Defense Mechanisms of Xylopia aromatica (Lam.) Mart. in the Dry Season in the Brazilian Savanna
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Environmental Conditions
2.2. Study Variables
2.3. Chlorophyll a Fluorescence and Gas Exchange
2.4. Water Potential and Relative Leaf Water Content
2.5. Yield and Chemical Profile of Essential Oil
2.6. Photosynthetic Pigments, Carbohydrates, Antioxidant Enzymes, and Lipid Peroxidation
2.7. Statistical Analysis
3. Results
3.1. Water Relations, Chlorophyll a Fluorescence, and Gas Exchange
3.2. Yield and Chemical Profile of Essential Oil
3.3. Photosynthetic Pigments, Carbohydrates, Antioxidant Enzymes, and Lipid Peroxidation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lopes dos Santos, G.; Pereira, M.G.; Delgado, R.C.; Magistrali, I.C.; Gomes da Silva, C.; Magno Moreira de Oliveira, C.; Pedro Bessa Larangeira, J.; Paula da Silva, T. Degradation of the Brazilian Cerrado: Interactions with Human Disturbance and Environmental Variables. For. Ecol. Manag. 2021, 482, 118875. [Google Scholar] [CrossRef]
- Klink, C.A.; Machado, R.B. Conservation of the Brazilian Cerrado. Conserv. Biol. 2005, 19, 707–713. [Google Scholar] [CrossRef]
- Dias, L.C.C.; Moschini, L.E.; Trevisan, D.P. A Influência das Atividades Antrópicas na Paisagem da Área de Proteção Ambiental Estadual do Rio Pandeiros, MG—Brasil. Fronteiras 2017, 6, 85–105. [Google Scholar] [CrossRef]
- Beuchle, R.; Grecchi, R.C.; Shimabukuro, Y.E.; Seliger, R.; Eva, H.D.; Sano, E.; Achard, F. Land Cover Changes in the Brazilian Cerrado and Caatinga Biomes from 1990 to 2010 Based on a Systematic Remote Sensing Sampling Approach. Appl. Geogr. 2015, 58, 116–127. [Google Scholar] [CrossRef]
- Fagundes, N.C.A.; Ferreira, E.J. Veredas Da Região Sudeste: Peculiaridades Florísticas e Estruturais e Situação de Conservação. Neotrop. Biol. Conserv. 2016, 11, 178–183. [Google Scholar] [CrossRef]
- Maas, P.; Lobão, A.; Rainer, H. Annonaceae in Lista de Espécies da Flora do Brasil. 2015. Available online: http://floradobrasil2015.jbrj.gov.br/FB110557 (accessed on 1 November 2024).
- Maia, J.G.S.; Andrade, E.H.A.; da Silva, A.C.M.; Oliveira, J.; Carreira, L.M.M.; Araújo, J.S. Leaf Volatile Oils from Four Brazilian Xylopia Species. Flavour Fragr. J. 2005, 20, 474–477. [Google Scholar] [CrossRef]
- Junqueira, J.G.M.; Do Nascimento, M.N.G.; Da Costa, L.G.; Romualdo, L.L.; De Aquino, F.W.B.; Abubakar, M.N.; Terezan, A.P.; Cunha, G.O.S.; Severino, V.G.P. In Vivo and in Vitro Volatile Constituents of the Flowers of Xylopia aromatica by HS-SPME/GC-MS. J. Braz. Chem. Soc. 2021, 32, 1111–1119. [Google Scholar] [CrossRef]
- Boni, T.S.; de Azevedo, J.P.; Oviedo Rodriguez, A.; Maltoni, K.L. Xylopia aromatica: Crescimento Inicial e Status Nutricional de Mudas Em Solo Degradado Condicionado Com Resíduos. Res. Soc. Dev. 2022, 11, e59211528582. [Google Scholar] [CrossRef]
- Abbas, F.; Ke, Y.; Yu, R.; Yue, Y.; Amanullah, S.; Jahangir, M.M.; Fan, Y. Volatile Terpenoids: Multiple Functions, Biosynthesis, Modulation and Manipulation by Genetic Engineering. Planta 2017, 246, 803–816. [Google Scholar] [CrossRef]
- Delazar, A.; Bahmani, M.; Shoar, H.H.; Tabatabaei-Raisi, A.; Asnaashari, S.; Nahar, L.; Sarker, S.D. Effect of Altitude, Temperature and Soil on Essential Oil Production in Thymus Fedtschenkoi Flowers in Osko and Surrounding Areas in Iran. J. Essent. Oil-Bear. Plants 2011, 14, 23–29. [Google Scholar] [CrossRef]
- Spinelli, F.; Cellini, A.; Marchetti, L.; Mudigere, K.; Piovene, C. Emission and Function of Volatile Organic Compounds in Response to Abiotic Stress. In Abiotic Stress in Plants—Mechanisms and Adaptations; InTech Open: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef]
- Soran, M.L.; Stan, M.; Niinemets, Ü.; Copolovici, L. Influence of Microwave Frequency Electromagnetic Radiation on Terpene Emission and Content in Aromatic Plants. J. Plant Physiol. 2014, 171, 1436–1443. [Google Scholar] [CrossRef] [PubMed]
- Fournier, G.; Hadjiakhoondi, A.; Charles, B.; Fourniat, J.; Leboeuf, M.; Cave, A. Chemical and Biological Studies of Xylopia aromatica Stem Bark and Leaf Oils. Planta Med. 1994, 60, 283–284. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.S.; Tavares, J.F.; Queiroga, K.F.; De Fátima Agra, M.; Barbosa Filho, J.M.; Da Silva Almeida, J.R.G.; Da Silva, S.A.S. Alcaloides e Outros Constituintes de Xylopia langsdorffiana (Annonaceae). Quim. Nova 2009, 32, 1566–1570. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Moura, A.P.G.; Beltrão, D.M.; Pita, J.C.L.R.; Xavier, A.L.; Brito, M.T.; de Sousa, T.K.G.; Batista, L.M.; de Carvalho, J.E.; Ruiz, A.L.T.G.; Della Torre, A.; et al. Essential Oil from Fruit of Xylopia langsdorffiana: Antitumour Activity and Toxicity. Pharm. Biol. 2016, 54, 3093–3102. [Google Scholar] [CrossRef]
- Aati, H.; El-Gamal, A.; Kayser, O. Chemical Composition and Biological Activity of the Essential Oil from the Root of Jatropha pelargoniifolia Courb. Native to Saudi Arabia. Saudi Pharm. J. 2019, 27, 88–95. [Google Scholar] [CrossRef]
- Oliveira, V.B.; Araújo, R.L.B.; Eidenberger, T.; Brandão, M.G.L. Chemical Composition and Inhibitory Activities on Dipeptidyl Peptidase IV and Pancreatic Lipase of Two Underutilized Species from the Brazilian Savannah: Oxalis cordata A.St.-Hil. and Xylopia aromatica (Lam.) Mart. Food Res. Int. 2018, 105, 989–995. [Google Scholar] [CrossRef]
- Andrade, E.H.A.; da Silva, A.C.M.; Carreira, L.M.M.; Oliveira, J.; Maia, J.G.S. Essential Oil Composition from Leaf, Fruit and Flower of Xylopia aromatica (Lam.) Mart. J. Essent. Oil Bear. Plants 2004, 7, 151–154. [Google Scholar] [CrossRef]
- do Nascimento, K.F.; Moreira, F.M.F.; Alencar Santos, J.; Kassuya, C.A.L.; Croda, J.H.R.; Cardoso, C.A.L.; do Carmo Vieira, M.; Góis Ruiz, A.L.T.; Ann Foglio, M.; de Carvalho, J.E.; et al. Antioxidant, Anti-Inflammatory, Antiproliferative and Antimycobacterial Activities of the Essential Oil of Psidium guineense Sw. and Spathulenol. J. Ethnopharmacol. 2018, 210, 351–358. [Google Scholar] [CrossRef]
- Moreira Alcântara, J.; Mesquita, J.; De Lucena, V.M.; Facanali, R.; Ortiz, M.; Marques, M.; Da, M.; Lima, P. Chemical Composition and Bactericidal Activity of the Essential Oils of Four Species of Annonaceae Growing in Brazilian Amazon. Nat. Prod. Commun. 2017, 12, 619–622. [Google Scholar] [CrossRef]
- Vieira, M.A.R.; Jorge, L.G.; Marçon, C.; Campos, F.G.; Rozada, A.M.F.; de Freitas Gauze, G.; Seixas, F.A.V.; Marques, M.O.M.; Mendes, R.P.; Boaro, C.S.F. Geographical Influences on the Chemical Composition and Antifungal Activity of Xylopia aromatica (Lam.) Mart. Leaf Essential Oil. S. Afr. J. Bot. 2023, 160, 209–218. [Google Scholar] [CrossRef]
- Cao, B.-L.; Ma, Q.; Zhao, Q.; Wang, L.; Xu, K. Effects of Silicon on Absorbed Light Allocation, Antioxidant Enzymes and Ultrastructure of Chloroplasts in Tomato Leaves under Simulated Drought Stress. Sci. Hortic. 2015, 194, 53–62. [Google Scholar] [CrossRef]
- Spychalla, J.P.; Desborough, S.L. Superoxide Dismutase, Catalase, and α-Tocopherol Content of Stored Potato Tubers. Plant Physiol. 1990, 94, 1214–1218. [Google Scholar] [CrossRef] [PubMed]
- Erinle, K.O.; Jiang, Z.; Ma, B.; Li, J.; Chen, Y.; Ur-Rehman, K.; Shahla, A.; Zhang, Y. Exogenous Calcium Induces Tolerance to Atrazine Stress in Pennisetum Seedlings and Promotes Photosynthetic Activity, Antioxidant Enzymes and PsbA Gene Transcripts. Ecotoxicol. Environ. Saf. 2016, 132, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Apel, K.; Hirt, H. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef]
- Selmar, D.; Kleinwächter, M. Stress Enhances the Synthesis of Secondary Plant Products: The Impact of Stress-Related over-Reduction on the Accumulation of Natural Products. Plant Cell Physiol. 2013, 54, 817–826. [Google Scholar] [CrossRef]
- Loreto, F.; Schnitzler, J.P. Abiotic Stresses and Induced BVOCs. Trends Plant Sci. 2010, 15, 154–166. [Google Scholar] [CrossRef]
- Zhao, L.; Chang, W.; Xiao, Y.; Liu, H.; Liu, P. Methylerythritol Phosphate Pathway of Isoprenoid Biosynthesis. Annu. Rev. Biochem. 2013, 82, 497–530. [Google Scholar] [CrossRef]
- Tomescu, D.; Şumǎlan, R.; Copolovici, L.; Copolovici, D. The Influence of Soil Salinity on Volatile Organic Compounds Emission and Photosynthetic Parameters of Solanum lycopersicum L. Varieties. Open Life Sci. 2017, 12, 135–142. [Google Scholar] [CrossRef]
- Nik, Z.B.; Mirza, M.; Ghaffari, M. Effect of Drought Stress on Growth and Essential Oil Contents in Parthenium argentatum Gray. J. Essent. Oil Bear. Plants 2008, 11, 423–429. [Google Scholar] [CrossRef]
- Caser, M.; Chitarra, W.; D’Angiolillo, F.; Perrone, I.; Demasi, S.; Lovisolo, C.; Pistelli, L.; Pistelli, L.; Scariot, V. Drought Stress Adaptation Modulates Plant Secondary Metabolite Production in Salvia dolomitica Codd. Ind. Crops Prod. 2019, 129, 85–96. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography, 4th ed.; Allured Pub. Corp.: Carol Stream, IL, USA, 2017; ISBN 9781932633214. [Google Scholar]
- van Den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, Q.; Ma, K.; Chen, L. Temperature-Dependent Gas Exchange and Stomatal/Non-Stomatal Limitation to CO2 Assimilation of Quercus liaotungensis under Midday High Irradiance. Photosynthetica 2001, 39, 383–388. [Google Scholar] [CrossRef]
- Elsheery, N.I.; Cao, K.-F. Gas Exchange, Chlorophyll Fluorescence, and Osmotic Adjustment in Two Mango Cultivars under Drought Stress. Acta Physiol. Plant 2008, 30, 769–777. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Morris, D.L. Quantitative Determination of Carbohydrates with Dreywood’s Anthrone Reagent. Science (1979) 1948, 107, 254–255. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Yemm, E.W.; Willis, A.J. The Estomation of Carboydrates in Plant Extracts by Anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef]
- Clegg, K.M. The Application of the Anthrone Reagent to the Estimation of Starch in Cereals. J. Sci. Food Agric. 1956, 7, 40–44. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Teisseire, H.; Guy, V. Copper-Induced Changes in Antioxidant Enzymes Activities in Fronds of Duckweed (Lemna minor). Plant Sci. 2000, 153, 65–72. [Google Scholar] [CrossRef]
- Peixoto, P.H.P.; Pimenta, D.S.; Cambraia, J. Alterações Morfológicas e Acúmulo de Compostos Fenólicos Em Plantas de Sorgo Sob Estresse de Alumínio. Bragantia 2007, 66, 17–25. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in Isolated Chloroplasts. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Sage, R.F.; Way, D.A.; Kubien, D.S. Rubisco, Rubisco Activase, and Global Climate Change. J. Exp. Bot. 2008, 59, 1581–1595. [Google Scholar] [CrossRef] [PubMed]
- Addington, R.N.; Mitchell, R.J.; Oren, R.; Donovan, L. a Stomatal Sensitivity to Vapor Pressure Deficit and Its Relationship to Hydraulic Conductance in Pinus palustris. Tree Physiol. 2004, 24, 561–569. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Singh Sidhu, G.P.; Bali, A.S.; Handa, N.; Kapoor, D.; Yadav, P.; Khanna, K.; et al. Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. J. Plant Growth Regul. 2020, 39, 509–531. [Google Scholar] [CrossRef]
- Baraldi, R.; Canaccini, F.; Cortes, S.; Magnani, F.; Rapparini, F.; Zamboni, A.; Raddi, S. Role of Xanthophyll Cycle-Mediated Photoprotection in Arbutus unedo Plants Exposed to Water Stress during the Mediterranean Summer. Photosynthetica 2008, 46, 378–386. [Google Scholar] [CrossRef]
- Palmer-Young, E.C.; Veit, D.; Gershenzon, J.; Schuman, M.C. The Sesquiterpenes(E)-β-Farnesene and (E)-α-Bergamotene Quench Ozone but Fail to Protect the Wild Tobacco Nicotiana attenuata from Ozone, UVB, and Drought Stresses. PLoS ONE 2015, 10, e0127296. [Google Scholar] [CrossRef]
- Machado, F.; Dias, M.C.; de Pinho, P.G.; Araújo, A.M.; Pinto, D.; Silva, A.; Correia, C.; Moutinho-Pereira, J.; Santos, C. Photosynthetic Performance and Volatile Organic Compounds Profile in Eucalyptus Globulus after UVB Radiation. Environ. Exp. Bot. 2017, 140, 141–149. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Peng, Y.; Li, C.; Fritschi, F.B. Diurnal Dynamics of Maize Leaf Photosynthesis and Carbohydrate Concentrations in Response to Differential N Availability. Environ. Exp. Bot. 2014, 99, 18–27. [Google Scholar] [CrossRef]
- Arimura, G.I.; Matsui, K.; Takabayashi, J. Chemical and Molecular Ecology of Herbivore-Induced Plant Volatiles: Proximate Factors and Their Ultimate Functions. Plant Cell Physiol. 2009, 50, 911–923. [Google Scholar] [CrossRef]
- Chomel, M.; Guittonny-Larchevêque, M.; Fernandez, C.; Gallet, C.; DesRochers, A.; Paré, D.; Jackson, B.G.; Baldy, V. Plant Secondary Metabolites: A Key Driver of Litter Decomposition and Soil Nutrient Cycling. J. Ecol. 2016, 104, 1527–1541. [Google Scholar] [CrossRef]
- Seneweera, S.; Makino, A.; Hirotsu, N.; Norton, R.; Suzuki, Y. New Insight into Photosynthetic Acclimation to Elevated CO2: The Role of Leaf Nitrogen and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Content in Rice Leaves. Environ. Exp. Bot. 2011, 71, 128–136. [Google Scholar] [CrossRef]
- Choudhary, S.; Zehra, A.; Naeem, M.; Khan, M.M.A.; Aftab, T. Effects of Boron Toxicity on Growth, Oxidative Damage, Antioxidant Enzymes and Essential Oil Fingerprinting in Mentha Arvensis and Cymbopogon flexuosus. Chem. Biol. Technol. Agric. 2020, 7, 8. [Google Scholar] [CrossRef]
- Llusia, J.; Roahtyn, S.; Yakir, D.; Rotenberg, E.; Seco, R.; Guenther, A.; Peñuelas, J. Photosynthesis, Stomatal Conductance and Terpene Emission Response to Water Availability in Dry and Mesic Mediterranean Forests. Trees—Struct. Funct. 2016, 30, 749–759. [Google Scholar] [CrossRef]
- Llusià, J.; Peñuelas, J.; Alessio, G.A.; Estiarte, M. Seasonal Contrasting Changes of Foliar Concentrations of Terpenes and Other Volatile Organic Compound in Four Dominant Species of a Mediterranean Shrubland Submitted to a Field Experimental Drought and Warming. Physiol. Plant 2006, 127, 632–649. [Google Scholar] [CrossRef]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, Function and Metabolic Engineering of Plant Volatile Organic Compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Hussain, M.; Ismaili, N.J. Phytopathogenic fungi associated with ripening fruit of date palm (Phoenix dactylifera L.) during rainy season in the university area of Khairpur, Sindh, Pakistan. Plant Prot. 2019, 3, 161–165. [Google Scholar] [CrossRef]
- Tan, N.; Satana, D.; Sen, B.; Altan, H.B.; Demirci, B.; Uzun, M. Antimycobacterial and Antifungal Activities of Selected Four Salvia Species. Rec. Nat. Prod. 2016, 10, 593–603. [Google Scholar]
Seasons | Chlorophyll a | Chlorophyll b | Carotenoids | Anthocyanins |
---|---|---|---|---|
Dry | 676.45 A ± 30.93 | 307.67 A ±18.89 | 392.67 ± 14.76 A | 427.81 ± 25.27 A |
Rainy | 737.14 A ± 18.30 | 296.06 A ± 17.61 | 355.43 ± 12.51 B | 319.82 ±19.17 B |
p | 0.09 | 0.616 | 0.046 | 0.01 |
Seasons | Total Soluble Sugar | Reducing Sugar | Starch |
---|---|---|---|
Dry | 4198.50 ± 132.96 A | 4.987 A ± 0.214 | 107.95 ± 3.519 A |
Rainy | 3530.82 ± 192.46 B | 5.344 A ± 0.172 | 69.84 ± 6.699 B |
p | 0.005 | 0.269 | ≤0.001 |
Seasons | SOD | POD | CAT | MDA |
---|---|---|---|---|
Dry | 38.84 A ± 2.945 | 0.061 A ± 0.00014 | 0.15 A ± 0.00031 | 65.63A ± 2.0274 |
Rainy | 39.73 A ± 2.752 | 0.061 A ± 0.00057 | 0.13 A ±0.00018 | 64.63 A ± 2.475 |
p | 0.785 | 0.937 | 0.515 | 0.936 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos, F.; Vieira, M.; Sousa, M.; Jorge, L.; Ferreira, G.; Marques, M.; Boaro, C. Defense Mechanisms of Xylopia aromatica (Lam.) Mart. in the Dry Season in the Brazilian Savanna. Life 2024, 14, 1416. https://doi.org/10.3390/life14111416
Campos F, Vieira M, Sousa M, Jorge L, Ferreira G, Marques M, Boaro C. Defense Mechanisms of Xylopia aromatica (Lam.) Mart. in the Dry Season in the Brazilian Savanna. Life. 2024; 14(11):1416. https://doi.org/10.3390/life14111416
Chicago/Turabian StyleCampos, Felipe, Maria Vieira, Marília Sousa, Letícia Jorge, Gisela Ferreira, Marcia Marques, and Carmen Boaro. 2024. "Defense Mechanisms of Xylopia aromatica (Lam.) Mart. in the Dry Season in the Brazilian Savanna" Life 14, no. 11: 1416. https://doi.org/10.3390/life14111416
APA StyleCampos, F., Vieira, M., Sousa, M., Jorge, L., Ferreira, G., Marques, M., & Boaro, C. (2024). Defense Mechanisms of Xylopia aromatica (Lam.) Mart. in the Dry Season in the Brazilian Savanna. Life, 14(11), 1416. https://doi.org/10.3390/life14111416