Chronic Insomnia and Stroke Risk—A Real Bidirectional Issue
Abstract
1. Introduction
- -
- By focusing on recent prospective and longitudinal studies from the last decade that address insomnia or chronic sleep disorders as exposure and incident stroke as outcome;
- -
- By emphasizing stroke (not just general cardiovascular disease) and making explicit mechanistic links specific to cerebrovascular pathology;
- -
- By integrating evidence on post-stroke sleep disturbances (epidemiology and functional consequences), which is often omitted or superficially addressed;
- -
- By discussing the role of modern objective sleep tools (e.g., actigraphy, home-based monitoring) in both stroke risk prediction and post-stroke longitudinal sleep assessment;
- -
- By providing a more cohesive synthesis and critical discussion of limitations, gaps, and future directions.
2. Methods
3. Pathophysiological Issues
3.1. Hypothalamic–Pituitary–Adrenal Axis Dysregulation
3.2. Sympathetic Nervous System (SNS) Overactivity
3.3. Inflammatory Pathways
3.4. Oxidative Stress, Nitric Oxide (NO) Bioavailability, and Endothelial Homeostasis
3.5. Circadian Dysregulation/Sleep–Wake Pattern Irregularity
3.6. Metabolic Effects
4. Epidemiological Evidence: From Insomnia to Stroke
4.1. Insomnia as a Predictor for Stroke
4.2. Sleep Duration, Sleep Regularity, and Stroke Risk
4.3. Pooled Analyses and Risk Patterns
4.4. Confounding and Uncertainty
5. Bidirectional Links: Stroke Impact on Sleep
5.1. Epidemiology of Post-Stroke Sleep Disturbances
5.2. Functional and Cognitive Consequences
5.3. Overlap with Poststroke Breathing Disorders
5.4. Advances and Challenges in Objective Sleep Measurement
- Sleep regularity metrics/AI analytics: Metrics such as Sleep Regularity Index, intra-individual variability, and machine learning–derived patterns may capture fragmentation and circadian disruption better than average sleep time [95].
- Integrated multimodal monitoring: Combining sleep sensors with blood pressure, heart rate variability, actimetry, and movement sensors may allow for real-time cerebrovascular risk profiling [95].
6. Discussions
6.1. Summary of Evidence and Interpretation
- Observational studies suggest that chronic insomnia or persistent sleep disturbance are modestly associated with increased risk of incident stroke, though causality remains speculative.
- Objective monitoring tools hold promise for improving exposure and outcome measurement, reducing misclassification, and enabling dynamic risk assessment.
6.2. Limitations and Methodological Challenges
- Heterogeneity in insomnia definitions: different questionnaires, thresholds, and exposure windows impede comparability.
- Confounding and OSA: many studies lack objective OSA assessment; residual confounding is likely substantial.
- Reverse causality risk: subclinical cerebrovascular disease or brain aging may cause sleep disturbance before clinical stroke is diagnosed.
- Sparse longitudinal and repeated-measures designs: many studies rely on baseline sleep measurement alone, neglecting chronicity dynamics.
- Lack of randomized or interventional trials: no large trials have definitively tested whether insomnia treatment reduces stroke risk.
- Stroke subtype, severity, lesion heterogeneity: differential vulnerability of brain regions to insomnia effects is underexplored.
- Measurement error: self-report sleep measures are prone to recall bias; single-night PSG may not reflect habitual sleep.
6.3. Clinical Implications
- Even in the absence of causal certainty, insomnia may function as a clinical risk marker in populations already at vascular risk. Screening (e.g., ISI, PSQI) may help stratify patients for further evaluation or prevention.
- In stroke patients, routine poststroke sleep assessment (e.g., Sleep Condition Indicator) is feasible and valid (SCI validated in stroke populations) [100].
- Given high prevalence of OSA in stroke survivors, concurrent screening/treatment is prudent.
- Behavioral insomnia therapies (e.g., CBT-I) may offer potential for modifying risk or improving recovery, though large trials are lacking.
- Sleep monitoring (actigraphy, wearables) might eventually inform personalized rehabilitation timing, fatigue management, and recurrence risk stratification.
6.4. Recommendations for Future Research
- Large prospective cohorts with repeated, multimodal sleep assessments (self-report + actigraphy/portable PSG) and long follow-up.
- Mediation modeling: concurrent biomarker collection (inflammation, autonomic indices) to test mechanistic pathways.
- OSA integration: objective measurement and adjustment for OSA should be mandatory in future insomnia–stroke studies.
- Randomized intervention trials: e.g., CBT-I, digital sleep therapy vs. controls, with stroke or surrogate vascular outcomes (e.g., white-matter hyperintensity progression, carotid intima-media thickness).
- Use of AI/machine learning: to derive high-dimensional sleep phenotypes, cluster insomnia subtypes, and predict stroke risk.
- Subgroup and effect modification analyses: sex, age, lesion location, stroke subtype (ischemic vs. hemorrhagic).
- Implementation science: integrating wearable sleep monitoring into stroke clinics, testing adherence, feedback loops, and cost-effectiveness.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mayer-Suess, L.; Ibrahim, A.; Moelgg, K.; Cesari, M.; Knoflach, M.; Högl, B.; Stefani, A.; Kiechl, S.; Heidbreder, A. Sleep Disorders as Both Risk Factors for, and a Consequence of, Stroke: A Narrative Review. Int. J. Stroke 2024, 19, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.M.; Ramos, A.R.; Rundek, T. Sleep Disorders and Stroke. Int. J. Stroke Off. J. Int. Stroke Soc. 2012, 7, 231–242. [Google Scholar] [CrossRef]
- Mc Carthy, C.E.; Yusuf, S.; Judge, C.; Alvarez-Iglesias, A.; Hankey, G.J.; Oveisgharan, S.; Damasceno, A.; Iversen, H.K.; Rosengren, A.; Avezum, A.; et al. Sleep Patterns and the Risk of Acute Stroke. Neurology 2023, 100, e2191–e2203. [Google Scholar] [CrossRef]
- McNamara, S.; Spurling, B.C.; Bollu, P.C. Chronic Insomnia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Georgiev, T.; Draganova, A.; Avramov, K.; Terziyski, K. Chronic Insomnia—Beyond the Symptom of Insufficient Sleep. Folia Med. 2025, 67, e151493. [Google Scholar] [CrossRef]
- Kim, J.W.; Jain, A.B.; Khullar, A. Insomnia and Cardiometabolic Health: Bridging the Gap Between Sleep Deficit and Disease Prevention. Can. J. Diabetes 2025, 49, 342–350. [Google Scholar] [CrossRef]
- Matas, A.; Pinto, N.; Conde, B.; Vaz Patto, M. Exploring the Insomnia-Ischemic Stroke Nexus: A Comprehensive Review. J. Clin. Med. 2024, 13, 1622. [Google Scholar] [CrossRef]
- Thayabaranathan, T.; Kim, J.; Cadilhac, D.A.; Thrift, A.G.; Donnan, G.A.; Howard, G.; Howard, V.J.; Rothwell, P.M.; Feigin, V.; Norrving, B.; et al. Global Stroke Statistics 2022. Int. J. Stroke Off. J. Int. Stroke Soc. 2022, 17, 946–956. [Google Scholar] [CrossRef]
- Miclaus, R.; Roman, N.; Caloian, S.; Mitoiu, B.; Suciu, O.; Onofrei, R.R.; Pavel, E.; Neculau, A. Non-Immersive Virtual Reality for Post-Stroke Upper Extremity Rehabilitation: A Small Cohort Randomized Trial. Brain Sci. 2020, 10, 655. [Google Scholar] [CrossRef]
- Demaerschalk, B.M.; Kleindorfer, D.O.; Adeoye, O.M.; Demchuk, A.M.; Fugate, J.E.; Grotta, J.C.; Khalessi, A.A.; Levy, E.I.; Palesch, Y.Y.; Prabhakaran, S.; et al. Scientific Rationale for the Inclusion and Exclusion Criteria for Intravenous Alteplase in Acute Ischemic Stroke: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2016, 47, 581–641. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.A.S.; do Amaral, M.M.; Grassi, V.; Palmeira, A.L.R. Chronic Insomnia Disorder as Risk Factor for Stroke: A Systematic Review. Arq. Neuropsiquiatr. 2022, 80, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Nartea, R.; Poenaru, D.; Constantinovici, M.I.; Potcovaru, C.G.; Cinteza, D. Exploring the Effectiveness of Immersive Virtual Reality Rehabilitation for Parkinson’s Disease: A Narrative Review. J. Clin. Med. 2025, 14, 6858. [Google Scholar] [CrossRef]
- Niu, S.; Liu, X.; Wu, Q.; Ma, J.; Wu, S.; Zeng, L.; Shi, Y. Sleep Quality and Cognitive Function after Stroke: The Mediating Roles of Depression and Anxiety Symptoms. Int. J. Environ. Res. Public Health 2023, 20, 2410. [Google Scholar] [CrossRef]
- Nartea, R.; Ghiorghiu, I.; Alexe, M.-D.; Gheorghievici, G.L.; Mitoiu, B.I. Current Concepts in Pathogenesis and Conservative Management of Supraspinous Tendinopathies Using Shockwave Therapy—A Narrative Review of the Literature. Biomedicines 2025, 13, 2253. [Google Scholar] [CrossRef]
- Tobaldini, E.; Fiorelli, E.M.; Solbiati, M.; Costantino, G.; Nobili, L.; Montano, N. Short Sleep Duration and Cardiometabolic Risk: From Pathophysiology to Clinical Evidence. Nat. Rev. Cardiol. 2019, 16, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Smaha, K.; Waller, J.L.; Bollag, W.B.; Baer, S.L.; Taskar, V.; Arora, V.; Healy, W.J. Cardiovascular risk factors for the diagnosis of insomnia in end-stage renal disease. Am. J. Med. Sci. 2025, 369, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, M.; Tschiderer, L.; Stefani, A.; Heidbreder, A.; Willeit, P.; Högl, B. Sleep Quality and Daytime Sleepiness in Epilepsy: Systematic Review and Meta-Analysis of 25 Studies Including 8,196 Individuals. Sleep Med. Rev. 2021, 57, 101466. [Google Scholar] [CrossRef]
- Antonioni, A.; Cellini, N.; Baroni, A.; Fregna, G.; Lamberti, N.; Koch, G.; Manfredini, F.; Straudi, S. Characterizing practice-dependent motor learning after a stroke. Neurol. Sci. 2025, 46, 1245–1255. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Yu, W.-Y.; Teng, W.-J.; Lu, M.-Y.; Wu, X.-L.; Yang, Y.-Q.; Chen, C.; Liu, L.-X.; Liu, S.-H.; Li, J.-J. Effectiveness of Melodic Intonation Therapy in Chinese Mandarin on Non-Fluent Aphasia in Patients After Stroke: A Randomized Control Trial. Front. Neurosci. 2021, 15, 648724. [Google Scholar] [CrossRef]
- Elder, G.J.; Altena, E.; Palagini, L.; Ellis, J.G. Stress and the Hypothalamic–Pituitary–Adrenal Axis: How Can the COVID-19 Pandemic Inform Our Understanding and Treatment of Acute Insomnia? J. Sleep Res. 2023, 32, e13842. [Google Scholar] [CrossRef]
- Buckley, T.M.; Schatzberg, A.F. On the Interactions of the Hypothalamic-Pituitary-Adrenal (HPA) Axis and Sleep: Normal HPA Axis Activity and Circadian Rhythm, Exemplary Sleep Disorders. J. Clin. Endocrinol. Metab. 2005, 90, 3106–3114. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.S. The Impact of Chronic Insomnia on Cardiovascular Health. Int. J. Cardiovasc. Res. Innov. 2024, 2, 3–5. [Google Scholar] [CrossRef]
- Dressle, R.J.; Feige, B.; Spiegelhalder, K.; Schmucker, C.; Benz, F.; Mey, N.C.; Riemann, D. HPA Axis Activity in Patients with Chronic Insomnia: A Systematic Review and Meta-Analysis of Case–Control Studies. Sleep Med. Rev. 2022, 62, 101588. [Google Scholar] [CrossRef]
- Christensen, D.S.; Zachariae, R.; Amidi, A.; Wu, L.M. Sleep and Allostatic Load: A Systematic Review and Meta-Analysis. Sleep Med. Rev. 2022, 64, 101650. [Google Scholar] [CrossRef]
- Vargas, I.; Lopez-Duran, N. Investigating the Effect of Acute Sleep Deprivation on Hypothalamic-Pituitary-Adrenal-Axis Response to a Psychosocial Stressor. Psychoneuroendocrinology 2017, 79, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, N.C.; Vgontzas, A.N.; Kritikou, I.; Chrousos, G. HPA Axis and Sleep. In Endotext; Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Greenlund, I.M.; Carter, J.R. Sympathetic Neural Responses to Sleep Disorders and Insufficiencies. Am. J. Physiol.—Heart Circ. Physiol. 2022, 322, H337–H349. [Google Scholar] [CrossRef]
- Bellocchi, C.; Carandina, A.; Montinaro, B.; Targetti, E.; Furlan, L.; Rodrigues, G.D.; Tobaldini, E.; Montano, N. The Interplay between Autonomic Nervous System and Inflammation across Systemic Autoimmune Diseases. Int. J. Mol. Sci. 2022, 23, 2449. [Google Scholar] [CrossRef]
- Valensi, P. Autonomic Nervous System Activity Changes in Patients with Hypertension and Overweight: Role and Therapeutic Implications. Cardiovasc. Diabetol. 2021, 20, 170. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.R.; Grimaldi, D.; Fonkoue, I.T.; Medalie, L.; Mokhlesi, B.; Cauter, E.V. Assessment of Sympathetic Neural Activity in Chronic Insomnia: Evidence for Elevated Cardiovascular Risk. Sleep 2018, 41, zsy048. [Google Scholar] [CrossRef]
- Maniaci, A.; Lavalle, S.; Parisi, F.M.; Barbanti, M.; Cocuzza, S.; Iannella, G.; Magliulo, G.; Pace, A.; Lentini, M.; Masiello, E.; et al. Impact of Obstructive Sleep Apnea and Sympathetic Nervous System on Cardiac Health: A Comprehensive Review. J. Cardiovasc. Dev. Dis. 2024, 11, 204. [Google Scholar] [CrossRef] [PubMed]
- Takase, B.; Akima, T.; Satomura, K.; Ohsuzu, F.; Matsui, T.; Ishihara, M.; Kurita, A. Effects of Chronic Sleep Deprivation on Autonomic Activity by Examining Heart Rate Variability, Plasma Catecholamine, and Intracellular Magnesium Levels. Biomed. Pharmacother. Bioméd. Pharmacothérapie 2004, 58, S35–S39. [Google Scholar] [CrossRef]
- Jaspan, V.N.; Greenberg, G.S.; Parihar, S.; Park, C.M.; Somers, V.K.; Shapiro, M.D.; Lavie, C.J.; Virani, S.S.; Slipczuk, L. The Role of Sleep in Cardiovascular Disease. Curr. Atheroscler. Rep. 2024, 26, 249–262. [Google Scholar] [CrossRef]
- Yugar, L.B.T.; Yugar-Toledo, J.C.; Dinamarco, N.; Sedenho-Prado, L.G.; Moreno, B.V.D.; Rubio, T.d.A.; Fattori, A.; Rodrigues, B.; Vilela-Martin, J.F.; Moreno, H. The Role of Heart Rate Variability (HRV) in Different Hypertensive Syndromes. Diagnostics 2023, 13, 785. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, F.; Biscetti, L.; Pimpini, L.; Pelliccioni, G.; Sabbatinelli, J.; Giunta, S. Heart Rate Variability and Autonomic Nervous System Imbalance: Potential Biomarkers and Detectable Hallmarks of Aging and Inflammaging. Ageing Res. Rev. 2024, 101, 102521. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xin, Y.; Sun, M.; Liu, C.; Yin, X.; Xu, X.; Xiao, Y. Relationship between Heart Rate Variability Traits and Stroke: A Mendelian Randomization Study. J. Stroke Cerebrovasc. Dis. 2025, 34, 108251. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.-K. Short Duration of Sleep Is Associated with Elevated High-Sensitivity C-Reactive Protein Level in Taiwanese Adults: A Cross-Sectional Study. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2014, 10, 743–749. [Google Scholar] [CrossRef]
- Fatima, Z.; Shakeel, R.; Chaudhry, S.A.A.; Qadri, M.; Kakar, A.I.; Ahmad, B.; Ahmad, T.; Akilimali, A. The Relation between C-Reactive Protein (CRP) and Risk of Incident Heart Failure in Patients with Cardiovascular Disease: A Narrative Review. Ann. Med. Surg. 2025, 87, 4356–4361. [Google Scholar] [CrossRef]
- Parthasarathy, S.; Vasquez, M.M.; Halonen, M.; Bootzin, R.; Quan, S.F.; Martinez, F.D.; Guerra, S. Persistent Insomnia Is Associated with Mortality Risk. Am. J. Med. 2015, 128, 268–275.e2. [Google Scholar] [CrossRef]
- Garbarino, S.; Lanteri, P.; Bragazzi, N.L.; Magnavita, N.; Scoditti, E. Role of Sleep Deprivation in Immune-Related Disease Risk and Outcomes. Commun. Biol. 2021, 4, 1304. [Google Scholar] [CrossRef]
- Davinelli, S.; Medoro, A.; Savino, R.; Scapagnini, G. Sleep and Oxidative Stress: Current Perspectives on the Role of NRF2. Cell. Mol. Neurobiol. 2024, 44, 52. [Google Scholar] [CrossRef]
- Sang, D.; Lin, K.; Yang, Y.; Ran, G.; Li, B.; Chen, C.; Li, Q.; Ma, Y.; Lu, L.; Cui, X.-Y.; et al. Prolonged Sleep Deprivation Induces a Cytokine-Storm-like Syndrome in Mammals. Cell 2023, 186, 5500–5516.e21. [Google Scholar] [CrossRef]
- Li, X.; Cao, Y.; Xu, X.; Wang, C.; Ni, Q.; Lv, X.; Yang, C.; Zhang, Z.; Qi, X.; Song, G. Sleep Deprivation Promotes Endothelial Inflammation and Atherogenesis by Reducing Exosomal miR-182-5p. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 995–1014. [Google Scholar] [CrossRef]
- Holmer, B.J.; Lapierre, S.S.; Jake-Schoffman, D.E.; Christou, D.D. Effects of Sleep Deprivation on Endothelial Function in Adult Humans: A Systematic Review. GeroScience 2021, 43, 137–158. [Google Scholar] [CrossRef] [PubMed]
- Borroni, E.; Frigerio, G.; Polledri, E.; Mercadante, R.; Maggioni, C.; Fedrizzi, L.; Pesatori, A.C.; Fustinoni, S.; Carugno, M. Metabolomic Profiles in Night Shift Workers: A Cross-Sectional Study on Hospital Female Nurses. Front. Public Health 2023, 11, 1082074. [Google Scholar] [CrossRef]
- van de Langenberg, D.; Dollé, M.E.T.; van Kerkhof, L.W.M.; Vermeulen, R.C.H.; Vlaanderen, J.J. Effects of Nightshift Work on Blood Metabolites in Female Nurses and Paramedic Staff: A Cross-Sectional Study. Ann. Work Expo. Health 2023, 67, 694–705. [Google Scholar] [CrossRef]
- Weil, B.R.; Mestek, M.L.; Westby, C.M.; Van Guilder, G.P.; Greiner, J.J.; Stauffer, B.L.; DeSouza, C.A. Short Sleep Duration Is Associated with Enhanced Endothelin-1 Vasoconstrictor Tone. Can. J. Physiol. Pharmacol. 2010, 88, 777–781. [Google Scholar] [CrossRef]
- Grimpen, F.; Kanne, P.; Schulz, E.; Hagenah, G.; Hasenfuss, G.; Andreas, S. Endothelin-1 Plasma Levels Are Not Elevated in Patients with Obstructive Sleep Apnoea. Eur. Respir. J. 2000, 15, 320–325. [Google Scholar] [CrossRef]
- Kapil, V.; Khambata, R.S.; Jones, D.A.; Rathod, K.; Primus, C.; Massimo, G.; Fukuto, J.M.; Ahluwalia, A. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacol. Rev. 2020, 72, 692–766. [Google Scholar] [CrossRef]
- Chaput, J.-P.; Biswas, R.K.; Ahmadi, M.; Cistulli, P.A.; Rajaratnam, S.M.W.; Bian, W.; St-Onge, M.-P.; Stamatakis, E. Sleep Regularity and Major Adverse Cardiovascular Events: A Device-Based Prospective Study in 72,269 UK Adults. J. Epidemiol. Community Health 2025, 79, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Lygkoni, S.; Hesse, M.; Elefteri, B. Impact of Sleep Disturbances on Metabolic and Cardiovascular Risk Factors. Heal. TIMES Schweiz. Ärztejournal J. Médecins Suisses 2023, 10, 92–97. [Google Scholar] [CrossRef]
- Mitoiu, B.I.; Nartea, R.; Miclaus, R.S. Impact of Resistance and Endurance Training on Ghrelin and Plasma Leptin Levels in Overweight and Obese Subjects. Int. J. Mol. Sci. 2024, 25, 8067. [Google Scholar] [CrossRef] [PubMed]
- Nartea, R.; Mitoiu, B.I.; Ghiorghiu, I. The Link between Magnesium Supplements and Statin Medication in Dyslipidemic Patients. Curr. Issues Mol. Biol. 2023, 45, 3146–3167. [Google Scholar] [CrossRef]
- Otelea, M.R.; Nartea, R.; Popescu, F.G.; Covaleov, A.; Mitoiu, B.I.; Nica, A.S. The Pathological Links between Adiposity and the Carpal Tunnel Syndrome. Curr. Issues Mol. Biol. 2022, 44, 2646–2663. [Google Scholar] [CrossRef]
- Chabot, F.; Caron, A.; Laplante, M.; St-Pierre, D.H. Interrelationships between Ghrelin, Insulin and Glucose Homeostasis: Physiological Relevance. World J. Diabetes 2014, 5, 328–341. [Google Scholar] [CrossRef]
- Xue, P.; Tan, X.; Benedict, C. Association of Poor Sleep and HbA1c in Metformin-Treated Patients with Type 2 Diabetes: Findings from the UK Biobank Cohort Study. J. Sleep Res. 2023, 32, e13917. [Google Scholar] [CrossRef]
- Liu, J.; Richmond, R.C.; Bowden, J.; Barry, C.; Dashti, H.S.; Daghlas, I.; Lane, J.M.; Jones, S.E.; Wood, A.R.; Frayling, T.M.; et al. Assessing the Causal Role of Sleep Traits on Glycated Hemoglobin: A Mendelian Randomization Study. Diabetes Care 2022, 45, 772–781. [Google Scholar] [CrossRef]
- Kobayashi, D.; Takahashi, O.; Deshpande, G.A.; Shimbo, T.; Fukui, T. Association between Weight Gain, Obesity, and Sleep Duration: A Large-Scale 3-Year Cohort Study. Sleep Breath. Schlaf Atm. 2012, 16, 829–833. [Google Scholar] [CrossRef]
- Haghighatdoost, F.; Karimi, G.; Esmaillzadeh, A.; Azadbakht, L. Sleep Deprivation Is Associated with Lower Diet Quality Indices and Higher Rate of General and Central Obesity among Young Female Students in Iran. Nutr. Burbank Los Angel. Cty. Calif. 2012, 28, 1146–1150. [Google Scholar] [CrossRef]
- Sun, W.; Yuan, J.; Yu, Y.; Wang, Z.; Shankar, N.; Ali, G.; Xie, Y.; Xu, T.; Shan, G. Poor Sleep Quality Associated with Obesity in Men. Sleep Breath. Schlaf Atm. 2016, 20, 873–880. [Google Scholar] [CrossRef]
- Kim, K.; Shin, D.; Jung, G.-U.; Lee, D.; Park, S.M. Association between Sleep Duration, Fat Mass, Lean Mass and Obesity in Korean Adults: The Fourth and Fifth Korea National Health and Nutrition Examination Surveys. J. Sleep Res. 2017, 26, 453–460. [Google Scholar] [CrossRef]
- Theorell-Haglöw, J.; Berglund, L.; Berne, C.; Lindberg, E. Both Habitual Short Sleepers and Long Sleepers Are at Greater Risk of Obesity: A Population-Based 10-Year Follow-up in Women. Sleep Med. 2014, 15, 1204–1211. [Google Scholar] [CrossRef]
- Kohanmoo, A.; Akhlaghi, M.; Sasani, N.; Nouripour, F.; Lombardo, C.; Kazemi, A. Short Sleep Duration Is Associated with Higher Risk of Central Obesity in Adults: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Obes. Sci. Pract. 2024, 10, e772. [Google Scholar] [CrossRef]
- Ning, X.; Lv, J.; Guo, Y.; Bian, Z.; Tan, Y.; Pei, P.; Chen, J.; Yan, S.; Li, H.; Fu, Z.; et al. Association of Sleep Duration with Weight Gain and General and Central Obesity Risk in Chinese Adults: A Prospective Study. Obes. Silver Spring Md 2020, 28, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Dean, Y.E.; Shebl, M.A.; Rouzan, S.S.; Bamousa, B.A.A.; Talat, N.E.; Ansari, S.A.; Tanas, Y.; Aslam, M.; Gebril, S.; Sbitli, T.; et al. Association between Insomnia and the Incidence of Myocardial Infarction: A Systematic Review and Meta-analysis. Clin. Cardiol. 2023, 46, 376–385. [Google Scholar] [CrossRef]
- Sawadogo, W.; Adera, T. Insomnia Symptoms Trajectories and Increased Risk of Stroke: A Prospective Cohort Study (P1-5.021). Neurology 2023, 100, 1412. [Google Scholar] [CrossRef]
- Huang, L.; Liu, Y.; Geng, T.; Zhang, N.; Sun, L.; Wu, S.; Gao, X. Healthy Sleep Pattern, Metabolic Diseases, and Risk of Stroke: The Kailuan Cohort Study. Nat. Sci. Sleep 2024, 16, 1169–1178. [Google Scholar] [CrossRef]
- Wu, Y.; Zhai, L.; Zhang, D. Sleep Duration and Obesity among Adults: A Meta-Analysis of Prospective Studies. Sleep Med. 2014, 15, 1456–1462. [Google Scholar] [CrossRef]
- Titova, O.E.; Michaëlsson, K.; Larsson, S.C. Sleep Duration and Stroke: Prospective Cohort Study and Mendelian Randomization Analysis. Stroke 2020, 51, 3279–3285. [Google Scholar] [CrossRef] [PubMed]
- Ao, K.-H.; Ho, C.-H.; Wang, C.-C.; Wang, J.-J.; Chio, C.-C.; Kuo, J.-R. The Increased Risk of Stroke in Early Insomnia Following Traumatic Brain Injury: A Population-Based Cohort Study. Sleep Med. 2017, 37, 187–192. [Google Scholar] [CrossRef]
- Balkin, T.J.; Simonelli, G.; Riedy, S. Negative Health Outcomes in Long Sleepers: The Societal Sleep Restriction Hypothesis. Sleep Med. Rev. 2024, 77, 101968. [Google Scholar] [CrossRef]
- Alimoradi, Z.; Lin, C.-Y.; Broström, A.; Bülow, P.H.; Bajalan, Z.; Griffiths, M.D.; Ohayon, M.M.; Pakpour, A.H. Internet Addiction and Sleep Problems: A Systematic Review and Meta-Analysis. Sleep Med. Rev. 2019, 47, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Al-Qattan, H.; Al-Omairah, H.; Al-Hashash, K.; Al-Mutairi, F.; Al-Mutairat, M.; Al-Ajmi, M.; Mohammad, A.; Alterki, A.; Ziyab, A.H. Prevalence, Risk Factors, and Comorbidities of Obstructive Sleep Apnea Risk Among a Working Population in Kuwait: A Cross-Sectional Study. Front. Neurol. 2021, 12, 620799. [Google Scholar] [CrossRef] [PubMed]
- Leng, Y.; Cappuccio, F.P.; Wainwright, N.W.J.; Surtees, P.G.; Luben, R.; Brayne, C.; Khaw, K.-T. Sleep Duration and Risk of Fatal and Nonfatal Stroke: A Prospective Study and Meta-Analysis. Neurology 2015, 84, 1072–1079. [Google Scholar] [CrossRef]
- He, Q.; Sun, H.; Wu, X.; Zhang, P.; Dai, H.; Ai, C.; Shi, J. Sleep Duration and Risk of Stroke: A Dose-Response Meta-Analysis of Prospective Cohort Studies. Sleep Med. 2017, 32, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sun, J.; Sun, M.; Liu, N.; Wang, M. Relationship of Sleep Duration with the Risk of Stroke Incidence and Stroke Mortality: An Updated Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Sleep Med. 2022, 90, 267–278. [Google Scholar] [CrossRef]
- Cribb, L.; Sha, R.; Yiallourou, S.; Grima, N.A.; Cavuoto, M.; Baril, A.-A.; Pase, M.P. Sleep Regularity and Mortality: A Prospective Analysis in the UK Biobank. eLife 2023, 12, RP88359. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Liu, X.; Zhou, W.; Wang, L.; Zheng, X.; Wang, X.; Wu, S. Long Sleep Duration and Risk of Ischemic Stroke and Hemorrhagic Stroke: The Kailuan Prospective Study. Sci. Rep. 2016, 6, 33664. [Google Scholar] [CrossRef]
- Yin, J.; Jin, X.; Shan, Z.; Li, S.; Huang, H.; Li, P.; Peng, X.; Peng, Z.; Yu, K.; Bao, W.; et al. Relationship of Sleep Duration With All-Cause Mortality and Cardiovascular Events: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. J. Am. Heart Assoc. 2017, 6, e005947. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, S.; Zhang, N.; Liang, Z.; Han, Y.; Luo, H.; Ge, Y.; Yin, J.; Ding, C.; Li, C.; Zhang, Q.; et al. Examining the U-Shaped Relationship of Sleep Duration and Systolic Blood Pressure with Risk of Cardiovascular Events Using a Novel Recursive Gradient Scanning Model. Front. Cardiovasc. Med. 2023, 10, 1210171. [Google Scholar] [CrossRef]
- Alabdali, M.M.; Alrasheed, A.S.; Alsamih, F.S.; Almohaish, R.F.; Al Hadad, J.N.; AlMohish, N.M.; AlGhamdi, O.A.; Alabdulaali, S.K.; Alabdi, Z.I. Evaluation of the Prevalence of Sleep Disorders and Their Association with Stroke: A Hospital-Based Retrospective Study. J. Clin. Med. 2025, 14, 1313. [Google Scholar] [CrossRef]
- Fleming, M.K.; Smejka, T.; Henderson Slater, D.; Chiu, E.G.; Demeyere, N.; Johansen-Berg, H. Self-Reported and Objective Sleep Measures in Stroke Survivors With Incomplete Motor Recovery at the Chronic Stage. Neurorehabil. Neural Repair 2021, 35, 851–860. [Google Scholar] [CrossRef]
- Tayade, K.; Vibha, D.; Singh, R.K.; Pandit, A.K.; Ramanujam, B.; Das, A.; Elavarasi, A.; Agarwal, A.; Srivastava, A.K.; Tripathi, M. Polysomnographic Correlates of Self-and Caregiver-Reported Sleep Problems in Post-Stroke Patients. Front. Neurol. 2025, 16, 1587378. [Google Scholar] [CrossRef] [PubMed]
- Ihle-Hansen, H.; Hagberg, G.; Ihle-Hansen, H.; Munthe-Kaas, R.; Aam, S.; Aamodt, E.B.; Lydersen, S.; Beyer, M.K.; Luzum, G.; Saltvedt, I.; et al. Impact of Insufficient or Excessive Sleep Duration on Cognitive Function After Stroke: The Norwegian Cognitive Impairment After Stroke Study. J. Am. Heart Assoc. 2025, 14, e038125. [Google Scholar] [CrossRef] [PubMed]
- Iddagoda, M.T.; Inderjeeth, C.A.; Chan, K.; Raymond, W.D. Post-Stroke Sleep Disturbances and Rehabilitation Outcomes: A Prospective Cohort Study. Intern. Med. J. 2020, 50, 208–213. [Google Scholar] [CrossRef]
- Curci, C.; Gimigliano, F.; de Sire, A.; Giamattei, M.T.; Iolascon, G.; Gimigliano, R. Sleep Disorders in Patients with Chronic Stroke: A Cross-Sectional Study. Ann. Phys. Rehabil. Med. 2018, 61, e208–e209. [Google Scholar] [CrossRef]
- Lo, J.W.; Crawford, J.D.; Lipnicki, D.M.; Lipton, R.B.; Katz, M.J.; Preux, P.-M.; Guerchet, M.; d’Orsi, E.; Quialheiro, A.; Rech, C.R.; et al. Trajectory of Cognitive Decline Before and After Stroke in 14 Population Cohorts. JAMA Netw. Open 2024, 7, e2437133. [Google Scholar] [CrossRef]
- Chan, L.G. The Comorbidity and Associations between Depression, Cognitive Impairment, and Sleep after Stroke and How They Affect Outcomes: A Scoping Review of the Literature. J. Vasc. Dis. 2024, 3, 134–151. [Google Scholar] [CrossRef]
- Bassetti, C.L.A.; Randerath, W.; Vignatelli, L.; Ferini-Strambi, L.; Brill, A.-K.; Bonsignore, M.R.; Grote, L.; Jennum, P.; Leys, D.; Minnerup, J. EAN/ERS/ESO/ESRS Statement on the Impact of Sleep Disorders on Risk and Outcome of Stroke. Eur. J. Neurol. 2020, 27, 1117–1136. [Google Scholar] [CrossRef]
- Koo, D.L.; Nam, H.; Thomas, R.J.; Yun, C.-H. Sleep Disturbances as a Risk Factor for Stroke. J. Stroke 2018, 20, 12–32. [Google Scholar] [CrossRef]
- The Bidirectional Relationship Between Sleep Disorders and Stroke. Available online: https://practicalneurology.com/articles/2024-dec/the-bidirectional-relationship-between-sleep-disorders-and-stroke (accessed on 25 January 2025).
- Su, X.; Liu, S.; Wang, C.; Cai, Y.; Li, Y.; Wang, D.; Fan, Z.; Jiang, Y. Prevalence, Incidence, and the Time Trends of Sleep-Disordered Breathing among Patients with Stroke: A Systematic Review and Meta-Analysis. Front. Neurol. 2024, 15. [Google Scholar] [CrossRef]
- Gottesman, R.F.; Lutsey, P.L.; Benveniste, H.; Brown, D.L.; Full, K.M.; Lee, J.-M.; Osorio, R.S.; Pase, M.P.; Redeker, N.S.; Redline, S.; et al. Impact of Sleep Disorders and Disturbed Sleep on Brain Health: A Scientific Statement From the American Heart Association. Stroke 2024, 55, e61–e76. [Google Scholar] [CrossRef] [PubMed]
- Kurra, N.; Gandrakota, N.; Ramakrishnan, M.; Sudireddy, K.; Boorle, N.V.L.D.; Jillella, D. The Influence of Obstructive Sleep Apnea on Post-Stroke Complications: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 5646. [Google Scholar] [CrossRef] [PubMed]
- Ancoli-Israel, S.; Cole, R.; Alessi, C.; Chambers, M.; Moorcroft, W.; Pollak, C.P. The Role of Actigraphy in the Study of Sleep and Circadian Rhythms. Sleep 2003, 26, 342–392. [Google Scholar] [CrossRef]
- Kapella, M.C.; Vispute, S.; Zhu, B.; Herdegen, J.J. Actigraphy Scoring for Sleep Outcome Measures in Chronic Obstructive Pulmonary Disease. Sleep Med. 2017, 37, 124–129. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, X.; Li, R.; Gao, Y.; Li, J.; Wang, G. Influence of Rapid Eye Movement Sleep on All-Cause Mortality: A Community-Based Cohort Study. Aging 2019, 11, 1580–1588. [Google Scholar] [CrossRef]
- Girschik, J.; Fritschi, L.; Heyworth, J.; Waters, F. Validation of Self-Reported Sleep Against Actigraphy. J. Epidemiol. 2012, 22, 462–468. [Google Scholar] [CrossRef]
- Cai, H.; Wang, X.-P.; Yang, G.-Y. Sleep Disorders in Stroke: An Update on Management. Aging Dis. 2021, 12, 570–585. [Google Scholar] [CrossRef]
- McLaren, D.M.; Evans, J.; Baylan, S.; Harvey, M.; Montgomery, M.C.; Gardani, M. Assessing Insomnia after Stroke: A Diagnostic Validation of the Sleep Condition Indicator in Self-Reported Stroke Survivors. BMJ Neurol. Open 2024, 6, e000768. [Google Scholar] [CrossRef] [PubMed]
- Fulk, G.; Duncan, P.; Klingman, K.J. Sleep problems worsen health-related quality of life and participation during the first 12 months of stroke rehabilitation. Clin. Rehabil. 2020, 34, 1400–1408. [Google Scholar] [CrossRef] [PubMed]
Author/Year | Design & Population | Sleep Exposure/Assessment | Prevalence/Findings | Functional/Clinical Impact | Notes/Limitations |
---|---|---|---|---|---|
McCarthy et al., 2023 [3] | INTERSTROKE case–control (>4500 stroke vs. controls) | Self-reported sleep duration, insomnia symptoms, OSA features | Short and long sleep, poor quality, and snoring linked to higher stroke risk | Identified OSA and irregular sleep as independent stroke predictors | Recall bias; global population heterogeneity |
Matas et al., 2024 [7] | Narrative review | Literature synthesis | Summarized mechanistic and epidemiologic evidence | Emphasized insomnia as modifiable stroke risk factor | Not systematic; no quantitative synthesis |
Silva et al., 2022 [11] | Systematic review (observational studies) | Clinical insomnia disorder (DSM/ICD) | Chronic insomnia associated with increased stroke risk | Independent vascular risk suggested | Few studies; heterogeneity of definitions |
Chaput et al., 2025 [50] | UK Biobank (n = 72,269); prospective | Actigraphy-derived sleep regularity | Irregularity predicted higher MACE (incl. stroke) | Device-based monitoring promising for risk prediction | Stroke-specific outcomes less granular |
Sawadogo & Adera, 2023 [66] | Cohort (Neurology abstract) | Insomnia symptom trajectories | Persistent insomnia linked to higher stroke incidence | Longitudinal assessment valuable | Limited details; abstract-only report |
Huang et al., 2024 [67] | Kailuan cohort, >50,000 adults | Composite “healthy sleep pattern” | Healthy sleep linked to lower stroke risk | Multidomain sleep index may aid prevention | Asian population; external validation needed |
Titova et al., 2020 [69] | Swedish cohorts (n = 40,000+) + Mendelian randomization | Questionnaire + genetic data | Long sleep (≥9 h) HR ~1.44 for ischemic stroke | Supports possible causal link | Generalizability limited; MR assumptions |
Ao et al., 2017 [70] | Taiwan national cohort (TBI patients with insomnia) | Insurance data (ICD codes) | Early insomnia post-TBI ↑ risk of stroke | Suggests post-injury insomnia as enhancer | No objective sleep data |
Author/Year | Design & Population | Sleep Exposure/Assessment | Prevalence/Findings | Functional/Clinical Impact | Notes/Limitations |
---|---|---|---|---|---|
Alabdali et al., 2025 [81] | Retrospective, hospital-based; stroke patients in Saudi Arabia | Medical records, questionnaires | >50% of patients had sleep disorders (insomnia, OSA most common) | Linked to higher recurrence risk | Retrospective, single-center, may under-detect sleep disorders |
Fleming et al., 2021 [82] | Cross-sectional; chronic stroke survivors with incomplete motor recovery | Self-reported sleep measures + actigraphy | High prevalence of poor sleep quality, irregular patterns | Sleep inefficiency is associated with worse motor outcomes | Small sample, chronic stage only |
Tayade et al., 2025 [83] | Cross-sectional, post-stroke patients with sleep complaints | Polysomnography + caregiver/patient report | Objective abnormalities: reduced REM, high arousals | Confirmed subjective complaints; supports link to disrupted recovery | Single-center, limited follow-up |
Ihle-Hansen et al., 2025 [84] | Prospective cohort; Norwegian Cognitive Impairment After Stroke study | Self-reported sleep duration | Both short (<6 h) and long (>9 h) sleep are linked to poorer cognition at 2 years | U-shaped relationship; worsened long-term cognitive outcomes | Observational, self-report bias |
Iddagoda et al., 2020 [85] | Prospective cohort; 112 stroke rehabilitation patients | Pittsburgh Sleep Quality Index (PSQI) | 65% poor sleep quality | Poor sleep predicted reduced independence post-rehab | Small cohort, limited generalizability |
Curci et al., 2018 [86] | Cross-sectional; chronic stroke outpatients | Structured questionnaires | High prevalence of chronic insomnia and fragmented sleep | Associated with lower functional recovery scores | Small, cross-sectional |
Sawadogo et al., 2024 [66] | Prospective cohort; stroke survivors | Self-reported insomnia symptoms | Insomnia linked to higher all-cause mortality | Highlights the prognostic role of sleep after stroke | Self-report, residual confounding |
Lo et al., 2024 [87] | Pooled analysis of 14 cohorts; >20,000 stroke survivors | Neuropsychological testing + stroke records | Accelerated cognitive decline after stroke | Sleep disturbance may exacerbate the decline trajectory | Not sleep-focused, indirect evidence |
Chan, 2024 [88] | Scoping review | Literature synthesis | Frequent co-occurrence of sleep disturbance, depression, and cognitive impairment | Describes synergistic negative effects | Narrative, not quantitative |
Bassetti et al., 2020 [89] | Guideline/consensus statement | Evidence synthesis | Sleep disorders are common post-stroke | Emphasizes the clinical importance of screening and treatment | Consensus-based, not new data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitoiu, B.I.; Alexe, M.D.; Gheorghievici, G.L.; Nartea, R. Chronic Insomnia and Stroke Risk—A Real Bidirectional Issue. Life 2025, 15, 1602. https://doi.org/10.3390/life15101602
Mitoiu BI, Alexe MD, Gheorghievici GL, Nartea R. Chronic Insomnia and Stroke Risk—A Real Bidirectional Issue. Life. 2025; 15(10):1602. https://doi.org/10.3390/life15101602
Chicago/Turabian StyleMitoiu, Brindusa Ilinca, Maria Delia Alexe, Gavril Lucian Gheorghievici, and Roxana Nartea. 2025. "Chronic Insomnia and Stroke Risk—A Real Bidirectional Issue" Life 15, no. 10: 1602. https://doi.org/10.3390/life15101602
APA StyleMitoiu, B. I., Alexe, M. D., Gheorghievici, G. L., & Nartea, R. (2025). Chronic Insomnia and Stroke Risk—A Real Bidirectional Issue. Life, 15(10), 1602. https://doi.org/10.3390/life15101602