Sperm Quality and Welfare of Sexually Mature Boars Supplemented with Partially Fermentable Insoluble Fiber
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Experimental Facilities
2.2. Animals, Experimental Design, and Treatments
- (1)
- Control (CON)—no fiber supplementation;
- (2)
- Partially fermentable insoluble fiber (PFIF)—daily supplementation of 35 g/animal/day of partially fermentable insoluble fiber in the diet.
2.3. Feeding Management and Fiber Supplementation
2.4. Semen Collection and Quantitative and Qualitative Analyses
2.5. Feed Intake Scoring
2.6. Perineal and Fecal Scoring
2.7. Behavioral Assessment
2.8. Microclimatic Conditions
2.9. Statistical Analysis
3. Results
3.1. Quantitative and Qualitative Semen Parameters
3.2. Feed Intake, Fecal, and Perineal Scores
3.3. Behavior
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Short-chain fatty acid | SCFA |
Control treatment | CON |
Partially fermentable insoluble fiber | PFIF |
Computer-Assisted Sperm Analysis | CASA |
Curvilinear displacement | DCL |
Average path displacement | DAP |
Straight-line displacement | DSL |
Curvilinear velocity | VCL |
Average path velocity | VAP |
Straight-line velocity | VSL |
Straightness | STR |
Wobble | WOB |
Linearity | LIN |
References
- Flowers, W.L. Factors affecting the production of quality ejaculates from boars. Anim. Reprod. Sci. 2022, 246, 106840. [Google Scholar] [CrossRef]
- Lopez-Rodriguez, A.; Van Soom, A.; Arsenakis, I.; Maes, D. Boar management and semen handling factors affect the quality of boar extended semen. Porc. Health Manag. 2017, 3, 15. [Google Scholar] [CrossRef]
- Grześkowiak, Ł.; Saliu, E.M.; Martínez-Vallespín, B.; Aschenbach, J.R.; Brockmann, G.A.; Fulde, M.; Hartmann, S.; Kuhla, B.; Lucius, R.; Metges, C.C.; et al. Dietary fiber and its role in performance, welfare, and health of pigs. Anim. Health Res. Rev. 2022, 23, 165–193. [Google Scholar] [CrossRef]
- Wilson, M.; Rozeboom, K.; Crenshaw, T. Boar nutrition for optimum sperm production. In Advances in Pork Production; University of Alberta: Edmonton, AB, Canada, 2004; Volume 15, pp. 295–306. [Google Scholar]
- Lindberg, J.E. Fiber effects in nutrition and gut health in pigs. J. Anim. Sci. Biotechnol. 2014, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Agyekum, A.K.; Nyachoti, C.M. Nutritional and metabolic consequences of feeding high-fiber diets to swine: A review. Engineering 2017, 3, 716–725. [Google Scholar] [CrossRef]
- Wenk, C. The role of dietary fibre in the digestive physiology of the pig. Anim. Feed Sci. Technol. 2001, 90, 21–33. [Google Scholar] [CrossRef]
- Jha, R.; Berrocoso, J.D. Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal 2015, 9, 1441–1452. [Google Scholar] [CrossRef]
- Alhaj, H.W.; Li, Z.; Shan, T.; Dai, P.; Zhu, P.; Li, Y.; Alsiddig, M.A.; Abdelghani, E.; Li, C. Effects of dietary sodium butyrate on reproduction in adult breeder roosters. Anim. Reprod. Sci. 2018, 196, 111–119. [Google Scholar] [CrossRef]
- Tian, X.; Yu, Z.; Feng, P.; Ye, Z.; Li, R.; Liu, J.; Hu, J.; Kakade, A.; Liu, P.; Li, X. Lactobacillus plantarum TW1-1 alleviates diethylhexylphthalate-induced testicular damage in mice by modulating gut microbiota and decreasing inflammation. Front. Cell. Infect. Microbiol. 2019, 9, 221. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Murtaza, G.; Kalhoro, D.H.; Kalhoro, M.S.; Metwally, E.; Chughtai, M.I.; Mazhar, M.U.; Khan, S.A. Relationship between gut microbiota and host metabolism: Emphasis on hormones related to reproductive function. Anim. Nutr. 2021, 7, 1–10. [Google Scholar] [CrossRef]
- Rostagno, H.S.; Albino, L.F.T.; Hannas, M.I.; Donzele, J.L.; Sakomura, N.K.; Perazzo, F.G.; Saraiva, A.; Teixeira, M.L.; Rodrigues, P.B.; de Oliveira, R.F.; et al. Tabelas Brasileiras para Aves e Suínos: Composição de Alimentos e Exigências Nutricionais, 4th ed.; Departamento de Zootecnia, UFV: Viçosa, MG, Brazil, 2017. [Google Scholar]
- Pig Improvement Company. Wean-to-Finish Manual, 2nd ed.; Pig Improvement Company (PIC): Hendersonville, TN, USA, 2019. [Google Scholar]
- Kiefer, Z.E.; Koester, L.R.; Showman, L.; Studer, J.M.; Chipman, A.L.; Keating, A.F.; Schmitz-Esser, S.; Ross, J.W. Vaginal microbiome and serum metabolite differences in late gestation commercial sows at risk for pelvic organ prolapse. Sci. Rep. 2021, 11, 6189. [Google Scholar] [CrossRef]
- Sato, J.P.H.; Daniel, A.G.S.; Pereira, C.E.R.; Andrade, M.R.; Laub, R.P.; Gabardo, M.P.; Otoni, L.V.A.; Macedo, N.R.; Barrera-Zarate, J.A.; Guedes, R.M.C. Experimental infection of pigs with a ST 245 Brachyspira hyodysenteriae isolated from an asymptomatic pig in a herd with no history of swine dysentery. Vet. Sci. 2022, 9, 286. [Google Scholar] [CrossRef]
- Bernardino, T.; Sabei, L.; Sarmiento, M.P.; Sato, D.; Farias, S.S.; de Paula, T.M.C.G.; Marques, G.R.; Zanella, A.J. Behavior and physiology of boars housed in three different environments. Front. Ethol. 2025, 4, 1540458. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/STAT® 9.4 User’s Guide, Release 9.4M3; SAS Institute Inc.: Cary, NC, USA, 2015. [Google Scholar]
- Leeuw, J.A.; Bolhuis, J.E.; Bosch, G.; Gerrits, W.J.J. Effects of dietary fibre on behaviour and satiety in pigs. Proc. Nutr. Soc. 2008, 67, 334–342. [Google Scholar] [CrossRef]
- Odakura, A.M.; Caldara, F.R.; Burbarelli, M.F.C.; Paz, I.C.L.A.; Garcia, R.G.; dos Santos, V.M.O.; Mandu, D.F.B.; Braz, J.M.; da Silva, M.I.L. Dietary supplementation of eubiotic fiber based on lignocellulose on performance and welfare of gestating and lactating sows. Animals 2023, 13, 695. [Google Scholar] [CrossRef]
- Jha, R.; Fouhse, J.M.; Tiwari, U.P.; Li, L.; Willing, B.P. Dietary fiber and intestinal health of monogastric animals. Front. Vet. Sci. 2019, 6, 48. [Google Scholar] [CrossRef] [PubMed]
- Zeitz, J.O.; Neufeld, K.; Potthast, C.; Kroismayr, A.; Most, E.; Eder, K. Effects of dietary supplementation of the lignocelluloses FibreCell and OptiCell on performance, expression of inflammation-related genes and the gut microbiome of broilers. Poult. Sci. 2019, 98, 287–297. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, K.; Che, L.; Fang, Z.; Xu, S.; Feng, B.; Zhuo, Y.; Li, J.; Wu, C.; Zhang, J.; et al. The improvement of semen quality by dietary fiber intake is positively related with gut microbiota and SCFA in a boar model. Front. Microbiol. 2022, 13, 863315. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wu, D.; Che, L.; Fang, Z.; Xu, S.; Feng, B.; Zhuo, Y.; Li, J.; Wu, C.; Zhang, J.; et al. Dietary fibre supplementation improves semen production by increasing Leydig cells and testosterone synthesis in a growing boar model. Front. Vet. Sci. 2022, 9, 850685. [Google Scholar] [CrossRef]
- Shen, P.; Ji, S.; Li, X.; Yang, Q.; Xu, B.; Wong, C.K.C.; Wang, L.; Li, L. LPS-induced systemic inflammation caused mPOA-FSH/LH disturbance and impaired testicular function. Front. Endocrinol. 2022, 13, 886085. [Google Scholar] [CrossRef]
- Liu, X.; Qi, Y.; Zhu, T.; Ding, X.; Zhou, D.; Han, C. Butyrate improves testicular spermatogenic dysfunction induced by a high-fat diet. Transl. Androl. Urol. 2025, 14, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Rüdiger, K.; Schulze, M. In vitro measures for assessing boar semen fertility. Reprod. Domest. Anim. 2015, 50 (Suppl. S2), 20–24. [Google Scholar] [CrossRef]
- Schulze, M.; Ammon, C.; Rüdiger, K.; Jung, M.; Grobbel, M. Analysis of hygienic critical control points in boar semen production. Theriogenology 2015, 83, 430–437. [Google Scholar] [CrossRef]
- Maes, C.; Delcour, J.A. Structural characterisation of water-extractable and water-unextractable arabinoxylans in wheat bran. J. Cereal Sci. 2002, 35, 315–326. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Kendall, C.W.C.; Vuksan, V.; Augustin, L.S.A.; Li, Y.-M.; Lee, B.; Mehling, C.C.; Parker, T.; Faulkner, D.; Seyler, H.; et al. The effect of wheat bran particle size on laxation and colonic fermentation. J. Am. Coll. Nutr. 1999, 18, 339–346. [Google Scholar] [CrossRef]
- Tuncil, Y.E.; Thakkar, R.D.; Berndt, M.; Hamaker, B.R.; Lindemann, S.R. Divergent short-chain fatty acid production and succession of colonic microbiota arise in fermentation of variously-sized wheat bran fractions. Sci. Rep. 2018, 8, 16655. [Google Scholar] [CrossRef]
- Röhe, I.; Metzger, F.; Vahjen, W.; Brockmann, G.A.; Zentek, J. Effect of feeding different levels of lignocellulose on performance, nutrient digestibility, excreta dry matter, and intestinal microbiota in slow growing broilers. Poult. Sci. 2020, 99, 5018–5026. [Google Scholar] [CrossRef]
- Cong, J.; Zhou, P.; Zhang, R. Intestinal microbiota-derived short chain fatty acids in host health and disease. Nutrients 2022, 14, 1977. [Google Scholar] [CrossRef]
- Sun, B.; Hou, L.; Yang, Y. Effects of adding eubiotic lignocellulose on the growth performance, laying performance, gut microbiota, and short-chain fatty acids of two breeds of hens. Front. Vet. Sci. 2021, 8, 668003. [Google Scholar] [CrossRef] [PubMed]
- Cooper, T.G. The epididymis, cytoplasmic droplets and male fertility. Asian J. Androl. 2011, 13, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Henning, H.; Luther, A.-M.; Waberski, D. A high incidence of sperm with cytoplasmic droplets affects the response to bicarbonate in preserved boar semen. Animals 2021, 11, 2570. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Waberski, D. Compensability of enhanced cytoplasmic droplet rates in boar semen: Insights of a retrospective field study. Animals 2022, 12, 2892. [Google Scholar] [CrossRef] [PubMed]
- Tremoen, N.H.; Gaustad, A.H.; Andersen-Ranberg, I.; van Son, M.; Zeremichael, T.T.; Frydenlund, K.; Grindflek, E.; Våge, D.I.; Myromslien, F.D. Relationship between sperm motility characteristics and ATP concentrations, and association with fertility in two different pig breeds. Anim. Reprod. Sci. 2018, 193, 226–234. [Google Scholar] [CrossRef]
- Barquero, V.; Roldan, E.R.S.; Soler, C.; Vargas-Leitón, B.; Sevilla, F.; Camacho, M.; Valverde, A. Relationship between fertility traits and kinematics in clusters of boar ejaculates. Biology 2021, 10, 595. [Google Scholar] [CrossRef]
- Hackerova, L.; Pilsova, A.; Pilsova, Z.; Zelenkova, N.; Tymich Hegrova, P.; Klusackova, B.; Chmelikova, E.; Sedmikova, M.; Simonik, O.; Postlerova, P. Boar sperm motility assessment using computer-assisted sperm analysis: Current practices, limitations, and methodological challenges. Animals 2025, 15, 305. [Google Scholar] [CrossRef]
- Surai, P.F.; Fisinin, V.I. Selenium in pig nutrition and reproduction: Boars and semen quality—A review. Asian-Australas. J. Anim. Sci. 2015, 28, 730–746. [Google Scholar] [CrossRef]
- Parrilla, I.; Martinez, E.A.; Gil, M.A.; Cuello, C.; Roca, J.; Rodriguez-Martinez, H.; Martinez, C.A. Boar seminal plasma: Current insights on its potential role for assisted reproductive technologies in swine. Anim. Reprod. 2020, 17, e20200022. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, A.; Moeini, M.M.; Souri, M.; Hajarian, H.; Kachuee, R. Effect of dietary zinc, selenium and their combination on antioxidant parameters in serum and semen of Sanjabi mature rams. J. Trace Elem. Miner. 2024, 8, 100118. [Google Scholar] [CrossRef]
- Marín de Jesús, S.; Vigueras-Villaseñor, R.M.; Cortés-Barberena, E.; Hernández-Rodriguez, J.; Montes, S.; Arrieta-Cruz, I.; Pérez-Aguirre, S.G.; Bonilla-Jaime, H.; Limón-Morales, O.; Arteaga-Silva, M. Zinc and its impact on the function of the testicle and epididymis. Int. J. Mol. Sci. 2024, 25, 8991. [Google Scholar] [CrossRef]
- Ahmadi, S.; Bashiri, R.; Ghadiri-Anari, A.; Nadjarzadeh, A. Antioxidant supplements and semen parameters: An evidence-based review. Int. J. Reprod. Biomed. 2016, 14, 729–736. [Google Scholar] [CrossRef]
- Horký, P.; Zeman, L.; Skládanka, J.; Nevrkla, P.; Sláma, P. Effect of selenium, zinc, vitamin C and E on boar ejaculate quality at heat stress. Acta Univ. Agric. Silvic. Mendel. Brun. 2016, 64, 1167–1172. [Google Scholar] [CrossRef]
- Galić, I.; Dragin, S.; Stančić, I.; Maletić, M.; Apić, J.; Kladar, N.; Spasojević, J.; Grba, J.; Kovačević, Z. Effect of an antioxidant supplement combination on boar sperm. Animals 2022, 12, 1301. [Google Scholar] [CrossRef]
- Canani, R.B.; Di Costanzo, M.; Leone, L. The epigenetic effects of butyrate: Potential therapeutic implications for clinical practice. Clin. Epigenet. 2012, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Cadden, A.-M. Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers. J. Food Sci. 1987, 52, 1595–1599. [Google Scholar] [CrossRef]
- European Council. Council Directive 2008/120/EC of 18 December 2008 laying down minimum standards for the protection of pigs. Off. J. Eur. Union 2009, L47, 5–13. [Google Scholar]
- Ministry of Agriculture, Livestock and Supply. Normative Instruction No. 113, of December 16, 2020; Off. Gaz. Union: Brasília, Brazil, 2020.
- Federation of Animal Science Societies. Guide for the Care and Use of Agricultural Animals in Research and Teaching, 4th ed.; Federation of Animal Science Societies: Champaign, IL, USA, 2020; Chapter 9. [Google Scholar]
- Raber, V.L.; Pritchett, R.K.; Robbins, L.A.; Stewart, K.R.; Gaskill, B.N.; Green-Miller, A.R.; Johnson, J.S. Evaluating the temperature preferences of sexually mature Duroc, Landrace, and Yorkshire boars. Transl. Anim. Sci. 2023, 7, txad060. [Google Scholar] [CrossRef] [PubMed]
Behavior | Description |
---|---|
Negative social interaction | Animal displaying aggressive behavior such as biting, mounting, headbutting, or performing any social behavior that disturbs or bothers another animal. |
Positive social interaction | Animal sniffing, nuzzling, sucking, or gently touching another animal without triggering aggressive responses from the other individual. |
Sexual behavior | Chewing without the presence of food, excessive salivation, with or without the Flehmen reflex (head elevation and curling of the upper lip). Mounting simulation directed at pen structures or exhibiting dorsal arching, with repetitive copulatory movements, with or without ejaculation. |
Stereotyped behavior | Animal performing repetitive activities with no apparent function (e.g., licking the floor and/or the feeder, biting the bars of the crate, chewing air, activating the drinker without water intake, head shaking). |
Sitting | Animal in a sitting position (hindquarters and forepaws on the floor). |
Lying | Animal in lateral or sternal recumbency, not engaging in any activity, with eyes open or closed. |
Standing still | Animal standing still, with the soles of 3 or 4 limbs on the floor. |
Other active behavior | Animal drinking water, eating feed, exploring the environment with the snout, moving within the pen, urinating, or defecating. |
Semen Characteristics | CON | PFIF | SEM | p-Value |
---|---|---|---|---|
Volume (mL) | 209.63 | 211.99 | 2.877 | 0.677 |
Sperm concentration (× 106/mL) | 440.00 | 430.00 | 0.006 | 0.142 |
Total sperm count (×109) | 88.65 | 87.20 | 1.263 | 0.562 |
Total motility (%) | 95.09 | 95.40 | 0.135 | 0.256 |
Progressive motility (%) | 86.62 | 87.36 | 0.285 | 0.196 |
DCL—Curvilinear displacement (µm) | 111.28 | 110.77 | 0.908 | 0.780 |
DAP—Average path displacement (µm) | 55.92 | 56.58 | 0.428 | 0.380 |
DSL—Straight-line displacement (µm) | 40.77 | 42.83 | 0.377 | 0.006 |
VCL—Curvilinear velocity (µm/s) | 178.76 | 176.14 | 1.560 | 0.406 |
VAP—Average path velocity (µm/s) | 90.12 | 90.42 | 0.733 | 0.836 |
VSL—Straight-line velocity (µm/s) | 66.72 | 69.04 | 0.619 | 0.063 |
STR—Straightness | 73.32 | 75.83 | 0.324 | 0.000 |
WOB—Wobble | 51.94 | 52.54 | 0.177 | 0.095 |
LIN—Linearity | 38.95 | 40.57 | 0.246 | 0.001 |
Total sperm defects (%) | 13.37 | 14.28 | 0.295 | 0.127 |
Proximal Droplet (%) | 4.41 | 3.71 | 0.116 | 0.003 |
Distal Droplet (%) | 5.53 | 5.87 | 0.132 | 0.203 |
Possible doses (n) | 35.90 | 34.69 | 0.499 | 0.228 |
Parameter | Score | CON | PFIF | p-Value |
---|---|---|---|---|
Feed intake score | 1 | 0.07% | 0.59% | 0.0002 |
2 | 0.33% | 1.45% | ||
3 | 99.60% | 97.95% | ||
Fecal score | 0 | 99.84% | 100% | 0.1506 |
2 | 0.08% | 0.00% | ||
3 | 0.08% | 0.00% | ||
Perineal score | 0 | 76.47% | 73.33% | 0.4283 |
1 | 23.53% | 26.67% |
Behavior | CON | PFIF | SEM | p-Value |
---|---|---|---|---|
Negative social interaction | 0.00 | 0.05 | 0.000 | 1.000 |
Positive social interaction | 0.24 | 0.13 | 0.286 | 0.292 |
Sexual behavior | 0.17 | 0.41 | 0.281 | 0.154 |
Stereotyped behavior | 23.66 | 17.92 | 0.170 | 0.225 |
Sitting | 9.06 | 6.87 | 0.281 | 0.116 |
Lying | 32.49 | 34.68 | 0.153 | 0.480 |
Standing still | 27.99 | 34.28 | 0.166 | 0.117 |
Other active behavior | 6.39 | 5.66 | 0.114 | 0.742 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandu, D.F.d.B.; Sobral, V.S.; Ribas, J.C.R.; Burbarelli, M.F.d.C.; Braga, C.S.; Garcia, R.G.; Paz, I.C.d.L.A.; Komiyama, C.M.; Caldara, F.R. Sperm Quality and Welfare of Sexually Mature Boars Supplemented with Partially Fermentable Insoluble Fiber. Life 2025, 15, 1597. https://doi.org/10.3390/life15101597
Mandu DFdB, Sobral VS, Ribas JCR, Burbarelli MFdC, Braga CS, Garcia RG, Paz ICdLA, Komiyama CM, Caldara FR. Sperm Quality and Welfare of Sexually Mature Boars Supplemented with Partially Fermentable Insoluble Fiber. Life. 2025; 15(10):1597. https://doi.org/10.3390/life15101597
Chicago/Turabian StyleMandu, Daniela Ferreira de Brito, Vivian Schwaab Sobral, Juliana Cristina Rego Ribas, Maria Fernanda de Castro Burbarelli, Cristiny Santos Braga, Rodrigo Garófallo Garcia, Ibiara Correia de Lima Almeida Paz, Claudia Marie Komiyama, and Fabiana Ribeiro Caldara. 2025. "Sperm Quality and Welfare of Sexually Mature Boars Supplemented with Partially Fermentable Insoluble Fiber" Life 15, no. 10: 1597. https://doi.org/10.3390/life15101597
APA StyleMandu, D. F. d. B., Sobral, V. S., Ribas, J. C. R., Burbarelli, M. F. d. C., Braga, C. S., Garcia, R. G., Paz, I. C. d. L. A., Komiyama, C. M., & Caldara, F. R. (2025). Sperm Quality and Welfare of Sexually Mature Boars Supplemented with Partially Fermentable Insoluble Fiber. Life, 15(10), 1597. https://doi.org/10.3390/life15101597