Hair Cortisol/DHEA-S Ratios in Healthcare Workers and Their Patients During the COVID-19 Pandemic: A Case Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Population
2.3. Hair Sampling
2.4. Reagents, Consumables, and Instruments
2.5. Sample Preparation and Extraction
2.6. Cortisol and DHEA-S Radioimmunoassay Method
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cyr, S.; Marcil, M.J.; Marin, M.F.; Marin, M.F.; Tardif, J.C.; Guay, S.; Guertin, M.C.; Rosa, C.; Genest, C.; Forest, J.; et al. Factors Associated with Burnout, Post-traumatic Stress and Anxio-Depressive Symptoms in Healthcare Workers 3 Months into the COVID-19 Pandemic: An Observational Study. Front. Psychiatry 2021, 12, 668278. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Chen, C.; Dong, X.P. Impact of COVID-19 Pandemic on Patients with Neurodegenerative Diseases. Front. Aging Neurosci. 2021, 13, 664965. [Google Scholar] [CrossRef] [PubMed]
- Staufenbiel, S.M.; Penninx, B.W.; Spijker, A.T.; Elzinga, B.M.; van Rossum, E.F. Hair cortisol, stress exposure, and mental health in humans: A systematic review. Psychoneuroendocrinology 2013, 38, 1220–1235. [Google Scholar] [CrossRef] [PubMed]
- Boiko, A.S.; Mednova, I.A.; Kornetova, E.G.; Bokhan, N.A.; Semke, A.V.; Loonen, A.J.M.; Ivanova, S.A. Cortisol and DHEAS Related to Metabolic Syndrome in Patients with Schizophrenia. Neuropsychiatr. Dis. Treat. 2020, 16, 1051–1058. [Google Scholar] [CrossRef]
- Dong, Y.; Zheng, P. Dehydroepiandrosterone sulphate: Action and mechanism in the brain. J. Neuroendocrinol. 2012, 24, 215–224. [Google Scholar] [CrossRef]
- Kamin, H.S.; Kertes, D.A. Cortisol and DHEA in development and psychopathology. Horm. Behav. 2017, 89, 69–85. [Google Scholar] [CrossRef]
- Butcher, S.K.; Killampalli, V.; Lascelles, D.; Wang, K.; Alpar, E.K.; Lord, J.M. Raised cortisol:DHEAS ratios in the elderly after injury: Potential impact upon neutrophil function and immunity. Aging Cell 2005, 4, 319–324. [Google Scholar] [CrossRef]
- Mocking, R.J.; Pellikaan, C.M.; Lok, A.; Assies, J.; Ruhé, H.G.; Koeter, M.W.; Visser, I.; Bockting, C.L.; Olff, M.; Schene, A.H. DHEAS and cortisol/DHEAS-ratio in recurrent depression: State, or trait predicting 10-year recurrence? Psychoneuroendocrinology 2015, 59, 91–101. [Google Scholar] [CrossRef]
- Tournikioti, K.; Alevizaki, M.; Michopoulos, I.; Mantzou, A.; Soldatos, C.; Douzenis, A.; Dikeos, D.; Ferentinos, P. Cortisol to Dehydroepiandrosterone Sulphate Ratio and Executive Function in Bipolar Disorder. Neuropsychobiology 2021, 80, 342–351. [Google Scholar] [CrossRef]
- Hirokawa, K.; Fujii, Y.; Taniguchi, T.; Takaki, J.; Tsutsumi, A. Association Between Cortisol to DHEA-s Ratio and Sickness Absence in Japanese Male Workers. Int. J. Behav. Med. 2018, 25, 362–367. [Google Scholar] [CrossRef]
- Hennessey, E.P.; Kepinska, O.; Haft, S.L.; Chan, M.; Sunshine, I.; Jones, C.; Hancock, R.; Hoeft, F. Hair cortisol and dehydroepiandrosterone concentrations: Associations with executive function in early childhood. Biol. Psychol. 2020, 155, 107946. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Wu, X.; Kaminga, A.C.; Wen, S.W.; Liu, A. Dehydroepiandrosterone and Dehydroepiandrosterone Sulfate in Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Front. Aging Neurosci. 2019, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Yiallouris, A.; Tsioutis, C.; Agapidaki, E.; Zafeiri, M.; Agouridis, A.P.; Ntourakis, D.; Johnson, E.O. Adrenal Aging and Its Implications on Stress Responsiveness in Humans. Front. Endocrinol. 2019, 10, 54. [Google Scholar] [CrossRef]
- Phillips, A.C.; Carroll, D.; Gale, C.R.; Lord, J.M.; Arlt, W.; Batty, G.D. Cortisol, DHEAS, their ratio and the metabolic syndrome: Evidence from the Vietnam Experience Study. Eur. J. Endocrinol. 2010, 162, 919–923. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, D.B.; Thayer, J.F.; Vedhara, K. Stress and Health: A Review of Psychobiological Processes. Annu. Rev. Psychol. 2021, 72, 663–688. [Google Scholar] [CrossRef] [PubMed]
- Stalder, T.; Kirschbaum, C. Analysis of cortisol in hair--state of the art and future directions. Brain Behav. Immun. 2012, 26, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Stalder, T.; Steudte-Schmiedgen, S.; Alexander, N.; Klucken, T.; Vater, A.; Wichmann, S.; Kirschbaum, C.; Miller, R. Stress-related and basic determinants of hair cortisol in humans: A meta-analysis. Psychoneuroendocrinology 2017, 77, 261–274. [Google Scholar] [CrossRef]
- Kirschbaum, C.; Tietze, A.; Skoluda, N.; Dettenborn, L. Hair as a retrospective calendar of cortisol production-Increased cortisol incorporation into hair in the third trimester of pregnancy. Psychoneuroendocrinology 2009, 34, 32–37. [Google Scholar] [CrossRef]
- Russell, E.; Koren, G.; Rieder, M.; Van Uum, S. Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology 2012, 37, 589–601. [Google Scholar] [CrossRef]
- Peng, F.J.; Palazzi, P.; Mezzache, S.; Bourokba, N.; Soeur, J.; Appenzeller, B.M.R. Profiling steroid and thyroid hormones with hair analysis in a cohort of women aged 25 to 45 years old. Eur. J. Endocrinol. 2022, 186, K9–K15. [Google Scholar] [CrossRef]
- Wright, K.D.; Ford, J.L.; Perazzo, J.; Jones, L.M.; Mahari, S.; Sullenbarger, B.A.; Laudenslager, M.L. Collecting Hair Samples for Hair Cortisol Analysis in African Americans. J. Vis. Exp. JoVE 2016, 136, 57288. [Google Scholar] [CrossRef]
- Davenport, M.D.; Tiefenbacher, S.; Lutz, C.K.; Novak, M.A.; Meyer, J.S. Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen. Comp. Endocrinol. 2006, 147, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Greiner, M.; Pfeiffer, D.; Smith, R.D. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev. Vet. Med. 2000, 45, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Parker, L.N.; Levin, E.R.; Lifrak, E.T. Evidence for adrenocortical adaptation to severe illness. J. Clin. Endocrinol. Metab. 1985, 60, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Wade, C.E.; Lindberg, J.S.; Cockrell, J.L.; Lamiell, J.M.; Hunt, M.M.; Ducey, J.; Jurney, T.H. Upon-admission adrenal steroidogenesis is adapted to the degree of illness in intensive care unit patients. J. Clin. Endocrinol. Metab. 1988, 67, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Maninger, N.; Wolkowitz, O.M.; Reus, V.I.; Epel, E.S.; Mellon, S.H. Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front. Neuroendocrinol. 2009, 30, 65–91. [Google Scholar] [CrossRef]
- Phillips, A.C.; Carroll, D.; Gale, C.R.; Lord, J.M.; Arlt, W.; Batty, G.D. Cortisol, DHEA sulphate, their ratio, and all-cause and cause-specific mortality in the Vietnam Experience Study. Eur. J. Endocrinol. 2010, 163, 285–292. [Google Scholar] [CrossRef]
- Sollberger, S.; Ehlert, U. How to use and interpret hormone ratios. Psychoneuroendocrinology 2016, 63, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.M.; Becker, J.; Soares, N.M.; de Azeredo, L.A.; Grassi-Oliveira, R.; Rysdyk, A.; de Almeida, R.M.M. Hair cortisol concentration, cognitive, behavioral, and motor impairment in multiple sclerosis. J. Neural. Transm. 2019, 126, 1145–1154. [Google Scholar] [CrossRef]
- Ouanes, S.; Popp, J. High Cortisol and the Risk of Dementia and Alzheimer’s Disease: A Review of the Literature. Front. Aging Neurosci. 2019, 11, 43. [Google Scholar] [CrossRef] [PubMed]
- Hummel, K.V.; Schellong, J.; Trautmann, S.; Kummer, S.; Hürrig, S.; Klose, M.; Croy, I.; Weidner, K.; Kirschbaum, C.; Steudte-Schmiedgen, S. The predictive role of hair cortisol concentrations for treatment outcome in PTSD inpatients. Psychoneuroendocrinology 2021, 131, 105326. [Google Scholar] [CrossRef] [PubMed]
- Dettenborn, L.; Muhtz, C.; Skoluda, N.; Stalder, T.; Steudte, S.; Hinkelmann, K.; Kirschbaum, C.; Otte, C. Introducing a novel method to assess cumulative steroid concentrations: Increased hair cortisol concentrations over 6 months in medicated patients with depression. Stress 2012, 15, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.Y.; Leung, J.C.; Kwok, T.; Ohlsson, C.; Vandenput, L.; Leung, P.C.; Woo, J. Low DHEAS levels are associated with depressive symptoms in elderly Chinese men: Results from a large study. Asian J. Androl. 2011, 13, 898–902. [Google Scholar] [CrossRef] [PubMed]
- Kanter, E.D.; Wilkinson, C.W.; Radant, A.D.; Petrie, E.C.; Dobie, D.J.; McFall, M.E.; Peskind, E.R.; Raskind, M.A. Glucocorticoid feedback sensitivity and adrenocortical responsiveness in posttraumatic stress disorder. Biol. Psychiatry 2001, 50, 238–245. [Google Scholar] [CrossRef]
- Wu, T.T.; Chen, Y.; Zhou, Y.; Adi, D.; Zheng, Y.Y.; Liu, F.; Ma, Y.T.; Xie, X. Prognostic Value of Dehydroepiandrosterone Sulfate for Patients With Cardiovascular Disease: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2017, 6, e004896. [Google Scholar] [CrossRef]
- Shreffler, J.; Petrey, J.; Huecker, M. The Impact of COVID-19 on Healthcare Worker Wellness: A Scoping Review. West. J. Emerg. Med. 2020, 21, 1059–1066. [Google Scholar] [CrossRef]
- Lethin, C.; Kenkmann, A.; Chiatti, C.; Christensen, J.; Backhouse, T.; Killett, A.; Fisher, O.; Malmgren Fänge, A. Organizational Support Experiences of Care Home and Home Care Staff in Sweden, Italy, Germany and the United Kingdom during the COVID-19 Pandemic. Healthcare 2021, 9, 767. [Google Scholar] [CrossRef]
- Liljestrand, R.; Martin, S. Stress and Resilience Among Healthcare Workers During the COVID-19 Pandemic: Consideration of Case Studies. Rehabil. Nurs. 2021, 46, 300–304. [Google Scholar] [CrossRef]
- Cho, S.; Park, W.J.; Kang, W.; Lim, H.M.; Ahn, J.S.; Lim, D.Y.; Moon, J.D. The association between serum dehydroepiandrosterone sulfate (DHEAS) levels and job-related stress among female nurses. Ann. Occup. Environ. Med. 2019, 31, e18. [Google Scholar] [CrossRef]
- Doan, S.N. Allostatic load: Developmental and conceptual considerations in a multi-system physiological indicator of chronic stress exposure. Dev. Psychobiol. 2021, 63, 825–836. [Google Scholar] [CrossRef] [PubMed]
- Yanagita, I.; Fujihara, Y.; Kitajima, Y.; Tajima, M.; Honda, M.; Kawajiri, T.; Eda, T.; Yonemura, K.; Yamaguchi, N.; Asakawa, H.; et al. A High Serum Cortisol/DHEA-S Ratio Is a Risk Factor for Sarcopenia in Elderly Diabetic Patients. J. Endocr. Soc. 2019, 3, 801–813. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D.; Phillips, A.C.; Lord, J.M.; Arlt, W.; Batty, G.D. Cortisol, dehydroepiandrosterone sulphate, their ratio and hypertension: Evidence of associations in male veterans from the Vietnam Experience Study. J. Hum. Hypertens. 2011, 25, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Akazawa, N.; Tanahashi, K.; Kosaki, K.; Kumagai, H.; Oikawa, S.; Hamasaki, A.; Maeda, S. The impact of aerobic fitness on arterial stiffness and adrenal cortex hormones in middle-aged and older adults. Endocr. J. 2020, 67, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Lennartsson, A.K.; Arvidson, E.; Börjesson, M.; Jonsdottir, I.H. DHEA-S production capacity in relation to perceived prolonged stress. Stress 2022, 25, 105–112. [Google Scholar] [CrossRef]
- Lennartsson, A.K.; Theorell, T.; Kushnir, M.M.; Bergquist, J.; Jonsdottir, I.H. Perceived stress at work is associated with attenuated DHEA-S response during acute psychosocial stress. Psychoneuroendocrinology 2013, 38, 1650–1657. [Google Scholar] [CrossRef]
- Lennartsson, A.K.; Sjörs, A.; Jonsdottir, I.H. Indication of attenuated DHEA-s response during acute psychosocial stress in patients with clinical burnout. J. Psychosom. Res. 2015, 79, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Jeckel, C.M.; Lopes, R.P.; Berleze, M.C.; Luz, C.; Feix, L.; Argimon, I.I.; Stein, L.M.; Bauer, M.E. Neuroendocrine and immunological correlates of chronic stress in ‘strictly healthy’ populations. Neuroimmunomodulation 2010, 17, 9–18. [Google Scholar] [CrossRef]
- Ysrraelit, M.C.; Gaitán, M.I.; Lopez, A.S.; Correale, J. Impaired hypothalamic-pituitary-adrenal axis activity in patients with multiple sclerosis. Neurology 2008, 71, 1948–1954. [Google Scholar] [CrossRef]
- Regelson, W.; Loria, R.; Kalimi, M. Hormonal intervention: “buffer hormones” or “state dependency”. The role of dehydroepiandrosterone (DHEA), thyroid hormone, estrogen and hypophysectomy in aging. Ann. N. Y Acad. Sci. 1988, 521, 260–273. [Google Scholar] [CrossRef]
- Charney, D.S. Psychobiological mechanisms of resilience and vulnerability: Implications for successful adaptation to extreme stress. Am. J. Psychiatry 2004, 161, 195–216. [Google Scholar] [CrossRef] [PubMed]
- Russo, S.J.; Murrough, J.W.; Han, M.H.; Charney, D.S.; Nestler, E.J. Neurobiology of resilience. Nat. Neurosci. 2012, 15, 1475–1484. [Google Scholar] [CrossRef] [PubMed]
- Heaney, J.L.; Carroll, D.; Phillips, A.C. DHEA, DHEA-S and cortisol responses to acute exercise in older adults in relation to exercise training status and sex. Age 2013, 35, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Collomp, K.; Buisson, C.; Lasne, F.; Collomp, R. DHEA, physical exercise and doping. J. Steroid Biochem. Mol. Biol. 2015, 145, 206–212. [Google Scholar] [CrossRef]
- Mäntyselkä, A.; Jääskeläinen, J.; Eloranta, A.M.; Väistö, J.; Voutilainen, R.; Ong, K.; Brage, S.; Lakka, T.A.; Lindi, V. Associations of lifestyle factors with serum dehydroepiandrosterone sulphate and insulin-like growth factor-1 concentration in prepubertal children. Clin. Endocrinol. 2018, 88, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Hosseini Moghaddam, M.; Mohebbi, Z.; Tehranineshat, B. Stress management in nurses caring for COVID-19 patients: A qualitative content analysis. BMC Psychol. 2022, 10, 124. [Google Scholar] [CrossRef]
- Falco, A.; Girardi, D.; Elfering, A.; Peric, T.; Pividori, I.; Dal Corso, L. Is Smart Working Beneficial for Workers’ Wellbeing? A Longitudinal Investigation of Smart Working, Workload, and Hair Cortisol/Dehydroepiandrosterone Sulfate during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2023, 20, 6220. [Google Scholar] [CrossRef]
- Łuc, M.; Pawłowski, M.; Jaworski, A.; Fila-Witecka, K.; Szcześniak, D.; Augustyniak-Bartosik, H.; Zielińska, D.; Stefaniak, A.; Pokryszko-Dragan, A.; Chojdak-Łukasiewicz, J.; et al. Coping of Chronically-Ill Patients during the COVID-19 Pandemic: Comparison between Four Groups. Int. J. Environ. Res. Public Health 2023, 20, 4814. [Google Scholar] [CrossRef]
- Ibar, C.; Fortuna, F.; Gonzalez, D.; Jamardo, J.; Jacobsen, D.; Pugliese, L.; Giraudo, L.; Ceres, V.; Mendoza, C.; Repetto, E.M.; et al. Evaluation of stress, burnout and hair cortisol levels in health workers at a University Hospital during COVID-19 pandemic. Psychoneuroendocrinology 2021, 128, 105213. [Google Scholar] [CrossRef]
Cortisol | DHEA-S | |
---|---|---|
Parallelism (range, equation, r2) a,b | 13.6–71.7 pg/well, y = 0.92x + 6.34, 0.99 | 6.0–70.3 pg/well, y = 1.03x − 2.74, 0.99 |
Recovery c | 101.2 ± 15.7% | 114.9 ± 14.8% |
Inter-day CV (n = 20) d | 13.9% | 10.3% |
Intra-day CV (n = 20) d | 6.4% | 7.0% |
Sensitivity of assay (pg/mL) e | 24.6 | 15.8 |
Total | Health (H) | p-Values | p-Values | ||
---|---|---|---|---|---|
Healthcare Workers n = 200 | Patients n = 161 | ||||
Age, y | 63 [50–78] | 55 [40–64] | 77 [65–83] | <0.001 * | - |
Female, n | 250 | 137 | 113 | 0.819 *** | - |
Male, n | 111 | 63 | 48 | ||
Cortisol, pg/mg | 19.90 [8.80–34.70] | 12.35 [7.65–24.00] | 27.40 [18.00–48.30] | <0.001 * | <0.001 ** |
DHEA-S, pg/mg | 12.30 [6.30–20.60] | 13.2 [7.58–24.71] | 10.70 [5.80–18.70] | 0.021 * | 0.981 ** |
Cortisol/DHEA-S ratio | 1.52 [0.79–2.84] | 1.02 [0.60–1.76] | 2.53 [1.41–5.50] | <0.001 * | <0.001 ** |
Cut-Off Values | AUC (95% CI) | p Values | |
---|---|---|---|
Cortisol, pg/mg | 20.45 | 0.741 (0.690–0.792) | <0.001 |
DHEA-S, pg/mg | 7.65 | 0.571 (0.512–0.630) | 0.021 |
Cortisol/DHEA-S ratio | 1.46 | 0.766 (0.716–0.817) | <0.001 |
Before Adjustment * | After Adjustment ** | |||
---|---|---|---|---|
OR (95% CI) | p-Values | OR (95% CI) | p-Values | |
Gender, Female | 1.08 (0.69–1.70) | 0.730 | - | - |
Cortisol > 20.45, pg/mg | 5.24 (3.34–8.23) | <0.001 | 7.11 (3.96–12.76) | <0.001 |
DHEA-S < 7.65, pg/mg | 1.83 (1.17–2.87) | 0.008 | 1.57 (0.91–2.72) | 0.104 |
Cortisol/DHEA-S ratio > 1.46 | 5.75 (3.63–9.10) | <0.001 | 5.20 (2.96–9.13) | <0.001 |
Total | Health (H) | p-Values * | p-Values ** | ||
---|---|---|---|---|---|
Healthcare Workers | Patients | ||||
Cortisol/DHEA-S > 1.46 | |||||
Cortisol, pg/mg | 28.30 [19.05; 48.20] | 22.75 [9.68; 36.10] | 34.50 [21.60; 60.10] | <0.001 | 0.002 |
DHEA-S, pg/mg | 8.30 [5.05; 14.80] | 9.65 [4.98; 15.04] | 7.50 [5.10; 14.70] | 0.625 | 0.462 |
Cortisol/DHEA-S < 1.46 | |||||
Cortisol, pg/mg | 10.20 [7.13; 20.58] | 9.90 [6.80; 16.83] | 19.15 [8.10; 24.30] | 0.006 | 0.004 |
DHEA-S, pg/mg | 17.95 [10.03; 30.08] | 16.80 [8.50; 27.75] | 19.95 [13.98; 33.93] | 0.048 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pividori, I.; Peric, T.; Comin, A.; Cotticelli, A.; Corazzin, M.; Prandi, A.; Mascolo, M.D. Hair Cortisol/DHEA-S Ratios in Healthcare Workers and Their Patients During the COVID-19 Pandemic: A Case Study. Life 2024, 14, 1582. https://doi.org/10.3390/life14121582
Pividori I, Peric T, Comin A, Cotticelli A, Corazzin M, Prandi A, Mascolo MD. Hair Cortisol/DHEA-S Ratios in Healthcare Workers and Their Patients During the COVID-19 Pandemic: A Case Study. Life. 2024; 14(12):1582. https://doi.org/10.3390/life14121582
Chicago/Turabian StylePividori, Isabella, Tanja Peric, Antonella Comin, Alessio Cotticelli, Mirco Corazzin, Alberto Prandi, and Massimo Domenico Mascolo. 2024. "Hair Cortisol/DHEA-S Ratios in Healthcare Workers and Their Patients During the COVID-19 Pandemic: A Case Study" Life 14, no. 12: 1582. https://doi.org/10.3390/life14121582
APA StylePividori, I., Peric, T., Comin, A., Cotticelli, A., Corazzin, M., Prandi, A., & Mascolo, M. D. (2024). Hair Cortisol/DHEA-S Ratios in Healthcare Workers and Their Patients During the COVID-19 Pandemic: A Case Study. Life, 14(12), 1582. https://doi.org/10.3390/life14121582