Is Punica granatum Efficient Against Sepsis? A Comparative Study of Amifostine Versus Pomegranate
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Experimental Animals and Study Groups
2.2. Cecal Ligation and Puncture (CLP)-Induced Sepsis Model
2.3. The Procurement and Preparation of P. granatum Peel Extract
2.4. HPLC Analyses and Quantification
2.5. Biochemical Analysis
2.5.1. Tissue Sampling and Homogenization
2.5.2. Determination of TBARS
2.5.3. Determination of Total Thiol (TT)
2.5.4. Tissue TNF-α Determination
2.6. Histopathological Analysis
2.7. Immunohistochemical (IHC) Analysis
2.8. Semi-Quantitative Analysis
2.9. Statistical Analysis
3. Results
3.1. HPLC Results
3.2. Biochemical Results
3.3. Histopathological Findings
3.4. Immuno-Histochemical Findings
3.5. Semi-Quantitative Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, Regional, and National Sepsis Incidence and Mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Cuenca, A.G.; Delano, M.J.; Kelly-Scumpia, K.M.; Moldawer, L.L.; Efron, P.A. Cecal ligation and puncture. Curr. Protoc. Immunol. 2010, 91, 19.13.1–19.13.11. [Google Scholar] [CrossRef]
- Maier, S.; Traeger, T.; Entleutner, M.; Westerholt, A.; Kleist, B.; Huser, N.; Holzmann, B.; Stier, A.; Pfeffer, K.; Heidecke, C.D. Cecal Ligation and Puncture Versus Colon Ascendens Stent Peritonitis: Two Distinct Animal Models for Polymicrobial Sepsis. Shock 2004, 21, 505–512. [Google Scholar] [CrossRef]
- Ates, G.; Tamer, S.; Yorulmaz, H.; Mutlu, S.; Olgac, V.; Aksu, A.; Caglar, N.B.; Ozkok, E. Melatonin pretreatment modulates anti-inflammatory, antioxidant, YKL-40, and matrix metalloproteinases in endotoxemic rat lung tissue. Exp. Biol. Med. 2022, 247, 1080–1089. [Google Scholar] [CrossRef] [PubMed]
- Vassiliou, A.G.; Kotanidou, A.; Dimopoulou, I.; Orfanos, S.E. Endothelial Damage in Acute Respiratory Distress Syndrome. Int. J. Mol. Sci. 2020, 21, 8793. [Google Scholar] [CrossRef]
- Sahetya, S.K.; Goligher, E.C.; Brower, R.G. Fifty years of research in ARDS. Setting positive end-expiratory pressure in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2017, 195, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt-Mernak, M.I.; Pinheiro, N.M.; Santana, F.P.R.; Guerreiro, M.P.; Saraiva-Romanholo, B.M.; Grecco, S.S.; Caperuto, L.C.; Felizardo, R.J.F.; Camara, N.O.S.; Tiberio, I.F.L.C.; et al. Prophylactic and therapeutic treatment with the flavonone sakuranetin ameliorates LPS-induced acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 312, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M.; Herance, R.; Rovira, S.; Hernandez-Mijares, A.; Victor, V.M. Mitochondrial dysfunction and antioxidant therapy in sepsis. Infect. Disord.—Drug Targets 2012, 12, 161–178. [Google Scholar] [CrossRef]
- Zheng, B.; Yang, H.; Zhang, J.; Wang, X.; Sun, H.; Hu, F.; Li, Q.; Jiang, L.; Su, Y.; Peng, Q.; et al. Lidocaine Alleviates Sepsis-Induced Acute Lung Injury in Mice by Suppressing Tissue Factor and Matrix Metalloproteinase-2/9. Oxid. Med. Cell. Longev. 2021, 2021, 3827501. [Google Scholar] [CrossRef]
- Zhang, H.; Mao, Y.F.; Zhao, Y.; Xu, D.F.; Wang, Y.; Xu, C.F.; Dong, W.W.; Zhu, X.Y.; Ding, N.; Jiang, L.; et al. Upregulation of Matrix Metalloproteinase-9 Protects against Sepsis-Induced Acute Lung Injury via Promoting the Release of Soluble Receptor for Advanced Glycation End Products. Oxid. Med. Cell. Longev. 2021, 2021, 8889313. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, D.; Chen, Y.; Abudou, H.; Wang, H.; Cai, J.; Wang, Y.; Liu, Z.; Liu, Y.; Fan, H. Classic Signaling Pathways in Alveolar Injury and Repair Involved in Sepsis-Induced ALI/ARDS: New Research Progress and Prospect. Dis. Markers 2022, 2022, 6362344. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Front. Immunol. 2020, 11, 1722. [Google Scholar] [CrossRef] [PubMed]
- Mehrad, B.; Clark, N.M.; Zhanel, G.G.; Lynch, J.P. Antimicrobial resistance in hospital-acquired gram-negative bacterial infections. Chest 2015, 147, 1413–1421. [Google Scholar] [CrossRef]
- Moreira, H.; Slezak, A.; Szyjka, A.; Oszmianski, J.; Gasiorowski, K. Antioxidant and cancer chemopreventive activities of cistus and pomegranate polyphenols. Acta Pol. Pharm. 2017, 74, 688–698. [Google Scholar]
- Saparbekova, A.A.; Kantureyeva, G.O.; Kudasova, D.E.; Konarbayeva, Z.K.; Latif, A.S. Potential of phenolic compounds from pomegranate (Punica granatum L.) by-product with significant antioxidant and therapeutic effects: A narrative review. Saudi J. Biol. Sci. 2023, 30, 103553. [Google Scholar] [CrossRef]
- Singh, J.; Prasad, R.; Kaur, H.P.; Jajoria, K.; Chahal, A.S.; Verma, A.; Kara, M.; Assouguem, A.; Bahhou, J. Bioactive Compounds, Pharmacological Properties, and Utilization of Pomegranate (Punica granatum L.): A Comprehensive Review. Trop. J. Nat. Prod. Res. 2023, 7, 3856–3873. [Google Scholar]
- Russo, V.; Continella, A.; Drago, C.; Gentile, A.; La Malfa, S.; Leotta, C.G.; Pulvirenti, L.; Ruberto, G.; Pitari, G.M.; Siracusa, L. Secondary metabolic profiles and anticancer actions from fruit extracts of immature pomegranates. PLoS ONE 2021, 16, e0255831. [Google Scholar] [CrossRef] [PubMed]
- Kachkoul, R.; Benjelloun Touimi, G.; Bennani, B.; El Mouhri, G.; El Habbani, R.; Mohim, M.; Sqalli Houssaini, T.; Boukansa, S.; Tahiri, L.; El Fatemi, H.; et al. In vivo Anti-lithiasis activity and antibacterial effect of hydroalcoholic extract and infusion of Punica granatum L. peel. Sci. Afr. 2023, 22, e01918. [Google Scholar] [CrossRef]
- Guner, P.; Askun, T. Anti-Bacterial, Anti-Mycobacterial and Anti-Fungal Properties of Punica granatum as Natural Dye. Eur. J. Biol. 2023, 82, 38–48. [Google Scholar] [CrossRef]
- Segar, H.M.; Abd Gani, S.; Khayat, M.E.; Abdul Rahim, M.B.H. Antioxidant and Antidiabetic Properties of Pectin Extracted from Pomegranate (Punica granatum) Peel. J. Biochem. Microbiol. Biotechnol. 2023, 11, 35–40. [Google Scholar] [CrossRef]
- Gonzalez-Gonzalez, G.M.; Esparza-Gonzalez, S.C.; Nery-Flores, D.; Morlett-Chavez, J.A.; Ascacio-Valdes, J.A.; Flores Gallegos, A.C.; Saenz-Galindo, A.; Rodriguez-Herrera, R. Anticancer activity of polyphenolic Punica granatum peel extracts obtained by hybrid ultrasound-microwave assisted extraction: Evaluation on HeLa and HepG2 cells. Environ. Qual. Manag. 2023, 33, 295–304. [Google Scholar] [CrossRef]
- Pinheiro, A.J.M.C.R.; Goncalves, J.S.; Dourado, A.W.A.; de Sousa, E.M.; Brito, N.M.; Silva, L.K.; Batista, M.C.A.; de Sa, J.C.; Monteiro, C.R.A.V.; Fernandes, E.S.; et al. Punica granatum L. Leaf Extract Attenuates Lung Inflammation in Mice with Acute Lung Injury. J. Immunol. Res. 2018, 2018, 6879183. [Google Scholar]
- Pinheiro, A.J.M.C.R.; Mendes, A.R.S.; Neves, M.D.F.d.J.; Prado, C.M.; Bittencourt-Mernak, M.I.; Santana, F.P.R.; Lago, J.H.G.; de Sa, J.C.; da Rocha, C.Q.; de Sousa, E.M.; et al. Galloyl- hexahydroxydiphenoyl (HHDP)-glucose isolated from Punica granatum L. leaves protects against lipopolysaccharide (LPS)-induced acute lung injury in BALB/c mice. Front. Immunol. 2019, 10, 1978. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, J.F.F.; Garreto, D.V.; Da Silva, M.C.P.; Fortes, T.S.; De Oliveira, R.B.; Nascimento, F.R.F.; Da Costa, F.B.; Grisotto, M.A.G.; Nicolete, R. Therapeutic potential of biodegradable microparticles containing Punica granatum L. (pomegranate) in a murine model of asthma. Inflamm. Res. 2013, 62, 971–980. [Google Scholar] [CrossRef]
- Orditura, M.; De Vita, F.; Roscigno, A.; Infusino, S.; Auriemma, A.; Iodice, P.; Ciaramella, F.; Abbate, G.; Catalano, G. Amifostine: A selective cytoprotective agent of normal tissues from chemo-radiotherapy induced toxicity. Oncol. Rep. 1999, 6, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Fahlke, J.; Ridwelski, K.; Lippert, H. High-dose therapy with combined 5- fluorouracil and folinic acid with and without amifostine in the treatment of patients with metastatic colorectal carcinoma. Int. J. Color. Dis. 1999, 14, 128–130. [Google Scholar] [CrossRef]
- Goraca, A.; Huk-Kolega, H.; Kleniewska, P.; Piechota-Polanczyk, A.; Skibska, B. Effects of lipoic acid on spleen oxidative stress after LPS administration. Pharmacol. Rep. 2013, 65, 179–186. [Google Scholar] [CrossRef]
- Rojas, D.B.; Gemelli, T.; De Andrade, R.B.; Campos, A.G.; Dutra-Filho, C.S.; Wannmacher, C.M.D. Administration of histidine to female rats induces changes in oxidative status in cortex and hippocampus of the offspring. Neurochem. Res. 2012, 37, 1031–1036. [Google Scholar] [CrossRef]
- Rittirsch, D.; Huber-Lang, M.; Flierl, M.; Ward, P. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat. Protoc. 2009, 4, 31–36. [Google Scholar] [CrossRef]
- Shaikh, S.B.; Bhandary, Y.P. Therapeutic properties of Punica granatum L (pomegranate) and its applications in lung-based diseases: A detailed review. J. Food Biochem. 2021, 45, e13684. [Google Scholar] [CrossRef]
- Ugan, R.A.; Yayla, M.; Un, H.; Civelek, M.S.; Kilicle, P.A. The Effects of Pomegranate Peel Extract Against Sepsis Induced Lung Damage Under Diabetic Conditions in Rats. Dicle Med. J. 2020, 47, 678–686. [Google Scholar]
- Batcik, S.; Tumkaya, L.; Mercantepe, T.; Atak, M.; Topcu, A.; Uydu, H.A.; Mercantepe, F. The nephroprotective effect of amifostine in a cecal ligation-induced sepsis model in terms of oxidative stress and inflammation. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 9144–9156. [Google Scholar]
- Cinar, I.; Sirin, B.; Aydin, P.; Toktay, E.; Cadirci, E.; Halici, I.; Halici, Z. Ameliorative effect of gossypin against acute lung injury in experimental sepsis model of rats. Life Sci. 2019, 221, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Seyis, F.; Yurteri, E.; Ozcan, A.; Cirak, C. Altitudinal impacts on chemical content and composition of Hypericum perforatum, a prominent medicinal herb. S. Afr. J. Bot. 2020, 135, 391–403. [Google Scholar] [CrossRef]
- Jacob, J.; Lakshmanapermalsamy, P.; Illuri, R.; Bhosle, D.; Sangli, G.K.; Mundkinajeddu, D. In vitro Evaluation of Antioxidant Potential of Isolated Compounds and Various Extracts of Peel of Punica granatum L. Pharmacogn. Res. 2018, 10, 44–48. [Google Scholar]
- Fu, P.; Murley, J.S.; Grdina, D.J.; Birukova, A.A.; Birukov, K.G. Induction of cellular antioxidant defense by amifostine improves ventilator-induced lung injury. Crit. Care Med. 2011, 39, 2711–2721. [Google Scholar] [CrossRef] [PubMed]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Sedlak, J.; Lindsay, R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef]
- Matute-Bello, G.; Downey, G.; Moore, B.B.; Groshong, S.D.; Matthay, M.A.; Slutsky, A.S.; Kuebler, W.M. An official american thoracic society workshop report: Features and measurements of experimental acute lung injury in animals. Am. J. Respir. Cell Mol. Biol. 2011, 44, 725–738. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.B.; Stockerl-Goldstein, K.E.; Klein, J.; Murphy, J.; Blume, K.G.; Dansey, R.; Martinez, C.; Matthes, S.; Nieto, Y. A randomized trial of amifostine and carmustine-containing chemotherapy to assess lung-protective effects. Biol. Blood Marrow Transplant. 2004, 10, 276–282. [Google Scholar] [CrossRef]
- Mercantepe, F.; Mercantepe, T.; Topcu, A.; Yılmaz, A.; Tumkaya, L. Protective effects of amifostine, curcumin, and melatonin against cisplatin-induced acute kidney injury. Naunyn-Schmiedeberg's Arch. Pharmacol. 2018, 391, 915–931. [Google Scholar] [CrossRef] [PubMed]
- Topcu, A.; Mercantepe, F.; Rakici, S.; Tumkaya, L.; Uydu, H.A.; Mercantepe, T. An investigation of the effects of N-acetylcysteine on radiotherapy-induced testicular injury in rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2019, 392, 147–157. [Google Scholar] [CrossRef]
- Grdina, D.J.; Kataoka, Y.; Murley, J.S. Amifostine: Mechanisms of action underlying cytoprotection and chemoprevention. Drug Metab. Drug Interact. 2000, 16, 237–280. [Google Scholar] [CrossRef]
- Cao, Q.; Jing, C.; Tang, X.; Yin, Y.; Han, X.; Wu, W. Protective effect of resveratrol on acute lung injury induced by lipopolysaccharide in mice. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2011, 294, 527–532. [Google Scholar] [CrossRef]
- Ding, W.; Zhang, W.; Chen, J.; Wang, M.; Ren, Y.; Feng, J.; Han, X.; Ji, X.; Nie, S.; Sun, Z. Protective mechanism of quercetin in alleviating sepsis-related acute respiratory distress syndrome based on network pharmacology and in vitro experiments. World J. Emerg. Med. 2024, 15, 111–120. [Google Scholar] [CrossRef]
- Sharma, P.; McClees, S.F.; Afaq, F. Pomegranate for prevention and treatment of cancer: An update. Molecules 2017, 22, 177. [Google Scholar] [CrossRef]
- Alsubhi, N.H.; Al-Quwaie, D.A.; Alrefaei, G.I.; Alharbi, M.; Binothman, N.; Aljadani, M.; Qahl, S.H.; Jaber, F.A.; Huwaikem, M.; Sheikh, H.M.; et al. Pomegranate Pomace Extract with Antioxidant, Anticancer, Antimicrobial, and Antiviral Activity Enhances the Quality of Strawberry-Yogurt Smoothie. Bioengineering 2022, 9, 735. [Google Scholar] [CrossRef] [PubMed]
- Sahin Aktura, S.; Sahin, K.; Tumkaya, L.; Mercantepe, T.; Topcu, A.; Pinarbas, E.; Yazici, Z.A. The Nephroprotective Effect of Punica granatum Peel Extract on LPS-Induced Acute Kidney Injury. Life 2024, 14, 1316. [Google Scholar] [CrossRef] [PubMed]
- El-Demerdash, F.M.; Ahmed, M.M.; Baghdadi, H.H. Punica granatum peel extract modulates levofloxacin-induced oxidative stress and testicular damage in rats. Tissue Cell 2023, 85, 102227. [Google Scholar] [CrossRef] [PubMed]
- Saadat, S.; Beigoli, S.; Khazdair, M.R.; Amin, F.; Boskabady, M.H. Experimental and Clinical Studies on the Effects of Natural Products on Noxious Agents-Induced Lung Disorders, a Review. Front. Nutr. 2022, 9, 867914. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Liao, Y. Gut-Lung Crosstalk in Sepsis-Induced Acute Lung Injury. Front. Microbiol. 2021, 12, 779620. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.R.; Lin, Q.; Liang, F.Q.; Xie, T. Dexmedetomidine attenuates lung injury by promoting mitochondrial fission and oxygen consumption. Med. Sci. Monit. 2019, 25, 1848–1856. [Google Scholar] [CrossRef] [PubMed]
- Osman, H.F.; Eshak, M.G.; El-Sherbiny, E.M.; Bayoumi, M.M. Biochemical and genetical evaluation of pomegranate impact on diabetes mellitus induced by alloxan in female rats. Life Sci. J. 2012, 9, 1543–1553. [Google Scholar]
- Bormann, T.; Maus, R.; Stolper, J.; Tort Tarres, M.; Brandenberger, C.; Wedekind, D.; Jonigk, D.; Welte, T.; Gauldie, J.; Kolb, M.; et al. Role of matrix metalloprotease-2 and MMP-9 in experimental lung fibrosis in mice. Respir. Res. 2022, 23, 180. [Google Scholar] [CrossRef] [PubMed]
- Jordakieva, G.; Budge-Wolfram, R.M.; Budinsky, A.C.; Nikfardjam, M.; Delle-Karth, G.; Girard, A.; Godnic-Cvar, J.; Crevenna, R.; Heinz, G. Plasma MMP-9 and TIMP-1 levels on ICU admission are associated with 30-day survival. Wien. Klin. Wochenschr. 2021, 133, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Pirrone, F.; Pastore, C.; Mazzola, S.; Albertini, M. In vivo study of the behavior of matrix metalloproteinases (MMP-2, MMP-9) in mechanical, hypoxic and septic-induced acute lung injury. Vet. Res. Commun. 2009, 33, 121–124. [Google Scholar] [CrossRef] [PubMed]
- D’Avila-Mesquita, C.; Couto, A.E.S.; Campos, L.C.B.; Vasconcelos, T.F.; Michelon-Barbosa, J.; Corsi, C.A.C.; Mestriner, F.; Petroski-Moraes, B.C.; Garbellini-Diab, M.J.; Couto, D.M.S.; et al. MMP-2 and MMP-9 levels in plasma are altered and associated with mortality in COVID-19 patients. Biomed. Pharmacother. 2021, 142, 112067. [Google Scholar]
- Ganguly, K.; Kundu, P.; Banerjee, A.; Reiter, R.J.; Swarnakar, S. Hydrogen peroxide-mediated downregulation of matrix metalloprotease-2 in indomethacin-induced acute gastric ulceration is blocked by melatonin and other antioxidants. Free Radic. Biol. Med. 2006, 41, 911–925. [Google Scholar] [CrossRef]
Findings | Score | ||
---|---|---|---|
0 | 1 | 2 | |
Alveolar inflammation | ≤5% | ≤50% | ≥50% |
Interstitial inflammation | ≤5% | ≤50% | ≥50% |
Arterial hyaline membrane formation | ≤5% | ≤50% | ≥50% |
Alveolar wall thickness (Treatment/Control Group) | ˂× | 2×–4× | >×4 |
Score | Findings |
---|---|
0 | <5% |
1 | <5–25% |
2 | <26–50% |
3 | >51% |
Component | Inner Fruit Coat | Fruit Coat | ||||
---|---|---|---|---|---|---|
% Concentration (µg/g) | ||||||
50 | 80 | 100 | 50 | 80 | 100 | |
Ellagic acid (EA) | 17.762 | 17.844 | 17.853 | 46.385 | 70.971 | 42.306 |
Gallic acid (GA) | 1.653 | 1.262 | 1.280 | 2.894 | 1.804 | 1.519 |
Ferulic acid (FA) | 2.532 | 2.718 | 2.876 | 4.427 | 4.075 | 1.726 |
Quercetin (Q) | 0.803 | 0.775 | 0.801 | 0.789 | 0.818 | 0.812 |
p-Coumaric acid (p-CA) | 0.1 | 0.001 | 0.003 | 0.192 | 0.175 | 0.101 |
Caffeic acid (CA) | 1.839 | 1.301 | 1.851 | 1.586 | 1.681 | 0.773 |
2,4-dihydroxybenzoic acid (2,4-DHBA) | 3.587 | 2.583 | 7.435 | 11.193 | 11.538 | 9.934 |
Epigallocatechin gallate (EGCG) | 175.950 | 72.864 | 162.763 | 186.88 | 274.901 | 191.394 |
Catechin hydrate (CH) | 2.218 | 1.569 | 2.354 | 5.674 | 5.488 | 5.399 |
Caffeine (CAF) | 16.01 | 14.321 | 8.972 | 16.328 | 21.708 | 7.547 |
Chlorogenic acid (CGA) | 59.2 | 29.108 | 29.984 | 60.394 | 28.480 | 21.575 |
Ursolic acid (UA) | 3.36 | 2.28 | 10.499 | 2.44 | 3.380 | 10.719 |
Punicalagin (A) (PUN) | 4082.2165 | 1395.002 | 1179.532 | 4528.030 | 1451.663 | 1345.471 |
Punicalagin (B) (PUN) | 2448.852 | 835.247 | 539.311 | 2591.466 | 827.183 | 639.108 |
Groups | TBARS (nmol/g Tissue) | TT (µmol/g Tissue) | TNF-α (ng/mL) |
---|---|---|---|
Control | 27 ± 5 | 11.4 ± 1.7 a,*** | 20.3 ± 3.0 a,*,b,** |
CLP | 67 ± 9 c,*** | 17.5 ± 3.1 d,* | 22.9 ± 1.3 |
Amf | 23 ± 4 | 11.6 ± 1.46 | 23.7 ± 5.3 |
PGPE250 | 32 ± 8 | 13.5 ± 5.2 | 24.0 ± 3.7 |
PGPE500 | 30 ± 10 | 16.9 ± 3.6 | 23.8 ± 2.2 |
Groups | Alveolar Inflammation | Interstitial Inflammation | Hyaline Membrane | Alveolar Septum Thickness (Matute-Bello et al.) | LHDS |
---|---|---|---|---|---|
Control | 0 (0-0) | 0 (0-0.5) | 0 (0-0) | 1 (1-1) | 1 (1-1) |
CLP | 2 (1-2) a | 2 (2-3) a | 2 (2-2) a | 2 (2-3) a | 8 (8-9) a |
Amf | 0 (0-1) b,c | 1 (1-1) a,b | 1 (0-1) a,c | 1 (1-1) c | 3 (2-4) a,b |
PGPE250 | 0 (0-1) c | 0 (0-1) b,d | 0 (0-0) c,e | 1 (1-1) c | 2 (1-2) b,d |
PGPE500 | 0 (0-0) c | 0 (0-0) b,d | 0 (0-0) c,d | 1 (1-1)c | 1 (1-2) b,d |
Groups | MMP-2 Positivity Score | MMP-9 Positivity Score |
---|---|---|
Control | 0 (0-0) | 0 (0-0) |
CLP | 2 (2-3) a | 3 (2-3) a |
Amf | 0 (0-1) b | 1 (0-1) b |
PGPE250 | 0 (0-1) b | 0 (0-1) b |
PGPE500 | 0 (0-0) b | 0 (0-0) b |
Groups | Alveolar Wall Thickness | Alveolar Septum Thickness (Treatment/Control Group) | Matute-Bello et al. Modified Alveolar Septum Thickness Score |
---|---|---|---|
Control | 10.14 ± 2.14 | 1.00 | 1 (˂X2) |
CLP | 28.41 ± 7.88 a | 2.8 | 2 (≥X2) |
Amf | 15.04 ± 6.12 b | 1.32 | 1 (˃X2) |
PGPE250 | 12.47 ± 2.85 b | 1.20 | 1 (˃X2) |
PGPE500 | 11.89 ± 3.87 b | 1.01 | 1 (˃X2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahin, K.; Sahin Aktura, S.; Bahceci, I.; Mercantepe, T.; Tumkaya, L.; Topcu, A.; Mercantepe, F.; Duran, O.F.; Uydu, H.A.; Yazici, Z.A. Is Punica granatum Efficient Against Sepsis? A Comparative Study of Amifostine Versus Pomegranate. Life 2025, 15, 78. https://doi.org/10.3390/life15010078
Sahin K, Sahin Aktura S, Bahceci I, Mercantepe T, Tumkaya L, Topcu A, Mercantepe F, Duran OF, Uydu HA, Yazici ZA. Is Punica granatum Efficient Against Sepsis? A Comparative Study of Amifostine Versus Pomegranate. Life. 2025; 15(1):78. https://doi.org/10.3390/life15010078
Chicago/Turabian StyleSahin, Kazim, Sena Sahin Aktura, Ilkay Bahceci, Tolga Mercantepe, Levent Tumkaya, Atilla Topcu, Filiz Mercantepe, Omer Faruk Duran, Huseyin Avni Uydu, and Zihni Acar Yazici. 2025. "Is Punica granatum Efficient Against Sepsis? A Comparative Study of Amifostine Versus Pomegranate" Life 15, no. 1: 78. https://doi.org/10.3390/life15010078
APA StyleSahin, K., Sahin Aktura, S., Bahceci, I., Mercantepe, T., Tumkaya, L., Topcu, A., Mercantepe, F., Duran, O. F., Uydu, H. A., & Yazici, Z. A. (2025). Is Punica granatum Efficient Against Sepsis? A Comparative Study of Amifostine Versus Pomegranate. Life, 15(1), 78. https://doi.org/10.3390/life15010078