Effects of Foot-Toe Orthoses on Moment and Range of Motion of Knee Joint in Individuals with Hallux Valgus
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Instrumentation and Data Collection
2.3. Experimental Procedure
2.4. Statistical Analysis
3. Results
3.1. Three-Dimensional Kinetic Results of the Knee Joint
3.2. Three-Dimensional Kinematic Results of the Knee Joint
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seki, H.; Miura, A.; Sato, N.; Yuda, J.; Shimauchi, T. Correlation between degree of hallux valgus and kinematics in classical ballet: A pilot study. PLoS ONE 2020, 15, e0231015. [Google Scholar] [CrossRef]
- Steinberg, N.; Siev-Ner, I.; Zeev, A.; Dar, G. The association between hallux valgus and proximal joint alignment in young female dancers. Int. J. Sports Med. 2015, 36, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Nix, S.E.; Vicenzino, B.T.; Collins, N.J.; Smith, M.D. Characteristics of foot structure and footwear associated with hallux valgus: A systematic review. Osteoarthr. Cartil. 2012, 20, 1059–1074. [Google Scholar] [CrossRef] [PubMed]
- Doty, J.F.; Alvarez, R.G.; Ervin, T.B.; Heard, A.; Gilbreath, J.; Richardson, N.S. Biomechanical evaluation of custom foot orthoses for hallux valgus deformity. J. Foot Ankle Surg. 2015, 54, 852–855. [Google Scholar] [CrossRef] [PubMed]
- Ohi, H.; Iijima, H.; Aoyama, T.; Kaneda, E.; Ohi, K.; Abe, K. Association of frontal plane knee alignment with foot posture in patients with medialknee osteoarthritis. BMC Musculoskelet. Disord. 2017, 18, 246. [Google Scholar] [CrossRef]
- León-Muñoz, V.J.; Manca, S.; López-López, M.; Martínez-Martínez, F.; Santonja-Medina, F. Coronal and axial alignment relationship in Caucasian patients with osteoarthritis of the knee. Sci. Rep. 2021, 11, 7836. [Google Scholar] [CrossRef]
- Golightly, Y.M.; Hannan, M.T.; Dufour, A.B.; Renner, J.B.; Jordan, J.M. Factors associated with hallux valgus in a community-based cross-sectional study of adults with and without osteoarthritis. Arthritis Care Res. 2015, 67, 791–798. [Google Scholar] [CrossRef]
- Guler, H.; Karazincir, S.; Turhanoglu, A.D.; Sahin, G.; Balci, A.; Ozer, C. Effect of coexisting foot deformity on disability in women with knee osteoarthritis. J. Am. Podiatr. Med. Assoc. 2009, 99, 23–27. [Google Scholar] [CrossRef]
- Kaya, D.; Atay, O.A.; Callaghan, M.J.; Cil, A.; Cağlar, O.; Citaker, S.; Yuksel, I.; Doral, M.N. Hallux valgus in patients with patellofemoral pain syndrome. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 1364–1367. [Google Scholar] [CrossRef]
- Ozgüçlü, E.; Kiliç, E.; Kaymak, B. A knee osteoarthritis connected with hallux valgus-related pes planus. J. Biomech. 2008, 41, 3523–3524. [Google Scholar] [CrossRef]
- Deschamps, K.; Birch, I.; Desloovere, K.; Matricali, G.A. The impact of hallux valgus on foot kinematics: A cross-sectional, comparative study. Gait Posture 2010, 32, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Richards, J.; Lidtke, R.H.; Trede, R. Characteristics of clinical measurements between biomechanical responders and non-responders to a shoe designed for knee osteoarthritis. Gait Posture 2018, 59, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Inçel, N.A.; Genc, H.; Yorgancioglu, Z.R.; Erdem, H.R. Relation between hallux valgus deformity and lumbar and lower extremity biomechanics. Kaohsiung J. Med. Sci. 2002, 18, 329–333. [Google Scholar] [PubMed]
- Menz, H.B.; Roddy, E.; Thomas, E.; Croft, P.R. Impact of hallux valgus severity on general and foot-specific health-related quality of life. Arthritis Care Res. 2011, 63, 396–404. [Google Scholar]
- Fotoohabadi, M.; Spink, M.J.; Menz, H.B. Relationship between lower limb muscle strength and hallux valgus severity in older people. Foot 2021, 46, 101751. [Google Scholar] [CrossRef]
- Steinberg, N.; Finestone, A.; Noff, M.; Zeev, A.; Dar, G. Relationship between lower extremity alignment and hallux valgus in women. J. Athl. Train. 2013, 48, 118–123. [Google Scholar] [CrossRef]
- Svoboda, Z.; Honzikova, L.; Janura, M.; Vidal, T.; Martinaskova, E. Kinematic gait analysis in children with valgus deformity of the hindfoot. Acta Bioeng. Biomech. 2014, 16, 89–93. [Google Scholar]
- Canseco, K.; Long, J.; Smedberg, T.; Tarima, S.; Marks, R.M.; Harris, G.F. Multisegmental foot and ankle motion analysis after hallux valgus surgery. Foot Ankle Int. 2012, 33, 141–147. [Google Scholar] [CrossRef]
- Shih, K.S.; Chien, H.L.; Lu, T.W.; Chang, C.F.; Kuo, C.C. Gait changes in individuals with bilateral hallux valgus reduce first metatarsophalangeal loading but increase knee abductor moments. Gait Posture 2014, 40, 38–42. [Google Scholar] [CrossRef]
- Biz, C.; Crimì, A.; Fantoni, I.; Tagliapietra, J.; Ruggieri, P. Functional and Radiographic Outcomes of Minimally Invasive Intramedullary Nail Device (MIIND) for Moderate to Severe Hallux Valgus. Foot Ankle Int. 2021, 42, 409–424. [Google Scholar] [CrossRef]
- Kwan, M.Y.; Yick, K.L.; Yip, J.; Tse, C.Y. Hallux valgus orthosis characteristics and effectiveness: A systematic review with meta-analysis. BMJ Open 2021, 11, e047273. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y. Effects of Hallux Valgus Orthoses on Ground Reaction Force using 3D Motion Analysis in Individuals with Hallux Valgus Deformity. Phys. Ther. Korea 2020, 27, 227–232. [Google Scholar] [CrossRef]
- Nix, S.E.; Vicenzino, B.T.; Collins, N.F.; Smith, M.D. Gait parameters associated with hallux valgus: A systematic review. J. Foot Ankle Res. 2013, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.D.; Ghoussayni, S.N.; Ewins, D.J.; Kent, J.A. A six degrees-of-freedom marker set for gait analysis: Repeatability and comparison with a modified Helen Hayes set. Gait Posture 2009, 30, 173–180. [Google Scholar] [CrossRef]
- Xiang, L.; Mei, Q.; Wang, A.; Fernandez, J.; Gu, Y. Gait biomechanics evaluation of the treatment effects for hallux valgus patients: A systematic review and meta-analysis. Gait Posture 2022, 94, 67–78. [Google Scholar] [CrossRef]
- Wong, D.W.; Cheung, J.C.; Zhao, J.G.; Ni, M.; Yang, Z.Y. Forefoot Function after Hallux Valgus Surgery: A Systematic Review and Meta-Analysis on Plantar Load Measurement. J. Clin. Med. 2023, 9, 1384. [Google Scholar] [CrossRef]
- Atbaşı, Z.; Erdem, Y.; Kose, O.; Demiralp, B.; Ilkbahar, S.; Tekin, H.O. Relationship Between Hallux Valgus and Pes Planus: Real or Fiction? J. Foot Ankle Surg. 2020, 59, 513–517. [Google Scholar] [CrossRef]
- Nayak, M.; Kumar, V.; Kanojiya, G.; Mellon, S.; Srivastava, D.N.; Pandit, H.; Malhotra, R. A radiographic analysis of alignment in 966 lower extremities with knee pain and its association with osteoarthritis in Indian population. J. Orthop. 2019, 17, 207–212. [Google Scholar] [CrossRef]
- Suh, D.H.; Kim, H.J.; Park, J.H.; Park, Y.H.; Koo, B.M.; Choi, G.W. Relationship between Hallux Valgus and Pes Planus in Adult Patients. J. Foot Ankle Surg. 2021, 60, 297–301. [Google Scholar] [CrossRef]
- Sharma, L. The role of varus and valgus alignment in knee osteoarthritis. Arthritis Rheum. 2007, 56, 1044–1047. [Google Scholar] [CrossRef]
- Hofmann, U.K.; Götze, M.; Wiesenreiter, K.; Müller, O.; Wünschel, M.; Mittag, F. Transfer of plantar pressure from the medial to the central forefoot in patients with hallux valgus. BMC Musculoskelet. Disord. 2019, 20, 149. [Google Scholar] [CrossRef] [PubMed]
- Mickle, K.J.; Munro, B.J.; Lord, S.R.; Menz, H.B.; Steele, J.R. Gait, balance and plantar pressures in older people with toe deformities. Gait Posture 2011, 34, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Kia, C.; Yoshida, R.; Cote, M.; DiVenere, J.; Geaney, L.E. First Metatarsophalangeal Contact Properties Following Proximal Opening Wedge and Scarf Osteotomies for Hallux Valgus Correction: A Biomechanical Study. Foot Ankle Int. 2017, 38, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Ezzatvar, Y.; López-Bueno, L.; Fuentes-Aparicio, L.; Dueñas, L. Prevalence and Predisposing Factors for Recurrence after Hallux Valgus Surgery: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 5753. [Google Scholar] [CrossRef] [PubMed]
- Baghaei Roodsari, R.; Esteki, A.; Aminian, G.; Ebrahimi, I.; Mousavi, M.E.; Majdoleslami, B.; Bahramian, F. The effect of orthotic devices on knee adduction moment, pain and function in medial compartment knee osteoarthritis: A literature review. Disabil. Rehabil. Assist. Technol. 2017, 12, 441–449. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Mean ± Standard Deviation |
---|---|
Gender | Male: 8, female: 16 |
Age (years) | 41.2 ± 10.1 |
Height (cm) | 162.3 ± 8.5 |
Weight (kg) | 60.0 ± 8.8 |
Gait speed (m/s) | WTO: 1.29 ± 0.13, HPO: 1.29 ± 0.13, SSO: 1.28 ± 0.12 |
Step length (m) | WTO: 1.31 ± 0.09, HPO: 1.33 ± 0.10, SSO: 1.32 ± 0.09 |
Step width (m) | WTO: 0.12 ± 0.03, HPO: 0.11 ± 0.03, SSO: 0.12 ± 0.02 |
Knee Moment Values (Nm/kg) | Level | F | p Value |
---|---|---|---|
Flexion moment 1st peak 0–25% stance | Orthosis conditions | 5.909 | 0.006 * |
Both knee sides | 0.052 | 0.822 | |
Interaction effect | 2.401 | 0.139 | |
Extension moment peak 0–50% stance | Orthosis conditions | 0.732 | 0.488 |
Both knee sides | 0.236 | 0.633 | |
Interaction effect | 0.103 | 0.752 | |
Elexion moment 2nd peak 50–100% stance | Orthosis conditions | 0.280 | 0.757 |
Both knee sides | 1.274 | 0.269 | |
Interaction effect | 0.885 | 0.427 | |
Adduction moment 1st peak 0–25% stance | Orthosis conditions | 6.570 | 0.004 * |
Both knee sides | 0.070 | 0.794 | |
Interaction effect | 0.705 | 0.412 | |
Adduction moment 25–75% stance | Orthosis conditions | 0.525 | 0.596 |
Both knee sides | 0.009 | 0.926 | |
Interaction effect | 0.815 | 0.378 | |
Adduction moment 2nd peak 50–100% stance | Orthosis conditions | 0.484 | 0.621 |
Both knee sides | 1.857 | 0.111 | |
Interaction effect | 1.369 | 0.257 | |
External rotation moment peak 0–50% stance | Orthosis conditions | 0.817 | 0.450 |
Both knee sides | 2.333 | 0.102 | |
Interaction effect | 2.173 | 0.124 | |
Internal rotation moment peak 50–100% stance | Orthosis conditions | 0.518 | 0.600 |
Both knee sides | 0.779 | 0.389 | |
Interaction effect | 1.333 | 0.281 | |
Interaction effect | 2.753 | 0.076 |
Knee Moment (Nm/kg) | WTO | HPO | SSO | 95% CI |
---|---|---|---|---|
Flexor moment 1st peak 0–25% stance | 0.17 ± 0.11 * | 0.22 ± 0.12 | 0.19 ± 0.12 | 0.02 to 0.08 |
Extensor moment peak 0–50% stance | −0.73 ± 0.33 | −0.73 ± 0.32 | −0.71 ± 0.32 | −0.63 to 0.81 |
Flexor moment 2nd peak 50–100% stance | 0.13 ± 0.16 | 0.14 ± 0.14 | 0.14 ± 0.15 | −0.57 to 0.66 |
Adductor moment 1st peak 0–25% stance | −0.40 ± 0.18 * | −0.34 ± 0.16 | −0.39 ± 0.17 | 0.03 to 0.12 |
Adductor moment 25–75% stance | −0.21 ± 0.14 | −0.21 ± 0.12 | −0.20 ± 0.14 | −0.83 to 0.70 |
Adductor moment 2nd peak 50–100% stance | −0.31 ± 0.16 | −0.31 ± 0.16 | −0.30 ± 0.17 | −0.93 to 0.82 |
External rotator moment peak 0–50% stance | 0.04 ± 0.04 | 0.04 ± 0.05 | 0.04 ± 0.04 | −0.71 to 0.60 |
Internal rotator moment peak 50–100% stance | −0.17 ± 0.09 | −0.17 ± 0.08 | −0.16 ± 0.08 | −0.99 to 0.83 |
Knee Motion (°) | Level | F | p Value |
---|---|---|---|
Maximal extension | Orthosis conditions | 1.133 | 0.332 |
Both knee sides | 1.117 | 0.309 | |
Interaction effect | 0.381 | 0.686 | |
Maximal flexion | Orthosis conditions | 0.989 | 0.382 |
Both knee sides | 0.997 | 0.330 | |
Interaction effect | 0.183 | 0.834 | |
Total range in sagittal plane | Orthosis conditions | 2.119 | 0.133 |
Both knee sides | 0.000 | 0.996 | |
Interaction effect | 0.816 | 0.449 | |
Maximal adduction | Orthosis conditions | 1.170 | 0.321 |
Both knee sides | 2.944 | 0.102 | |
Interaction effect | 0.595 | 0.557 | |
Maximal abduction | Orthosis conditions | 0.318 | 0.792 |
Both knee sides | 1.270 | 0.273 | |
Interaction effect | 0.726 | 0.490 | |
Total range in frontal plane | Orthosis conditions | 0.761 | 0.474 |
Both knee sides | 0.012 | 0.913 | |
Interaction effect | 1.088 | 0.347 | |
Maximal internal rotation | Orthosis conditions | 0.518 | 0.600 |
Both knee sides | 2.888 | 0.122 | |
Interaction effect | 1.782 | 0.181 | |
Maximal external rotation | Orthosis conditions | 6.791 | 0.003 * |
Both knee sides | 2.008 | 0.147 | |
Interaction effect | 2.080 | 0.138 | |
Total range in transverse plane | Orthosis conditions | 2.356 | 0.108 |
Both knee sides | 0.509 | 0.484 | |
Interaction effect | 2.753 | 0.076 |
Knee Motion (°) | WTO | HPO | SSO | 95% CI |
---|---|---|---|---|
Maximal extension | 3.63 ± 2.59 | 3.77 ± 2.50 | 4.11 ± 3.06 | −0.33 to 1.41 |
Maximal flexion | 59.68 ± 6.78 | 60.24 ± 7.18 | 60.29 ± 7.70 | −0.49 to 0.97 |
Total range in sagittal plane | 63.31 ± 6.55 | 64.01 ± 7.07 | 64.33 ± 7.19 | −0.57 to 0.66 |
Maximal adduction | 2.46 ± 1.49 | 2.62 ± 1.41 | 2.53 ± 1.55 | −0.19 to 0.77 |
Maximal abduction | 5.14 ± 2.99 | 5.39 ± 3.65 | 5.32 ± 2.67 | −0.53 to 1.20 |
Total range in frontal plane | 7.60 ± 3.03 | 8.01 ± 3.88 | 7.86 ± 2.90 | −0.85 to 1.04 |
Maximal internal rotation | 16.91 ± 6.07 | 16.58 ± 5.95 | 16.88 ± 6.35 | −1.00 to 0.99 |
Maximal external rotation | 2.48 ± 2.82 * | 1.94 ± 2.46 | 2.24 ± 3.10 | −0.94 to −0.31 |
Total range in transverse plane | 19.39 ± 6.33 | 18.53 ± 5.96 | 19.13 ± 6.97 | −0.55 to 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y. Effects of Foot-Toe Orthoses on Moment and Range of Motion of Knee Joint in Individuals with Hallux Valgus. Life 2023, 13, 1162. https://doi.org/10.3390/life13051162
Kim Y. Effects of Foot-Toe Orthoses on Moment and Range of Motion of Knee Joint in Individuals with Hallux Valgus. Life. 2023; 13(5):1162. https://doi.org/10.3390/life13051162
Chicago/Turabian StyleKim, Yongwook. 2023. "Effects of Foot-Toe Orthoses on Moment and Range of Motion of Knee Joint in Individuals with Hallux Valgus" Life 13, no. 5: 1162. https://doi.org/10.3390/life13051162
APA StyleKim, Y. (2023). Effects of Foot-Toe Orthoses on Moment and Range of Motion of Knee Joint in Individuals with Hallux Valgus. Life, 13(5), 1162. https://doi.org/10.3390/life13051162