.; Pużyńska, W.; Tałałaj, M.; Guszczyn, T.; Grabala, P.; Kowalczuk, O.; Kocańda, S. Mu-Opioid Receptor 1 and C-Reactive Protein Single Nucleotide Polymorphisms as Biomarkers of Pain Intensity and Opioid Consumption. Brain Sci. 2023, 13, 1629. [Google Scholar] [CrossRef]

| Patient-Related | Surgical Site | Anatomical Site | Associated with Medical Conditions |
|---|---|---|---|
| Demographics: Advanced age (>65 years) Hematologic: Preoperative anemia (Hb < 12 g/dL), coagulopathy, bleeding disorders Physical: Obesity (BMI > 30 g/m2), poor nutritional status Medications NSAIDs, platelet agents aspirin, clopidogrel), NOACs (dabigatran, rivaroxaban) | Complexity surgery: Multilevel instruction (>5 levels), combined anterior–posterior approaches Techniques: Osteotomies (PSO, VCR, SPO) Duration: Operative time > 4 h Staged procedures Approach: Anterior cervical approaches Revision Status: Scar tissue, altered anatomy, hardware removal | Vascular Proximity: Major vessel proximity (aorta, vena cava, vertebral arteries) Venous Anatomy: Dense epidural venous plexus, especially at thoracolumbar junction Bone Vascularity: Highly vascularized vertebral bodies Dural Considerations/Adherent dura | Tumors: Hypervascular metastases (renal, thyroid) Hemangiomas, vascular malformations Deformity: Severe scoliosis (>70 degrees Cobb angle) Kyphoscoliosis Bone Quality: metabolic bone Inflammatory: Ankylosing spondylitis, rheumatoid arthritis. Infectious Comorbidities: Liver disease, renal dysfunction, cardiovascular disease |
| Patient Blood Management (PBM) | Surgical and Anesthetic Techniques | Tranexamic Acid (TXA) | Massive Transfusion |
| Anemia correction | MIS embolization, | antifibrinolytic | Protocol (MTP) 1:1:1 ratio |
| Restrictive transfusion | Hemostatic agents | decreasing blood loss 30–60% | viscoelastic guidance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybaczek, M.; Kowalski, P.; Mariak, Z.; Grabala, M.; Suszczyńska, J.; Łysoń, T.; Grabala, P. Safety in Spine Surgery: Risk Factors for Intraoperative Blood Loss and Management Strategies. Life 2025, 15, 1615. https://doi.org/10.3390/life15101615
Rybaczek M, Kowalski P, Mariak Z, Grabala M, Suszczyńska J, Łysoń T, Grabala P. Safety in Spine Surgery: Risk Factors for Intraoperative Blood Loss and Management Strategies. Life. 2025; 15(10):1615. https://doi.org/10.3390/life15101615
Chicago/Turabian StyleRybaczek, Magdalena, Piotr Kowalski, Zenon Mariak, Michał Grabala, Joanna Suszczyńska, Tomasz Łysoń, and Paweł Grabala. 2025. "Safety in Spine Surgery: Risk Factors for Intraoperative Blood Loss and Management Strategies" Life 15, no. 10: 1615. https://doi.org/10.3390/life15101615
APA StyleRybaczek, M., Kowalski, P., Mariak, Z., Grabala, M., Suszczyńska, J., Łysoń, T., & Grabala, P. (2025). Safety in Spine Surgery: Risk Factors for Intraoperative Blood Loss and Management Strategies. Life, 15(10), 1615. https://doi.org/10.3390/life15101615

