ASTROGLIA: Molecular Mechanisms, Functional Roles, and Neurophysiological Implications in the Central Nervous System
Abstract
1. Introduction
2. Peripheral Neuroglia: Context and Contrast
3. Central Neuroglia: Historical Background and Taxonomy
3.1. Ependymal and Non-Astrocytic Central Glia: Anatomical Significance
3.2. Oligodendroglia and Microglia: Non-Astrocytic Central Nervous System Glia
4. Astrocytes: Glycogen Metabolism, Cytoskeletal Characteristics, and Blood–Brain Barrier Function
5. Fibrous Astrocytes: Anatomy and Role
6. Protoplasmic Astrocytes
7. Kv10.1-Type Potassium Channels and Ion Homeostasis in Astrocytes
8. Molecular and Functional Aspects of Astroglia
9. Astrocyte Morphology and Its Role in Neurological Disorders
10. Conclusions
- Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADP | Adenosine Diphosphate |
AMPA | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor |
AP | Area Postrema |
ATP | Adenosine Triphosphate |
BBB | Blood–Brain Barrier |
BDNF | Brain-Derived Neurotrophic Factor |
Ca2+ | Calcium ion |
CAMs | Cell Adhesion Molecules |
cAMP | Cyclic Adenosine Monophosphate |
CNS | Central Nervous System |
Cl− | Chloride ion |
CREB1 | cAMP Response Element-Binding Protein 1 |
DAG | Diacylglycerol |
D1, D2 | Dopamine Receptors type 1 and 2 |
EAAT1/2 | Excitatory Amino Acid Transporter 1 and 2 |
GDNF | Glial cell line-Derived Neurotrophic Factor |
GFAP | Glial Fibrillary Acidic Protein |
GFAPα, β, μ, Δ/k, Δ135, Δ164, Δexon6 | GFAP isoforms |
Glu | Glutamate |
Gln | Glutamine |
G6P | Glucose-6-Phosphate |
IP3 | Inositol 1,4,5-trisphosphate |
IP3R2 | IP3 Receptor Type 2 |
K+ | Potassium ion |
LDH | Lactate Dehydrogenase |
LTP | Long-Term Potentiation |
ME | Median Eminence |
NADH | Nicotinamide Adenine Dinucleotide (reduced form) |
Na+ | Sodium ion |
NG2 | Neural/Glial antigen 2 |
NFs | Neurotrophic Factors |
OPCs | Oligodendrocyte Precursor Cells |
OVLT | Organum Vasculosum of the Lamina Terminalis |
PAF | Platelet-Activating Factor |
PC | Pericyte |
PG | Pineal Gland |
ROS | Reactive Oxygen Species |
SCO | Subcommissural Organ |
SFO | Subfornical Organ |
SNARE | Soluble NSF Attachment Protein Receptor |
SVZ | Subventricular Zone |
VGLUT | Vesicular Glutamate Transporter |
VZ | Ventricular Zone |
VZ/SVZ | Ventricular/Subventricular Zone |
References
- Chung, W.S.; Baldwin, K.T.; Allen, N.J. Astrocyte Regulation of Synapse Formation, Maturation, and Elimination. Cold Spring Harb. Perspect. Biol. 2024, 16, a041352. [Google Scholar] [CrossRef]
- Hansson, E.; Rönnbäck, L. Astroglial modulation of synaptic transmission. Perspect. Dev. Neurobiol. 1994, 2, 217–223. [Google Scholar] [PubMed]
- Nadkarni, S.; Jung, P.; Levine, H. Astrocytes optimize the synaptic transmission of information. PLoS Comput. Biol. 2008, 4, e1000088. [Google Scholar] [CrossRef]
- Ameroso, D.; Rios, M. Synaptic plasticity and the role of astrocytes in central metabolic circuits. WIREs Mech. Dis. 2024, 16, e1632. [Google Scholar] [CrossRef] [PubMed]
- Azcorra, M.; Gaertner, Z.; Davidson, C.; Fung, C.C.A.; Peng, B.; Paladini, C.A.; Li, B.; Morales, M. Unique functional responses differentially map onto genetic subtypes of dopamine neurons. Nat. Neurosci. 2023, 26, 1762–1774. [Google Scholar] [CrossRef] [PubMed]
- Bo, K.; Kraynak, T.E.; Kwon, M.; McCormick, E.M.; Moraczewski, D.; Morales, L.J.; Telzer, E.H.; Perlman, S.B. A systems identification approach using Bayes factors to deconstruct the brain bases of emotion regulation. Nat. Neurosci. 2024, 27, 975–987. [Google Scholar] [CrossRef]
- Shahar, O.; Botvinnik, A.; Shwartz, A.; Lenz, M.; Ben Ami, R.; Salomon, S.; Nevo, N.; Soreq, H. Effect of chemically synthesized psilocybin and psychedelic mushroom extract on molecular and metabolic profiles in mouse brain. Mol. Psychiatry 2024, 29, 2059–2073. [Google Scholar] [CrossRef]
- Hacisuleyman, E.; Hale, C.R.; Noble, N.; Kim, D.H.; Qi, Y.; Nabet, B.; Regev, A.; Finkbeiner, S. Neuronal activity rapidly reprograms dendritic translation via eIF4G2:uORF binding. Nat. Neurosci. 2024, 27, 822–835. [Google Scholar] [CrossRef]
- Yu, L.; Logsdon, D.; Pinzon-Arteaga, C.A.; Duan, J.; Ezashi, T.; Wei, Y.; Ribeiro Orsi, A.E.; Oura, S.; Liu, L.; Wang, L.; et al. Large-scale production of human blastoids amenable to modeling blastocyst development and maternal-fetal cross talk. Cell Stem Cell 2023, 30, 1246–1261.e9. [Google Scholar] [CrossRef]
- Irala, D.; Wang, S.; Sakers, K.; Nagendren, L.; Ulloa Severino, F.P.; Sivadasan Bindu, D.; Savage, J.T.; Eroglu, C. Astrocyte-secreted neurocan controls inhibitory synapse formation and function. Neuron 2024, 112, 1657–1675.e10. [Google Scholar] [CrossRef]
- Schuh, C.M.A.P.; Sandoval-Castellanos, A.M.; De Gregorio, C.; Contreras-Kallens, P.; Haycock, J.W. The Role of Schwann Cells in Peripheral Nerve Function, Injury, and Repair. In Cell Engineering and Regeneration; Gimble, J.M., Presen, D.M., Oreffo, R., Redl, H., Wolbank, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–22. [Google Scholar] [CrossRef]
- Lehmann, H.C.; Höke, A. Schwann cells as a therapeutic target for peripheral neuropathies. CNS Neurol. Disord.-Drug Targets 2010, 9, 801–806. [Google Scholar] [CrossRef]
- Nave, K.A.; Werner, H.B. Myelination of the nervous system: Mechanisms and functions. Annu. Rev. Cell Dev. Biol. 2014, 30, 503–533. [Google Scholar] [CrossRef]
- Stadelmann, C.; Timmler, S.; Barrantes-Freer, A.; Simons, M. Myelin in the central nervous system: Structure, function, and pathology. Physiol. Rev. 2019, 99, 1381–1431. [Google Scholar] [CrossRef] [PubMed]
- Hanani, M. Satellite glial cells in sensory ganglia: From form to function. Brain Res. Rev. 2005, 48, 457–476. [Google Scholar] [CrossRef]
- Rajasekhar, P.; Poole, D.P.; Veldhuis, N.A. Chapter Four—Role of nonneuronal TRPV4 signaling in inflammatory processes. In Advances in Pharmacology; Geraghty, D.P., Rash, L.D., Eds.; Academic Press: Cambridge, MA, USA, 2017; Volume 79, pp. 117–139. [Google Scholar] [CrossRef]
- Reddy, L.V.; Koirala, S.; Sugiura, Y.; Herrera, A.A.; Ko, C.P. Glial cells maintain synaptic structure and function and promote development of the neuromuscular junction in vivo. Neuron 2003, 40, 563–580. [Google Scholar] [CrossRef]
- Feng, Z.; Ko, C.P. The role of glial cells in the formation and maintenance of the neuromuscular junction. Ann. N. Y. Acad. Sci. 2008, 1132, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Berthold, C.-H.; Fraher, J.P.; King, R.H.M.; Rydmark, M. Chapter 3—Microscopic anatomy of the peripheral nervous system. In Peripheral Neuropathy, 4th ed.; Dyck, P.J., Thomas, P.K., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2005; pp. 35–91. [Google Scholar] [CrossRef]
- Ko, C.P.; Robitaille, R. Perisynaptic Schwann cells at the neuromuscular synapse: Adaptable, multitasking glial cells. Cold Spring Harb. Perspect. Biol. 2015, 7, a020503. [Google Scholar] [CrossRef] [PubMed]
- Reed, C.B.; Feltri, M.L.; Wilson, E.R. Peripheral glia diversity. J. Anat. 2022, 241, 1219–1234. [Google Scholar] [CrossRef]
- Meerschaert, K.A.; Chiu, I.M. The gut–brain axis and pain signalling mechanisms in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 2025, 22, 206–221. [Google Scholar] [CrossRef]
- Lenkowski, J.R.; Raymond, P.A. Müller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish. Prog. Retin. Eye Res. 2014, 40, 94–123. [Google Scholar] [CrossRef]
- Boullerne, A.I.; Feinstein, D.L. History of Neuroscience I. Pío del Río-Hortega (1882–1945): The Discoverer of Microglia and Oligodendroglia. ASN Neuro 2020, 12, 1759091420953259. [Google Scholar] [CrossRef] [PubMed]
- Dimou, L.; Gallo, V. NG2-glia and their functions in the central nervous system. Glia 2015, 63, 1429–1451. [Google Scholar] [CrossRef]
- Pérez-Cerdá, F.; Sánchez-Gómez, M.V.; Matute, C. Pío del Río Hortega and the discovery of the oligodendrocytes. Front. Neuroanat. 2015, 9, 92. [Google Scholar] [CrossRef]
- Walz, W.; Mukerji, S. Lactate release from cultured astrocytes and neurons: A comparison. Glia 1988, 1, 366–370. [Google Scholar] [CrossRef]
- López-Muñoz, F.; Boya, J.; Alamo, C. Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal. Brain Res. Bull. 2006, 70, 391–405. [Google Scholar] [CrossRef]
- Parpura, V.; Verkhratsky, A. Neuroglia at the crossroads of homoeostasis, metabolism and signalling: Evolution of the concept. ASN Neuro 2012, 4, 201–205. [Google Scholar] [CrossRef]
- Anders, J.J. Lactic acid inhibition of gap junctional intercellular communication in in vitro astrocytes as measured by fluorescence recovery after laser photobleaching. Glia 1988, 1, 371–379. [Google Scholar] [CrossRef]
- Tropea, M.; Johnson, M.I.; Higgins, D. Glial cells promote dendritic development in rat sympathetic neurons in vitro. Glia 1988, 1, 380–392. [Google Scholar] [CrossRef]
- Hansson, E.; Rönnbäck, L. Neurons from substantia nigra increase the efficacy and potency of second messenger arising from striatal astroglia dopamine receptor. Glia 1988, 1, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Nelles, D.G.; Hazrati, L.N. Ependymal cells and neurodegenerative disease: Outcomes of compromised ependymal barrier function. Brain Commun. 2022, 4, fcac288. [Google Scholar] [CrossRef] [PubMed]
- Solár, P.; Zamani, A.; Kubíčková, L.; Dubový, P.; Joukal, M. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS 2020, 17, 35. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, A.J.; Domínguez-Pinos, M.D.; Guerra, M.M.; Fernández-Llebrez, P.; Pérez-Fígares, J.M. Structure and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue Barriers 2014, 2, e28426. [Google Scholar] [CrossRef]
- Guerra, M.M.; González, C.; Caprile, T.; Jara, M.; Vío, K.; Muñoz, R.I.; Rodríguez, S.; Rodríguez, E.M. Understanding how the subcommissural organ and other periventricular secretory structures contribute via the cerebrospinal fluid to neurogenesis. Front. Cell. Neurosci. 2015, 9, 480. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, Y.; Tomer, R.; Silver, R. Capillary connections between sensory circumventricular organs and adjacent parenchyma enable local volume transmission. J. Neuroendocrinol. 2025, 37, e13490. [Google Scholar] [CrossRef] [PubMed]
- López-Muguruza, E.; Peiró-Moreno, C.; Pérez-Cerdá, F.; Matute, C.; Ruiz, A. Del Río Hortega’s insights into oligodendrocytes: Recent advances in subtype characterization and functional roles in axonal support and disease. Front. Neuroanat. 2025, 19, 1557214. [Google Scholar] [CrossRef] [PubMed]
- Thion, M.S.; Garel, S. Microglial ontogeny, diversity and neurodevelopmental functions. Curr. Opin. Genet. Dev. 2020, 65, 186–194. [Google Scholar] [CrossRef]
- Ginhoux, F.; Greter, M.; Leboeuf, M.; Nandi, S.; See, P.; Gokhan, S.; Mehler, M.F.; Conway, S.J.; Ng, L.G.; Stanley, E.R.; et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330, 841–845. [Google Scholar] [CrossRef]
- Borst, K.; Dumas, A.A.; Prinz, M. Microglia: Immune and non-immune functions. Immunity 2021, 54, 2194–2208. [Google Scholar] [CrossRef]
- Prinz, M.; Jung, S.; Priller, J. Microglia biology: One century of evolving concepts. Cell 2019, 179, 292–311. [Google Scholar] [CrossRef]
- Bonvento, G.; Bolaños, J.P. Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metab. 2021, 33, 1546–1564. [Google Scholar] [CrossRef]
- Mason, S. Lactate Shuttles in Neuroenergetics-Homeostasis, Allostasis and Beyond. Front. Neurosci. 2017, 11, 43. [Google Scholar] [CrossRef]
- Almeida, A.; Jimenez-Blasco, D.; Bolaños, J.P. Cross-talk between energy and redox metabolism in astrocyte-neuron functional cooperation. Essays Biochem. 2023, 67, 17–26. [Google Scholar] [CrossRef]
- Bélanger, M.; Allaman, I.; Magistretti, P.J. Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011, 14, 724–738. [Google Scholar] [CrossRef]
- Sofroniew, M.V.; Vinters, H.V. Astrocytes: Biology and pathology. Acta Neuropathol. 2010, 119, 7–35. [Google Scholar] [CrossRef] [PubMed]
- Rungger-Brändle, E.; Achtstätter, T.; Franke, W.W. An epithelium-type cytoskeleton in a glial cell: Astrocytes of amphibian optic nerves contain cytokeratin filaments and are connected by desmosomes. J. Cell Biol. 1989, 109, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Van Asperen, J.V.; Robe, P.A.J.T.; Hol, E.M. GFAP alternative splicing and the relevance for disease—A focus on diffuse gliomas. ASN Neuro 2022, 14, 17590914221102065. [Google Scholar] [CrossRef] [PubMed]
- Radu, R.; Petrescu, G.E.D.; Gorgan, R.M.; Brehar, F.M. GFAPδ: A Promising Biomarker and Therapeutic Target in Glioblastoma. Front. Oncol. 2022, 12, 859247. [Google Scholar] [CrossRef]
- Oberheim, N.A.; Goldman, S.A.; Nedergaard, M. Heterogeneity of astrocytic form and function. Methods Mol. Biol. 2012, 814, 23–45. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, M.; Yu, H.; Wang, Y.; Wu, X.; Yong, J.; Mao, Y.; Cui, Y.; Fan, X.; Wen, L.; et al. Heterogeneity of glial progenitor cells during the neurogenesis-to-gliogenesis switch in the developing human cerebral cortex. Cell Rep. 2021, 34, 108788. [Google Scholar] [CrossRef]
- Mazur, A.; Bills, E.H.; DeSchepper, K.M.; Williamson, J.C.; Henderson, B.J.; Risher, W.C. Astrocyte-Derived Thrombospondin Induces Cortical Synaptogenesis in a Sex-Specific Manner. eNeuro 2021, 8, 1–15. [Google Scholar] [CrossRef]
- Osterhout, D.J.; Frazier, W.A.; Higgins, D. Thrombospondin promotes process outgrowth in neurons from the peripheral and central nervous systems. Dev. Biol. 1992, 150, 256–265. [Google Scholar] [CrossRef]
- McConnell, H.L.; Li, Z.; Woltjer, R.L.; Mishra, A. Astrocyte dysfunction and neurovascular impairment in neurological disorders: Correlation or causation? Neurochem. Int. 2019, 128, 70–84. [Google Scholar] [CrossRef]
- Khakh, B.S.; Sofroniew, M.V. Diversity of astrocyte functions and phenotypes in neural circuits. Nat. Neurosci. 2015, 18, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Bushong, E.A.; Martone, M.E.; Jones, Y.Z.; Ellisman, M.H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. Off. J. Soc. Neurosci. 2002, 22, 183–192. [Google Scholar] [CrossRef]
- Lawal, O.; Ulloa Severino, F.P.; Eroglu, C. The role of astrocyte structural plasticity in regulating neural circuit function and behavior. Glia 2022, 70, 1467–1483. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, Y.; Yang, Y.; Bian, S.; Rivetta, A.; Allen, K.; Sigworth, F.J. Cryo-EM structures of Kv1.2 potassium channels, conducting and non-conducting. eLife 2023, 12, RP89459. [Google Scholar] [CrossRef]
- DiNuzzo, M.; Mangia, S.; Maraviglia, B.; Giove, F. Regulatory mechanisms for glycogenolysis and K+ uptake in brain astrocytes. Neurochem. Int. 2013, 63, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Butt, A.M.; Colquhoun, K.; Tutton, M.; Berry, M. Three-dimensional morphology of astrocytes and oligodendrocytes in the intact mouse optic nerve. J. Neurocytol. 1994, 23, 469–485. [Google Scholar] [CrossRef] [PubMed]
- Bellot-Saez, A.; Kékesi, O.; Morley, J.W.; Buskila, Y. Astrocytic modulation of neuronal excitability through K+ spatial buffering. Neurosci. Biobehav. Rev. 2017, 77, 87–97. [Google Scholar] [CrossRef]
- MacAulay, N.; Zeuthen, T. Astroglial potassium sensing: From ion gradients to metabolic regulation. Physiol. Rev. 2024, 104, 301–338. [Google Scholar]
- Sibille, J.; Dallérac, G.; Rouach, N. Astroglial potassium homeostasis: From nano-scale domains to network stability. Nat. Rev. Neurosci. 2024, 25, 405–425. [Google Scholar]
- Posati, T.; Pistone, A.; Saracino, E.; Formaggio, F.; Mola, M.G.; Troni, E.; Sagnella, A.; Nocchetti, M.; Barbalinardo, M.; Valle, F.; et al. A nanoscale interface promotes molecular and functional differentiation of neuronal cells. Sci. Rep. 2016, 6, 31226. [Google Scholar] [CrossRef]
- Du, M.; Li, J.; Chen, L.; Yu, Y.; Wu, Y. Astrocytic Kir4.1 channels and gap junctions account for spontaneous epileptic seizure. PLoS Comput. Biol. 2018, 14, e1005877. [Google Scholar] [CrossRef]
- Papageorgiou, I.E.; Gabriel, S.; Fetani, A.F.; Kann, O.; Heinemann, U. Redistribution of astrocytic glutamine synthetase in the hippocampus of chronic epileptic rats. Glia 2011, 59, 1706–1718. [Google Scholar] [CrossRef] [PubMed]
- Luo, J. TGF-β as a key modulator of astrocyte reactivity: Disease relevance and therapeutic implications. Biomedicines 2022, 10, 1206. [Google Scholar] [CrossRef] [PubMed]
- Sipe, G.O.; Petravicz, J.; Rikhye, R.V.; Garcia, R.; Mellios, N.; Sur, M. Astrocyte glutamate uptake coordinates experience-dependent, eye-specific refinement in developing visual cortex. Glia 2021, 69, 1723–1735. [Google Scholar] [CrossRef]
- Danbolt, N.C. Glutamate uptake. Prog. Neurobiol. 2001, 65, 1–105. [Google Scholar] [CrossRef] [PubMed]
- Danbolt, N.C.; López-Corcuera, B.; Zhou, Y. Reconstitution of GABA, Glycine and Glutamate Transporters. Neurochem. Res. 2022, 47, 85–110. [Google Scholar] [CrossRef] [PubMed]
- Pajarillo, E.; Rizor, A.; Lee, J.; Aschner, M.; Lee, E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019, 161, 107559. [Google Scholar] [CrossRef]
- Perea, G.; Navarrete, M.; Araque, A. Tripartite synapses: Astrocytes process and control synaptic information. Trends Neurosci. 2009, 32, 421–431. [Google Scholar] [CrossRef]
- Perez-Alvarez, A.; Navarrete, M.; Covelo, A.; Martin, E.D.; Araque, A. Structural and functional plasticity of astrocyte processes and dendritic spine interactions. J. Neurosci. 2014, 34, 12738–12744. [Google Scholar] [CrossRef]
- Felix, L.; Stephan, J.; Rose, C.R. Astrocytes of the early postnatal brain. Eur. J. Neurosci. 2021, 54, 5649–5672. [Google Scholar] [CrossRef] [PubMed]
- Durkee, C.A.; Araque, A. Diversity and Specificity of Astrocyte-neuron Communication. Neuroscience 2019, 396, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Kofuji, P.; Araque, A. G-Protein-Coupled Receptors in Astrocyte-Neuron Communication. Neuroscience 2021, 456, 71–84. [Google Scholar] [CrossRef]
- Agarwal, A.; Wu, P.H.; Hughes, E.G.; Fukaya, M.; Tischfield, M.A.; Langseth, A.J.; Wirtz, D.; Bergles, D.E. Transient Opening of the Mitochondrial Permeability Transition Pore Induces Microdomain Calcium Transients in Astrocyte Processes. Neuron 2017, 93, 587–605.e7. [Google Scholar] [CrossRef]
- MacVicar, B.A.; Ko, R.W. Mitochondrial Calcium Sparkles Light Up Astrocytes. Dev. Cell 2017, 40, 327–328. [Google Scholar] [CrossRef]
- Arizono, M.; Inavalli, V.V.G.K.; Panatier, A.; Pfeiffer, T.; Angibaud, J.; Levet, F.; Ter Veer, M.J.T.; Stobart, J.; Bellocchio, L.; Mikoshiba, K.; et al. Structural basis of astrocytic Ca2+ signals at tripartite synapses. Nat. Commun. 2020, 11, 1906. [Google Scholar] [CrossRef] [PubMed]
- Roeling, T.A.P.; Feirabend, H.K.P. Glial fiber pattern in the developing chicken cerebellum: Vimentin and glial fibrillary acidic protein (GFAP) immunostaining. Glia 1988, 1, 398–402. [Google Scholar] [CrossRef]
- Sherwood, M.W.; Arizono, M.; Panatier, A.; Mikoshiba, K.; Oliet, S.H.R. Astrocytic IP3Rs: Beyond IP3R2. Front. Cell. Neurosci. 2021, 15, 695817. [Google Scholar] [CrossRef]
- Zorec, R.; Araque, A.; Carmignoto, G.; Haydon, P.G.; Verkhratsky, A.; Parpura, V. Astroglial excitability and gliotransmission: An appraisal of Ca2+ as a signalling route. ASN Neuro 2012, 4, e00080. [Google Scholar] [CrossRef]
- Hanani, M.; Spray, D.C. Emerging importance of satellite glia in nervous system function and dysfunction. Nat. Rev. Neurosci. 2020, 21, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Ota, Y.; Zanetti, A.T.; Hallock, R.M. The role of astrocytes in the regulation of synaptic plasticity and memory formation. Neural Plast. 2013, 2013, 185463. [Google Scholar] [CrossRef]
- Severs, L.J.; Bush, N.E.; Quina, L.A.; Hidalgo-Andrade, S.; Burgraff, N.J.; Dashevskiy, T.; Shih, A.Y.; Baertsch, N.A.; Ramirez, J.-M. Purinergic signaling mediates neuroglial interactions to modulate sighs. Nat. Commun. 2023, 14, 5300. [Google Scholar] [CrossRef]
- MacVicar, B.A.; Tse, F.W.Y. Norepinephrine and cyclic adenosine 3′:5′-cyclic monophosphate enhance a nifedipine-sensitive calcium current in cultured rat astrocytes. Glia 1988, 1, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.B.; Sonders, M.S.; Mortensen, O.V.; Larson, G.A.; Zahniser, N.R.; Amara, S.G. Dopamine transport by the serotonin transporter: A mechanistically distinct mode of substrate translocation. J. Neurosci. Off. J. Soc. Neurosci. 2011, 31, 6605–6615. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Giustetto, M.; Lomvardas, S.; Kim, J.H.; Miniaci, M.C.; Schwartz, J.H.; Thanos, D.; Kandel, E.R. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell 2002, 111, 483–493. [Google Scholar] [CrossRef]
- Zhao, S.; Gu, Z.L.; Yue, Y.N.; Zhang, X.; Dong, Y. Cannabinoids and monoaminergic system: Implications for learning and memory. Front. Neurosci. 2024, 18, 1425532. [Google Scholar] [CrossRef]
- Gómez-Gonzalo, M.; Martin-Fernandez, M.; Martínez-Murillo, R.; Mederos, S.; Hernández-Vivanco, A.; Jamison, S.; Fernandez, A.P.; Serrano, J.; Calero, P.; Futch, H.S.; et al. Neuron-astrocyte signaling is preserved in the aging brain. Glia 2017, 65, 569–580. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Illes, P.; Tang, Y.; Semyanov, A. The anti-inflammatory astrocyte revealed: The role of the microbiome in shaping brain defences. Signal Transduct. Target. Ther. 2021, 6, 150. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega, A.; Martínez-Nuncio, L.A.; Taddei, E.; Castañeda, E.; Rubio, C.; Rubio-Osornio, M. ASTROGLIA: Molecular Mechanisms, Functional Roles, and Neurophysiological Implications in the Central Nervous System. Life 2025, 15, 1505. https://doi.org/10.3390/life15101505
Ortega A, Martínez-Nuncio LA, Taddei E, Castañeda E, Rubio C, Rubio-Osornio M. ASTROGLIA: Molecular Mechanisms, Functional Roles, and Neurophysiological Implications in the Central Nervous System. Life. 2025; 15(10):1505. https://doi.org/10.3390/life15101505
Chicago/Turabian StyleOrtega, Andrea, Luz A. Martínez-Nuncio, Elisa Taddei, Eduardo Castañeda, Carmen Rubio, and Moisés Rubio-Osornio. 2025. "ASTROGLIA: Molecular Mechanisms, Functional Roles, and Neurophysiological Implications in the Central Nervous System" Life 15, no. 10: 1505. https://doi.org/10.3390/life15101505
APA StyleOrtega, A., Martínez-Nuncio, L. A., Taddei, E., Castañeda, E., Rubio, C., & Rubio-Osornio, M. (2025). ASTROGLIA: Molecular Mechanisms, Functional Roles, and Neurophysiological Implications in the Central Nervous System. Life, 15(10), 1505. https://doi.org/10.3390/life15101505