Functional Outcomes and Safety Profile of Trans-Foveal Subthreshold Micropulse Laser in Persistent Central Serous Chorioretinopathy
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
gSML | sCSC | p | |
---|---|---|---|
BCVA, logmar, ± SD | 0.02 ± 0.04 | 0.03 ± 0.06 | 0.520 |
CS-1.5, logmar, ± SD | 1.64 ± 0.18 | 1.71 ± 0.19 | 0.210 |
CS-3.0, logmar, ± SD | 1.8 ± 0.13 | 1.84 ± 0.22 | 0.802 |
CS-6.0, logmar, ± SD | 1.74 ± 0.22 | 1.77 ± 0.27 | 0.358 |
CS-12.0, logmar, ± SD | 1.22 ± 0.51 | 1.25 ± 0.62 | 0.433 |
CS-18.0, logmar, ± SD | 0.81 ± 0.53 | 0.83 ± 0.59 | 0.923 |
CS-A, logmar, ± SD | 1.44 ± 0.25 | 1.48 ± 0.34 | 0.520 |
MP-A, db, ± SD | 18.1 ± 1.88 | 17.74 ± 2.38 | 0.880 |
MP-C, db, ± SD | 17.6 ± 2.72 | 17.22 ± 3.16 | 1.000 |
MP-P, db, ± SD | 18.29 ± 1.66 | 17.96 ± 2.11 | 1.000 |
mfERG-A1, nV/deg2, ± SD | 88.66 ± 27.13 | 99.69 ± 27.63 | 0.317 |
mfERG-A2, nV/deg2, ± SD | 46.5 ± 10.72 | 49.2 ± 10.38 | 0.623 |
mfERG-A3, nV/deg2, ± SD | 26.39 ± 6.86 | 27.91 ± 5.45 | 0.558 |
mfERG-A4, nV/deg2, ± SD | 18.25 ± 4.29 | 18.62 ± 3.29 | 0.985 |
mfERG-A5, nV/deg2, ± SD | 14.12 ± 3.61 | 14.16 ± 2.95 | 0.940 |
mfERG-IT1, ms, ± SD | 42.09 ± 2.73 | 42.19 ± 2.38 | 0.834 |
mfERG-IT2, ms, ± SD | 39.25 ± 1.14 | 38.3 ± 1.33 | 0.031 |
mfERG-IT3, ms, ± SD | 37.11 ± 1.03 | 36.67 ± 1.36 | 0.240 |
mfERG-IT4, ms, ± SD | 36.99 ± 1.05 | 36.25 ± 1.26 | 0.210 |
mfERG-IT5, ms, ± SD | 37.37 ± 1.27 | 36.88 ± 1.45 | 0.559 |
References
- Daruich, A.; Matet, A.; Marchionno, L.; De Azevedo, J.D.; Ambresin, A.; Mantel, I.; Behar-Cohen, F. Acute Central Serous Chorioretinopathy: Factors Influencing Episode Duration. Retina 2017, 37, 1905–1915. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Baran, N.V.; Gürlü, V.P.; Esgin, H. Long-term macular function in eyes with central serous chorioretinopathy. Clin. Exp. Ophthalmol. 2005, 33, 369–372. [Google Scholar] [CrossRef] [PubMed]
- Lourthai, P.; Bhurayanontachai, P. Pattern of Contrast Sensitivity Changes in Acute Central Serous Chorioretinopathy. J. Ophthalmol. 2017, 2017, 9053932. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Maaranen, T.; Mäntyjärvi, M. Contrast sensitivity in patients recovered from central serous chorioretinopathy. Int. Ophthalmol. 1999, 23, 31–35. [Google Scholar] [CrossRef]
- Ozdemir, H.; Karacorlu, S.A.; Senturk, F.; Karacorlu, M.; Uysal, O. Assessment of macular function by microperimetry in unilateral resolved central serous chorioretinopathy. Eye 2008, 22, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Chappelow, A.V.; Marmor, M.F. Multifocal electroretinogram abnormalities persist following resolution of central serous chorioretinopathy. Arch. Ophthalmol. 2000, 118, 1211–1215. [Google Scholar] [CrossRef][Green Version]
- Suzuki, K.; Hasegawa, S.; Usui, T.; Ichibe, M.; Takada, R.; Takagi, M.; Abe, H. Multifocal electroretinogram in patients with central serous chorioretinopathy. Jpn. J. Ophthalmol. 2002, 46, 308–314. [Google Scholar] [CrossRef]
- Yu, J.; Xu, G.; Chang, Q.; Ye, X.; Li, L.; Jiang, C.; Zhao, Q. Risk Factors for Persistent or Recurrent Central Serous Chorioretinopathy. J. Ophthalmol. 2019, 2019, 5970659. [Google Scholar] [CrossRef][Green Version]
- Mrejen, S.; Balaratnasingam, C.; Kaden, T.R.; Bottini, A.; Dansingani, K.; Bhavsar, K.V.; Yannuzzi, N.A.; Patel, S.; Chen, K.C.; Yu, S.; et al. Long-term Visual Outcomes and Causes of Vision Loss in Chronic Central Serous Chorioretinopathy. Ophthalmology 2019, 126, 576–588. [Google Scholar] [CrossRef]
- van Dijk, E.H.C.; Fauser, S.; Breukink, M.B.; Blanco-Garavito, R.; Groenewoud, J.M.M.; Keunen, J.E.E.; Peters, P.J.H.; Dijkman, G.; Souied, E.H.; MacLaren, R.E.; et al. Half-Dose Photodynamic Therapy versus High-Density Subthreshold Micropulse Laser Treatment in Patients with Chronic Central Serous Chorioretinopathy: The PLACE Trial. Ophthalmology 2018, 125, 1547–1555. [Google Scholar] [CrossRef]
- Robertson, D.M.; Ilstrup, D. Direct, indirect, and sham laser photocoagulation in the management of central serous chorioretinopathy. Am. J. Ophthalmol. 1983, 95, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, E.; Zhao, M.; Daruich, A.; Behar-Cohen, F. Mineralocorticoid antagonists in the treatment of central serous chorioetinopathy: Review of the pre-clinical and clinical evidence. Exp. Eye Res. 2019, 187, 107754. [Google Scholar] [CrossRef] [PubMed]
- Scholz, P.; Altay, L.; Fauser, S. A Review of Subthreshold Micropulse Laser for Treatment of Macular Disorders. Adv. Ther. 2017, 34, 1528–1555. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Miura, Y.; Inagaki, K.; Hutfilz, A.; Seifert, E.; Schmarbeck, B.; Murakami, A.; Ohkoshi, K.; Brinkmann, R. Temperature Increase and Damage Extent at Retinal Pigment Epithelium Compared between Continuous Wave and Micropulse Laser Application. Life 2022, 12, 1313. [Google Scholar] [CrossRef]
- Gawęcki, M. Micropulse Laser Treatment of Retinal Diseases. J. Clin. Med. 2019, 8, 242. [Google Scholar] [CrossRef][Green Version]
- Gawęcki, M.; Jaszczuk-Maciejewska, A.; Jurska-Jaśko, A.; Kneba, M.; Grzybowski, A. Transfoveal Micropulse Laser Treatment of Central Serous Chorioretinopathy within Six Months of Disease Onset. J. Clin. Med. 2019, 8, 1398. [Google Scholar] [CrossRef][Green Version]
- van Rijssen, T.J.; van Dijk, E.H.C.; Yzer, S.; Ohno-Matsui, K.; Keunen, J.E.E.; Schlingemann, R.O.; Sivaprasad, S.; Querques, G.; Downes, S.M.; Fauser, S.; et al. Central serous chorioretinopathy: Towards an evidence-based treatment guideline. Prog. Retin. Eye Res. 2019, 73, 100770. [Google Scholar] [CrossRef]
- Behnia, M.; Khabazkhoob, M.; Aliakbari, S.; Abadi, A.E.; Hashemi, H.; Pourvahidi, P. Improvement in visual acuity and contrast sensitivity in patients with central serous chorioretinopathy after macular subthreshold laser therapy. Retina 2013, 33, 324–328. [Google Scholar] [CrossRef]
- Arora, S.; Sridharan, P.; Arora, T.; Chhabra, M.; Ghosh, B. Subthreshold diode micropulse laser versus observation in acute central serous chorioretinopathy. Clin. Exp. Optom. 2019, 102, 79–85. [Google Scholar] [CrossRef][Green Version]
- Goel, N.; Mehta, A.; Gupta, A.K. Multifocal electroretinography-assisted anatomical and functional evaluation of subthreshold green laser in acute central serous chorioretinopathy. Indian J. Ophthalmol. 2021, 69, 2341–2346. [Google Scholar] [CrossRef]
- Long, H.; Liu, M.; Hu, Q.; Li, X. 577 nm subthreshold micropulse laser treatment for acute central serous chorioretinopathy: A comparative study. BMC Ophthalmol. 2022, 22, 105. [Google Scholar] [CrossRef] [PubMed]
- Kiraly, P.; Smrekar, J.; Jaki Mekjavić, P. Morphological parameters predicting subthreshold micropulse laser effectiveness in central serous chorioretinopathy. Lasers Med. Sci. 2022, 37, 3129–3136. [Google Scholar] [CrossRef] [PubMed]
- Lainscak, M.; Pelliccia, F.; Rosano, G.; Vitale, C.; Schiariti, M.; Greco, C.; Speziale, G.; Gaudio, C. Safety profile of mineralocorticoid receptor antagonists: Spironolactone and eplerenone. Int. J. Cardiol. 2015, 200, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Iwase, T.; Yokouchi, H.; Kitahashi, M.; Kubota-Taniai, M.; Baba, T.; Yamamoto, S. Long-Term Effects of Half-Time Photodynamic Therapy on Retinal Sensitivity in Eyes with Chronic Central Serous Chorioretinopathy. BioMed Res. Int. 2020, 2020, 3190136. [Google Scholar] [CrossRef]
- Sun, Z.; Huang, Y.; Nie, C.; Wang, Z.; Pei, J.; Lin, B.; Zhou, R.; Zhang, J.; Chong, V.; Liu, X. Efficacy and safety of subthreshold micropulse laser compared with threshold conventional laser in central serous chorioretinopathy. Eye 2020, 34, 1592–1599. [Google Scholar] [CrossRef][Green Version]
- Chhablani, J.; Kalra, G.; Alkwatli, L.; Fassbender, B.; Amoroso, F.; Chandra, K.; Ankireddy, S.; Maltsev, D.; Striebe, N.A.; Souied, E. Safety of various parameter sets with navigated microsecond pulsing laser in central serous chorioretinopathy. Int. J. Retin. Vitr. 2021, 7, 62. [Google Scholar] [CrossRef]
- Takahashi, A.; Ooto, S.; Yamashiro, K.; Oishi, A.; Tamura, H.; Nakanishi, H.; Ueda-Arakawa, N.; Tsujikawa, A.; Yoshimura, N. Photoreceptor Damage and Reduction of Retinal Sensitivity Surrounding Geographic Atrophy in Age-Related Macular Degeneration. Am. J. Ophthalmol. 2016, 168, 260–268. [Google Scholar] [CrossRef][Green Version]
- Gerth, C.; Hauser, D.; Delahunt, P.B.; Morse, L.S.; Werner, J.S. Assessment of multifocal electroretinogram abnormalities and their relation to morphologic characteristics in patients with large drusen. Arch. Ophthalmol. 2003, 121, 1404–1414. [Google Scholar] [CrossRef][Green Version]
- Kaiser, P.K. Prospective evaluation of visual acuity assessment: A comparison of snellen versus ETDRS charts in clinical practice (An AOS Thesis). Trans. Am. Ophthalmol. Soc. 2009, 107, 311–324. [Google Scholar]
- Hitchcock, E.M.; Dick, R.B.; Krieg, E.F. Visual contrast sensitivity testing: A comparison of two F.A.C.T. test types. Neurotoxicol. Teratol. 2004, 26, 271–277. [Google Scholar] [CrossRef]
- Vujosevic, S.; Midena, E.; Pilotto, E.; Radin, P.P.; Chiesa, L.; Cavarzeran, F. Diabetic macular edema: Correlation between microperimetry and optical coherence tomography findings. Investig. Ophthalmol. Vis. Sci. 2006, 47, 3044–3051. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Midena, E.; Vujosevic, S.; Cavarzeran, F. Normal values for fundus perimetry with the microperimeter MP1. Ophthalmology 2010, 117, 1571–1576.e1. [Google Scholar] [CrossRef] [PubMed]
- Hood, D.C.; Bach, M.; Brigell, M.; Keating, D.; Kondo, M.; Lyons, J.S.; Marmor, M.F.; McCulloch, D.L.; Palmowski-Wolfe, A.M. ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc. Ophthalmologica. Adv. Ophthalmol. 2012, 124, 1–13. [Google Scholar] [CrossRef][Green Version]
- Hawlina, M.; Konec, B. New noncorneal HK-loop electrode for clinical electroretinography. Doc. Ophthalmol. Adv. Ophthalmol. 1992, 81, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Midena, E.; Bini, S.; Martini, F.; Enrica, C.; Pilotto, E.; Micera, A.; Esposito, G.; Vujosevic, S. Changes of aqueous humor müller cells’ biomarkers in human patients affected by diabetic macular edema after subthreshold micropulse laser treatment. Retina 2020, 40, 126–134. [Google Scholar] [CrossRef]
- Kiraly, P.; Smrekar, J.; Mekjavić, P.J. Visual function during and after an acute central serous chorioretinopathy episode. Doc. Ophthalmol. Adv. Ophthalmol. 2022, 145, 27–35. [Google Scholar] [CrossRef]
- Moschos, M.; Brouzas, D.; Koutsandrea, C.; Stefanos, B.; Loukianou, H.; Papantonis, F.; Moschos, M. Assessment of central serous chorioretinopathy by optical coherence tomography and multifocal electroretinography. Ophthalmologica 2007, 221, 292–298. [Google Scholar] [CrossRef]
- Luttrull, J.K. Improved retinal and visual function following panmacular subthreshold diode micropulse laser for retinitis pigmentosa. Eye 2018, 32, 1099–1110. [Google Scholar] [CrossRef]
- Luttrull, J.K.; Margolis, B.W. Functionally Guided Retinal Protective Therapy for Dry Age-Related Macular and Inherited Retinal Degenerations: A Pilot Study. Investig. Ophthalmol. Vis. Sci. 2016, 57, 265–275. [Google Scholar] [CrossRef][Green Version]
- Luttrull, J.K.; Dorin, G. Subthreshold diode micropulse laser photocoagulation (SDM) as invisible retinal phototherapy for diabetic macular edema: A review. Curr. Diabetes Rev. 2012, 8, 274–284. [Google Scholar] [CrossRef][Green Version]
- Frizziero, L.; Calciati, A.; Midena, G.; Torresin, T.; Parrozzani, R.; Pilotto, E.; Midena, E. Subthreshold Micropulse Laser Modulates Retinal Neuroinflammatory Biomarkers in Diabetic Macular Edema. J. Clin. Med. 2021, 10, 3134. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Kim, S.Y.; Ha, S.; Moon, D.; Seong, S.; Kwon, O.W.; Park, H.S. Short-duration multiple-session subthreshold micropulse yellow laser (577 nm) for chronic central serous chorioretinopathy: Results at 3 years. Eye 2019, 33, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Maltsev, D.S.; Kulikov, A.N.; Chhablani, J. Clinical Application of Fluorescein Angiography-Free Navigated Focal Laser Photocoagulation in Central Serous Chorioretinopathy. Ophthalmic Surg. Lasers Imaging Retin. 2019, 50, e118–e124. [Google Scholar] [CrossRef] [PubMed]
- Donati, M.C.; Murro, V.; Mucciolo, D.P.; Giorgio, D.; Cinotti, G.; Virgili, G.; Rizzo, S. Subthreshold yellow micropulse laser for treatment of diabetic macular edema: Comparison between fixed and variable treatment regimen. Eur. J. Ophthalmol. 2021, 31, 1254–1260. [Google Scholar] [CrossRef]
- Ludwig, K.; Lasser, T.; Sakowski, H.; Abramowski, H.; Wörz, G. Photocoagulation in the edematous and non-edematous retina with the cw-laser of different wavelengths. Der Ophthalmol. Z. Der Dtsch. Ophthalmol. Ges. 1994, 91, 783–788. [Google Scholar]
- van Rijssen, T.J.; van Dijk, E.H.C.; Tsonaka, R.; Feenstra, H.M.A.; Dijkman, G.; Peters, P.J.H.; Diederen, R.M.H.; Hoyng, C.B.; Schlingemann, R.O.; Boon, C.J.F. Half-Dose Photodynamic Therapy versus Eplerenone in Chronic Central Serous Chorioretinopathy (SPECTRA): A Randomized Controlled Trial. Am. J. Ophthalmol. 2022, 233, 101–110. [Google Scholar] [CrossRef]
- Zeng, M.; Chen, X.; Song, Y.; Cai, C. Subthreshold micropulse laser photocoagulation versus half-dose photodynamic therapy for acute central serous chorioretinopathy. BMC Ophthalmol. 2022, 22, 110. [Google Scholar] [CrossRef]
- Raizada, K.; Naik, M. Photodynamic Therapy for the Eye. In StatPearls; Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Sirks, M.J.; van Dijk, E.H.C.; Rosenberg, N.; Hollak, C.E.M.; Aslanis, S.; Cheung, C.M.G.; Chowers, I.; Eandi, C.M.; Freund, K.B.; Holz, F.G.; et al. Clinical impact of the worldwide shortage of verteporfin (Visudyne®) on ophthalmic care. Acta Ophthalmol. 2022, 100, e1522–e1532. [Google Scholar] [CrossRef]
- Inagaki, K.; Shuo, T.; Katakura, K.; Ebihara, N.; Murakami, A.; Ohkoshi, K. Sublethal Photothermal Stimulation with a Micropulse Laser Induces Heat Shock Protein Expression in ARPE-19 Cells. J. Ophthalmol. 2015, 2015, 729792. [Google Scholar] [CrossRef][Green Version]
- Li, Z.; Song, Y.; Chen, X.; Chen, Z.; Ding, Q. Biological Modulation of Mouse RPE Cells in Response to Subthreshold Diode Micropulse Laser Treatment. Cell Biochem. Biophys. 2015, 73, 545–552. [Google Scholar] [CrossRef]
Baseline | 3 Months (SML) | 6 Months | p1 | p2 | |
---|---|---|---|---|---|
MV, mm3, ± SD | 2.86 ± 0.66 | 2.55 ± 0.25 | 2.49 ± 0.33 | 0.018 | 0.247 |
CRT, μm, ± SD | 423 ± 135 | 358 ± 82 | 319 ± 94 | 0.008 | 0.044 |
BCVA, logmar, ± SD | 0.19 ± 0.16 | 0.16 ± 0.15 | 0.09 ± 0.14 | 0.090 | 0.007 |
CS-1.5, logmar, ± SD | 1.46 ± 0.13 | 1.51 ± 0.14 | 1.59 ± 0.18 | 0.019 | 0.020 |
CS-3.0, logmar, ± SD | 1.51 ± 0.21 | 1.61 ± 0.19 | 1.69 ± 0.21 | 0.012 | 0.050 |
CS-6.0, logmar, ± SD | 1.18 ± 0.56 | 1.43 ± 0.43 | 1.47 ± 0.61 | 0.005 | 0.121 |
CS-12.0, logmar, ± SD | 0.5 ± 0.61 | 0.67 ± 0.63 | 1.02 ± 0.58 | 0.180 | <0.001 |
CS-18.0, logmar, ± SD | 0.16 ± 0.35 | 0.3 ± 0.42 | 0.62 ± 0.51 | 0.084 | 0.002 |
CS-A, logmar, ± SD | 0.97 ± 0.28 | 1.1 ± 0.29 | 1.28 ± 0.36 | 0.006 | <0.001 |
MP-C, db, ± SD | 9.9 ± 5 | 11.5 ± 4.8 | 14.4 ± 5.3 | 0.035 | 0.002 |
MP-P, db, ± SD | 13.7 ± 4.2 | 14.8 ± 4 | 16.3 ± 3.2 | 0.044 | 0.042 |
MP-A, db, ± SD | 12.6 ± 4.3 | 13.9 ± 4.2 | 15.8 ± 3.8 | 0.033 | 0.010 |
mfERG-A1, nV/deg2, ± SD | 58.2 ± 22.5 | 68.1 ± 24 | 77.4 ± 28.1 | 0.004 | 0.065 |
mfERG-A2, nV/deg2, ± SD | 37.7 ± 10.4 | 40.5 ± 9.4 | 43.4 ± 9.9 | 0.011 | 0.244 |
mfERG-A3, nV/deg2, ± SD | 25.1 ± 5.4 | 25.9 ± 6.3 | 25.7 ± 5.3 | 0.247 | 0.769 |
mfERG-A4, nV/deg2, ± SD | 17 ± 3.5 | 16.9 ± 3.7 | 17.6 ± 3.6 | 0.794 | 0.272 |
mfERG-A5, nV/deg2, ± SD | 13 ± 2.8 | 12.7 ± 2.8 | 13.4 ± 3.1 | 0.350 | 0.267 |
mfERG-IT1, ms, ± SD | 41.6 ± 4.5 | 42.6 ± 4.7 | 43.3 ± 3 | 0.111 | 0.764 |
mfERG-IT2, ms, ± SD | 39.2 ± 1.7 | 38.7 ± 1.7 | 39.3 ± 1.3 | 0.243 | 0.206 |
mfERG-IT3, ms, ± SD | 37.5 ± 1.1 | 37.4 ± 1.1 | 37.2 ± 1.1 | 0.410 | 0.157 |
mfERG-IT4, ms, ± SD | 37.1 ± 1.1 | 37 ± 1 | 37 ± 1 | 0.320 | 0.878 |
mfERG-IT5, ms, ± SD | 37.6 ± 1 | 37.6 ± 1.1 | 37.6 ± 1.3 | 0.547 | 0.903 |
Baseline | 3 Months (SML) | 6 Months | p1 | p2 | |
---|---|---|---|---|---|
MV, mm3, ± SD | 2.84 ± 0.59 | 2.52 ± 0.15 | 2.3 ± 0.13 | 0.014 | 0.001 |
CRT, μm, ± SD | 409 ± 130 | 333 ± 52 | 256 ± 21 | 0.014 | <0.001 |
BCVA, logmar, ± SD | 0.18 ± 0.16 | 0.12 ± 0.15 | 0.02 ± 0.04 | 0.014 | 0.004 |
CS-1.5, logmar, ± SD | 1.51 ± 0.14 | 1.54 ± 0.13 | 1.64 ± 0.18 | 0.174 | 0.074 |
CS-3.0, logmar, ± SD | 1.56 ± 0.21 | 1.68 ± 0.16 | 1.8 ± 0.13 | 0.115 | 0.021 |
CS-6.0, logmar, ± SD | 1.28 ± 0.56 | 1.51 ± 0.46 | 1.74 ± 0.22 | 0.074 | 0.006 |
CS-12.0, logmar, ± SD | 0.57 ± 0.65 | 0.87 ± 0.65 | 1.22 ± 0.51 | 0.149 | 0.006 |
CS-18.0, logmar, ± SD | 0.18 ± 0.4 | 0.33 ± 0.44 | 0.81 ± 0.53 | 0.201 | 0.004 |
CS-A, logmar, ± SD | 1.02 ± 0.29 | 1.19 ± 0.28 | 1.44 ± 0.25 | 0.108 | |
MP-C, db, ± SD | 10.5 ± 5.3 | 13.1 ± 5.2 | 17.6 ± 2.7 | 0.022 | 0.001 |
MP-P, db, ± SD | 14.2 ± 4.1 | 16 ± 3.7 | 18.3 ± 1.7 | 0.080 | 0.013 |
MP-A, db, ± SD | 13.2 ± 4.3 | 15.2 ± 4 | 18.1 ± 1.9 | 0.080 | 0.004 |
mfERG-A1, nV/deg2, ± SD | 59.2 ± 20.4 | 69.6 ± 25.5 | 88.7 ± 27.1 | 0.042 | 0.010 |
mfERG-A2, nV/deg2, ± SD | 39.6 ± 11 | 41 ± 10.2 | 46.5 ± 10.7 | 0.234 | 0.041 |
mfERG-A3, nV/deg2, ± SD | 25.5 ± 6.5 | 26.3 ± 7.5 | 26.4 ± 6.9 | 0.293 | 0.955 |
mfERG-A4, nV/deg2, ± SD | 17.7 ± 4.1 | 17.5 ± 4.2 | 18.2 ± 4.3 | 0.529 | 0.691 |
mfERG-A5, nV/deg2, ± SD | 13.7 ± 3.3 | 13.2 ± 3.2 | 14.1 ± 3.6 | 0.262 | 0.330 |
mfERG-IT1, ms, ± SD | 41.8 ± 3.9 | 42.9 ± 4.2 | 42.1 ± 2.7 | 0.205 | 0.379 |
mfERG-IT2, ms, ± SD | 38.7 ± 1.1 | 39.2 ± 1.7 | 39.2 ± 1.1 | 0.270 | 0.915 |
mfERG-IT3, ms, ± SD | 37.7 ± 1.1 | 37.7 ± 0.9 | 37.1 ± 1 | 0.572 | 0.016 |
mfERG-IT4, ms, ± SD | 37.3 ± 1 | 37.3 ± 0.8 | 37 ± 1.1 | 1.000 | 0.439 |
mfERG-IT5, ms, ± SD | 37.6 ± 1 | 37.8 ± 0.8 | 37.4 ± 1.3 | 0.236 | 0.140 |
Baseline | 3 Months (SML) | 6 Months | p1 | p2 | |
---|---|---|---|---|---|
MV, mm3, ± SD | 2.87 ± 0.74 | 2.58 ± 0.32 | 2.68 ± 0.35 | 0.410 | 0.348 |
CRT, μm, ± SD | 436 ± 142 | 382 ± 99 | 378 ± 98 | 0.224 | 0.940 |
BCVA, logmar, ± SD | 0.2 ± 0.16 | 0.19 ± 0.15 | 0.17 ± 0.17 | 1.000 | 0.397 |
CS-1.5, logmar, ± SD | 1.42 ± 0.11 | 1.47 ± 0.13 | 1.55 ± 0.17 | 0.071 | 0.165 |
CS-3.0, logmar, ± SD | 1.47 ± 0.21 | 1.54 ± 0.2 | 1.58 ± 0.22 | 0.020 | 0.550 |
CS-6.0, logmar, ± SD | 1.09 ± 0.57 | 1.36 ± 0.41 | 1.21 ± 0.74 | 0.044 | 0.726 |
CS-12.0, logmar, ± SD | 0.43 ± 0.58 | 0.48 ± 0.57 | 0.83 ± 0.6 | 0.855 | 0.015 |
CS-18.0, logmar, ± SD | 0.15 ± 0.31 | 0.27 ± 0.42 | 0.45 ± 0.44 | 0.343 | 0.201 |
CS-A, logmar, ± SD | 0.91 ± 0.28 | 1.02 ± 0.27 | 1.12 ± 0.39 | 0.056 | 0.148 |
MP-C, db, ± SD | 9.3 ± 4.8 | 10 ± 4.1 | 11.2 ± 5.4 | 0.289 | 0.489 |
MP-P, db, ± SD | 13.2 ± 4.3 | 13.7 ± 4.1 | 14.4 ± 3.3 | 0.230 | 0.826 |
MP-A, db, ± SD | 12 ± 4.3 | 12.6 ± 4 | 13.5 ± 3.8 | 0.255 | 0.733 |
mfERG-A1, nV/deg2, ± SD | 57.2 ± 25 | 66.7 ± 23.1 | 66.8 ± 25.4 | 0.045 | 0.980 |
mfERG-A2, nV/deg2, ± SD | 35.9 ± 9.8 | 40.1 ± 9 | 40.5 ± 8.4 | 0.031 | 0.782 |
mfERG-A3, nV/deg2, ± SD | 24.7 ± 4.3 | 25.5 ± 5.2 | 25 ± 3.2 | 0.610 | 0.782 |
mfERG-A4, nV/deg2, ± SD | 16.3 ± 2.7 | 16.4 ± 3.2 | 17 ± 2.9 | 0.784 | 0.205 |
mfERG-A5, nV/deg2, ± SD | 12.4 ± 2.1 | 12.3 ± 2.3 | 12.7 ± 2.5 | 0.814 | 0.642 |
mfERG-IT1, ms, ± SD | 41.5 ± 5.1 | 42.3 ± 5.2 | 44.4 ± 2.9 | 0.284 | 0.208 |
mfERG-IT2, ms, ± SD | 39.7 ± 2 | 38.2 ± 1.7 | 39.4 ± 1.5 | 0.017 | 0.081 |
mfERG-IT3, ms, ± SD | 37.4 ± 1 | 37.1 ± 1.1 | 37.2 ± 1.1 | 0.071 | 0.592 |
mfERG-IT4, ms, ± SD | 37 ± 1.1 | 36.8 ± 1.2 | 37 ± 1.1 | 0.098 | 0.342 |
mfERG-IT5, ms, ± SD | 37.6 ± 1.1 | 37.5 ± 1.2 | 37.7 ± 1.4 | 0.595 | 0.125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiraly, P.; Habjan, M.Š.; Smrekar, J.; Mekjavić, P.J. Functional Outcomes and Safety Profile of Trans-Foveal Subthreshold Micropulse Laser in Persistent Central Serous Chorioretinopathy. Life 2023, 13, 1194. https://doi.org/10.3390/life13051194
Kiraly P, Habjan MŠ, Smrekar J, Mekjavić PJ. Functional Outcomes and Safety Profile of Trans-Foveal Subthreshold Micropulse Laser in Persistent Central Serous Chorioretinopathy. Life. 2023; 13(5):1194. https://doi.org/10.3390/life13051194
Chicago/Turabian StyleKiraly, Peter, Maja Šuštar Habjan, Jaka Smrekar, and Polona Jaki Mekjavić. 2023. "Functional Outcomes and Safety Profile of Trans-Foveal Subthreshold Micropulse Laser in Persistent Central Serous Chorioretinopathy" Life 13, no. 5: 1194. https://doi.org/10.3390/life13051194
APA StyleKiraly, P., Habjan, M. Š., Smrekar, J., & Mekjavić, P. J. (2023). Functional Outcomes and Safety Profile of Trans-Foveal Subthreshold Micropulse Laser in Persistent Central Serous Chorioretinopathy. Life, 13(5), 1194. https://doi.org/10.3390/life13051194