Clinical and Epidemiological Characteristics of Patients with COVID-19 Admitted to the Intensive Care Unit: A Two-Year Retrospective Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedures and Data Collection
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Croda, J.H.R.; Garcia, L.P. Resposta imediata da Vigilância em Saúde à epidemia da COVID-19. Epidemiol. E Serviços De Saúde 2020, 29, e2020002. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Frota, A.X.; Vieira, M.C.; Soares, C.C.S.; da Silva, P.S.; da Silva, G.M.S.; de Souza Nogueira Sardinha Mendes, F.; Mazzoli-Rocha, F.; Veloso, H.H.; da Costa, A.D.; da Cruz Lamas, C.; et al. Functional capacity and rehabilitation strategies in COVID-19 patients: Current knowledge and challenges. Rev. Da Soc. Bras. De Med. Trop. 2021, 54, e07892020. [Google Scholar] [CrossRef]
- Tosta, E. Transmission of severe acute respiratory syndrome coronavirus 2 through asymptomatic carriers and aerosols: A major public health challenge. Rev. Soc. Bras. Med. Trop. 2020, 53, e20200669. [Google Scholar] [CrossRef]
- Teich, V.D.; Klajner, S.; de Almeida, F.A.S.; Dantas, A.C.B.; Laselva, C.R.; Torritesi, M.G.; Canero, T.R.; Berwanger, O.; Rizzo, L.V.; Reis, E.P.; et al. Epidemiologic and clinical features of patients with COVID-19 in Brazil. einstein 2020, 18, eAO6022. Available online: https://www.scielo.br/pdf/eins/v18/pt_2317-6385-eins-18-eAO6022.pdf (accessed on 1 February 2020). [CrossRef]
- Ylikoski, J.; Lehtimäki, J.; Pääkkönen, R.; Mäkitie, A. Prevention and Treatment of Life-Threatening COVID-19 May Be Possible with Oxygen Treatment. Life 2022, 12, 754. [Google Scholar] [CrossRef]
- Pelosi, P.; Tonelli, R.; Torregiani, C.; Baratella, E.; Confalonieri, M.; Battaglini, D.; Marchioni, A.; Confalonieri, P.; Clini, E.; Salton, F.; et al. Different Methods to Improve the Monitoring of Noninvasive Respiratory Support of Patients with Severe Pneumonia/ARDS Due to COVID-19: An Update. J. Clin. Med. 2022, 11, 1704. [Google Scholar] [CrossRef]
- Skopljanac, I.; Ivelja, M.P.; Mrsic, D.B.; Barcot, O.; Jelicic, I.; Domjanovic, J.; Dolic, K. Can Lung Imaging Scores and Clinical Variables Predict Severe Course and Fatal Outcome in COVID-19 Pneumonia Patients? A Single-Center Observational Study. Life 2022, 12, 735. [Google Scholar] [CrossRef]
- Baratella, E.; Ruaro, B.; Marrocchio, C.; Starvaggi, N.; Salton, F.; Giudici, F.; Quaia, E.; Confalonieri, M.; Cova, M.A. Interstitial Lung Disease at High Resolution CT after SARS-CoV-2-Related Acute Respiratory Distress Syndrome According to Pulmonary Segmental Anatomy. J. Clin. Med. 2021, 10, 3985. [Google Scholar] [CrossRef]
- Maramattom, B.V.; Wijdicks, E.F.M. Acute neuromuscular weakness in the intensive care unit. Crit. Care Med. 2006, 34, 2835–2841. [Google Scholar] [CrossRef] [Green Version]
- Khan, J.; Harrison, T.B.; Rich, M.M. Mechanisms of Neuromuscular Dysfunction in Critical Illness. Crit. Care Clin. 2008, 24, 165–177. [Google Scholar] [CrossRef] [Green Version]
- Aquino, Y.S.J.; Rogers, W.A.; Scully, J.L.; Magrabi, F.; Carter, S.M. Ethical Guidance for Hard Decisions: A Critical Review of Early International COVID-19 ICU Triage Guidelines. Health Care Anal. 2022, 30, 163–195. [Google Scholar] [CrossRef]
- Truong, A.D.; Fan, E.; Brower, R.G.; Needham, D.M. Bench-to-bedside review: Mobilizing patients in the intensive care unit—from pathophysiology to clinical trials. Crit. Care 2009, 13, 216. [Google Scholar] [CrossRef] [Green Version]
- Sheehy, L.M. Considerations for Postacute Rehabilitation for Survivors of COVID-19. JMIR Public Health Surveill. 2020, 6, e19462. [Google Scholar] [CrossRef]
- Bonorino, K.C.; Cani, K.C. Early mobilization in the time of COVID-19. Rev. Bras. De Ter. Intensiv. 2020, 32, 484–486. [Google Scholar] [CrossRef]
- Kröönström, L.A.; Krause, J.; Larsson, S.B.; Sigström, R.; Sunnerhagen, K.S. Long-term self-reported health and disability after COVID-19 in public employees. BMC Public Health 2022, 21, 2–11. [Google Scholar] [CrossRef]
- Parry, S.M.; Chapple, L.-A.S.; Mourtzakis, M. Exploring the Potential Effectiveness of Combining Optimal Nutrition With Electrical Stimulation to Maintain Muscle Health in Critical Illness: A Narrative Review. Nutr. Clin. Pr. 2018, 33, 772–789. [Google Scholar] [CrossRef]
- Hodgson, C.L.; Higgins, A.M.; Bailey, M.J.; Mather, A.M.; Beach, L.; Bellomo, R.; Bissett, B.; Boden, I.J.; Bradley, S.; Burrell, A.; et al. The impact of COVID-19 critical illness on new disability, functional outcomes and return to work at 6 months: A prospective cohort study. Crit. Care 2021, 25, 1–12. [Google Scholar] [CrossRef]
- Spruit, M.A.; Holland, A.E.; Singh, S.J.; Tonia, T.; Wilson, K.C.; Troosters, T. COVID-19: Interim Guidance on Rehabilitation in the Hospital and Post-Hospital Phase from a European Respiratory Society and American Thoracic Society-coordinated International Task Force. Eur. Respir. J. 2020, 56, 2002197. [Google Scholar] [CrossRef]
- De Lorenzo, R.; Conte, C.; Lanzani, C.; Benedetti, F.; Roveri, L.; Mazza, M.; Brioni, E.; Giacalone, G.; Canti, V.; D’Amico, M.; et al. Residual clinical damage after COVID-19: A retrospective and prospective observational cohort study. Adrish M, editor. PLoS ONE 2020, 15, e0239570. [Google Scholar] [CrossRef]
- WHO. Clinical Management of Severe Acute Respiratory Infection When Novel Coronavirus (2019-nCoV) Infection is Suspected; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Gershengorn, H.B.; Hu, Y.; Chen, J.-T.; Hsieh, S.J.; Dong, J.; Gong, M.N.; Chan, C.W. The Impact of High-Flow Nasal Cannula Use on Patient Mortality and the Availability of Mechanical Ventilators in COVID-19. Ann. Am. Thorac. Soc. 2021, 18, 623–631. [Google Scholar] [CrossRef]
- Ferreyro, B.; Angriman, F.; Munshi, L.; Del Sorbo, L.; Ferguson, N.; Rochwerg, B.; Ryu, M.; Saskin, R.; Wunsch, H.; da Costa, B.; et al. Association of noninvasive oxygenation strategies with all-cause mortality in adults with acute hypoxemic respiratory failure: A systematic review and meta-analysis. JAMA 2020, 24, 57–67. [Google Scholar] [CrossRef]
- Connolly, B.; Perkins, G.D.; Ji, C.; Couper, K.; Lall, R.; Baillie, J.K.; Bradley, J.M.; Dark, P.; Dave, C.; De Soyza, A.; et al. RCT Abstract—An adaptive randomized controlled trial of non-invasive respiratory strategies in acute respiratory failure patients with COVID-19. medRxiv 2021, 4, 2–18. [Google Scholar] [CrossRef]
- Weerakkody, S.; Arina, P.; Glenister, J.; Cotterell, S.; Boscaini-Gilroy, G.; Singer, M.; Montgomery, H.E. Non-invasive respiratory support in the management of acute COVID-19 pneumonia: Considerations for clinical practice and priorities for research. Lancet Respir. Med. 2021, 10, 199–213, Erratum in Lancet Respir. Med. 2021, 9, e114. [Google Scholar] [CrossRef]
- Apigo, M.; Schechtman, J.; Dhliwayo, N.; Al Tameemi, M.; Gazmuri, R.J. Development of a work of breathing scale and monitoring need of intubation in COVID-19 pneumonia. Crit. Care 2020, 24, 477. [Google Scholar] [CrossRef]
- Liu, L.; Xie, J.; Wu, W.; Chen, H.; Li, S.; He, H.; Yu, Y.; Hu, M.; Li, J.; Zheng, R.; et al. A simple nomogram for predicting failure of non-invasive respiratory strategies in adults with COVID-19: A retrospective multicentre study. Lancet Digit. Health 2021, 3, e166–e174. [Google Scholar] [CrossRef]
- Pecly, I.M.D.; Azevedo, R.R.; Muxfeldt, B.; Botelho, B.G.; Albuquerque, G.G.; Diniz, A.P.H.P.; Silva, R.; Rodrigues, C.I.S. COVID-19 e lesão renal aguda. Braz. J. Nephrol. (J. Bras. Nefrol.) 2021, 43, 551–571. [Google Scholar] [CrossRef]
- Carlson, N.; Nelveg-Kristensen, K.; Ballegaard, E.F.; Feldt-Rasmussen, B.; Hornum, M.; Kamper, A.; Gislason, G.; Torp-Pedersen, C. Increased vulnerability to COVID-19 in chronic kidney disease. J. Intern. Med. 2021, 290, 166–178. [Google Scholar] [CrossRef]
- Siegel, S.; Castellan, N.J., Jr. Estatísticas Não Paramétrica Para Ciências do Comportamento; 2ª edição: Porto Alegre, Brazil, 2006. [Google Scholar]
- World Health Organization. WHO COVID-19 Dashboard; World Health Organization: Geneva, Switzerland, 2022; Available online: https://covid19.who.int/ (accessed on 23 February 2022).
- Michelon, C.M. Principais variantes do SARS-CoV-2 notificadas no Brasil. Rev. Bras. De Análises Clínicas 2021, 53, 109–116. [Google Scholar]
- Arnold, C.G.; Libby, A.; Vest, A.; Hopkinson, A.; Monte, A.A. Immune mechanisms associated with sex-based differences in severe COVID-19 clinical outcomes. Biol. Sex Differ. 2022, 13, 1–5. [Google Scholar] [CrossRef]
- Gomez, J.M.D.; Du-Fay-De-Lavallaz, J.M.; Fugar, S.; Sarau, A.; Simmons, J.A.; Clark, B.; Sanghani, R.M.; Aggarwal, N.T.; Williams, K.A.; Doukky, R.; et al. Sex Differences in Coronavirus Disease 2019 (COVID-19) Hospitalization and Mortality. J. Women’s Health 2021, 30, 646–653. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus—Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- O’Driscoll, M.; Dos Santos, G.R.; Wang, L.; Cummings, D.A.T.; Azman, A.S.; Paireau, J.; Fontanet, A.; Cauchemez, S.; Salje, H. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 2020, 590, 1–9. [Google Scholar] [CrossRef]
- Quintairos, A.; Rezende EA de, C.; Soares, M.; Lobo, S.M.A.; Salluh, J.I.F. Utilização de um registro nacional de terapia intensiva baseado em nuvem para vigilância, pesquisa e avaliação do perfil dos casos de COVID-19 no Brasil. Rev. Bras. De Ter. Intensiv. 2022, 34, 205–209. [Google Scholar] [CrossRef]
- Bastos, L.S.; Ranzani, O.T.; Souza, T.M.L.; Hamacher, S.; A Bozza, F. COVID-19 hospital admissions: Brazil’s first and second waves compared. Lancet Respir. Med. 2021, 9, e82–e83. [Google Scholar] [CrossRef]
- Lim, Z.J.; Subramaniam, A.; Reddy, M.P.; Blecher, G.; Kadam, U.; Afroz, A.; Billah, B.; Ashwin, S.; Kubicki, M.; Bilotta, F.; et al. Case Fatality Rates for Patients with COVID-19 Requiring Invasive Mechanical Ventilation. A Meta-analysis. Am. J. Respir. Crit. Care Med. 2021, 203, 54–66. [Google Scholar] [CrossRef]
- Chang, R.; Elhusseiny, K.M.; Yeh, Y.-C.; Sun, W.-Z. COVID-19 ICU and mechanical ventilation patient characteristics and outcomes—A systematic review and meta-analysis. PLoS ONE 2021, 16, e0246318. [Google Scholar] [CrossRef]
- Lin, L.; Wang, X.; Ren, J.; Sun, Y.; Yu, R.; Li, K.; Zheng, L.; Yang, J. Risk factors and prognosis for COVID-19-induced acute kidney injury: A meta-analysis. BMJ Open 2020, 10, e042573. [Google Scholar] [CrossRef]
- Kurtz, P.; Bastos, L.; Dantas, L.; Zampieri, F.; Soares, M.; Hamacher, S.; Salluh, J.; Bozza, F. Evolving changes in mortality of 13,301 critically ill adult patients with COVID-19 over 8 months. Intensive Care Med. 2021, 47, 538–548. [Google Scholar] [CrossRef]
- Marinelli, E.; Busardò, F.P.; Zaami, S. Intensive and pharmacological care in times of COVID-19: A “special ethics” for emergency? BMC Med. Ethics 2020, 21, 117. [Google Scholar] [CrossRef]
Variables | Mar.–May 2020 | Jun.–Aug. 2020 | Sept.–Nov. 2020 | Mar.–May 2021 | Jun.–Aug. 2021 | Sept.–Nov. 2021 |
---|---|---|---|---|---|---|
Hospitalizations (n) | 18,423 | 29,042 | 20,646 | 60,322 | 31,178 | 7350 |
Hospital discharges (n) | 18,228 | 28,423 | 20,279 | 58,529 | 29,869 | 6016 |
Male (%) | 60.1 | 58.9 | 59.6 | 59.1 | 60.8 | 55.4 |
Female (%) | 39.9 | 41.1 | 40.4 | 40.9 | 39.2 | 44.6 |
Age (Years) | Mar.–May 2020 (%) | Mar.–May 2021 (%) | Jun.–Aug. 2020 (%) | Jun.–Aug. 2021 (%) | Sept.–Nov. 2020 (%) | Sept.–Nov. 2021 (%) |
---|---|---|---|---|---|---|
11–20 | 0.40 | 0.30 | 0.50 | 0.80 | 0.50 | 0.70 |
21–30 | 3.30 | 3.20 | 3.30 | 5.10 | 3.20 | 3.50 |
31–40 | 11.00 | 11.50 | 9.30 | 15.30 | 9.20 | 7.30 |
41–50 | 15.20 | 18.40 | 13.90 | 20.70 | 13.40 | 10.80 |
51–60 | 19.30 | 23.30 | 18.50 | 21.00 | 18.50 | 12.50 |
61–70 | 19.90 | 22.10 | 22.20 | 14.00 | 22.80 | 21.30 |
71–80 | 16.70 | 14.00 | 18.50 | 12.80 | 18.90 | 24.90 |
81–90 | 11.10 | 5.90 | 11.00 | 8.00 | 10.90 | 15.20 |
>90 | 3.10 | 1.30 | 2.60 | 2.30 | 2.40 | 3.90 |
Min | 0.40 | 0.30 | 0.50 | 0.80 | 0.50 | 0.70 |
Max | 19.9 | 23.3 | 22.2 | 21.0 | 22.8 | 24.9 |
Mean | 11.1 | 11.2 | 11.0 | 11.1 | 11.9 | 11.5 |
p * | 0.980 | 0.980 | 0.931 |
ICU Stay (Days) | Mar.–May 2020 (%) | Jun.–Aug. 2020 (%) | Sept.–Nov. 2020 (%) | Mar.–May 2021 (%) | Jun.–Aug. 2021 (%) | Sept.–Nov. 2021 (%) |
---|---|---|---|---|---|---|
>7 days | 50.9 | 49.5 | 50.1 | 57.4 | 54 | 52.7 |
>21 days | 17.1 | 15.1 | 15.6 | 16.6 | 16.5 | 15.6 |
Age (Years) | Mar.–May 2020 (%) | Mar.–May 2021 (%) | Jun.–Aug. 2020 (%) | Jun.–Aug. 2021 (%) | Sept.–Nov. 2020 (%) | Sept.–Nov. 2021 (%) |
---|---|---|---|---|---|---|
11–20 | 24.7 | 18.3 | 19.1 | 12.4 | 12.7 | 17.1 |
21–30 | 12.7 | 18.3 | 11.9 | 12.4 | 11.1 | 17.1 |
31–40 | 11 | 23 | 12.3 | 18.6 | 10.2 | 13 |
41–50 | 16.3 | 30.1 | 17.2 | 23.8 | 14 | 19 |
51–60 | 26.4 | 39.4 | 27.3 | 33.7 | 22.6 | 27 |
61–70 | 40 | 52.6 | 41.5 | 44.3 | 35.4 | 35.5 |
71–80 | 50 | 62.2 | 52.2 | 50.8 | 48.1 | 46 |
81–90 | 58 | 66 | 59.5 | 58.2 | 54.1 | 53 |
>90 | 61.2 | 64.3 | 61.9 | 58.1 | 57.7 | 58.7 |
Min | 11.0 | 18.3 | 12.0 | 12.4 | 11.0 | 18.3 |
Max | 61.2 | 66.0 | 61.9 | 58.2 | 61.2 | 66.0 |
Mean | 33.3 | 41.5 | 33.6 | 34.7 | 33.3 | 41.5 |
p * | 0.286 | 0.911 | 0.530 |
Quarters | 31–40 Year | 41–50 Year | 51–60 Year | 61–70 Year | 71–80 Year | 81–90 Year | >90 Year |
---|---|---|---|---|---|---|---|
Mar.–May 2020 (%) | 11.0 | 16.3 | 26.4 | 40.0 | 50.0 | 58.0 | 61.2 |
Jun.–Aug. 2020 (%) | 12.3 | 17.2 | 27.3 | 41.5 | 52.2 | 59.5 | 61.9 |
Sept.–Nov. 2020 (%) | 10.2 | 14.0 | 22.6 | 35.4 | 48.1 | 54.1 | 57.7 |
Dec.–Feb. 2020–2021 (%) | 14.8 | 19.3 | 28.5 | 42.1 | 52.2 | 59.0 | 62.0 |
Mar.–May 2021 (%) | 23.0 | 30.1 | 39.4 | 52.6 | 62.2 | 66.0 | 64.3 |
Jun.–Aug. 2021 (%) | 18.6 | 23.8 | 33.7 | 44.3 | 50.8 | 58.2 | 58.1 |
Sept.–Nov. 2021 (%) | 13.0 | 19.0 | 27.0 | 35.5 | 46.0 | 53.0 | 58.7 |
Mean | 14.7 | 19.9 | 29.2 | 41.6 | 51.6 | 58.1 | 60.5 |
p | p < 0.001 * |
Age (Years) | Mar.–May 2020 (%) | Mar.–May 2021 (%) | Jun.–Aug. 2020 (%) | Jun.–Aug. 2021 (%) | Sept.–Nov. 2020 (%) | Sept.–Nov. 2021 (%) |
---|---|---|---|---|---|---|
11–20 | 10.6 | 4.5 | 2.3 | 1.4 | 1.3 | 3.4 |
21–30 | 2.1 | 3.6 | 1.7 | 2.5 | 1.5 | 1.2 |
31–40 | 1.2 | 3.2 | 1.6 | 2.7 | 0.9 | 3.4 |
41–50 | 1.4 | 5.6 | 2.5 | 3.5 | 2.3 | 4.0 |
51–60 | 4.0 | 7.7 | 4.5 | 6.0 | 3.8 | 6.9 |
61–70 | 7.6 | 14.1 | 10.0 | 10.6 | 6.6 | 7.8 |
71–80 | 13.7 | 21.9 | 16.8 | 15.6 | 15.7 | 15.5 |
81–90 | 21.2 | 34.4 | 27.8 | 30.0 | 24.0 | 25.8 |
>90 | 38.8 | 45.1 | 41.8 | 42.1 | 37.0 | 41.8 |
Min | 11.2 | 31.2 | 1.6 | 1.4 | 0.90 | 1.2 |
Max | 38.8 | 45.1 | 41.8 | 42.1 | 37.0 | 41.8 |
Mean | 11.8 | 15.7 | 12.1 | 12.7 | 10.3 | 12.2 |
p * | 0.385 | 0.683 | 0.474 |
Age (Years) | Mar.–May 2020 (%) | Mar.–May 2021 (%) | Jun.–Aug. 2020 (%) | Jun.–Aug. 2021 (%) | Sept.–Nov. 2020 (%) | Sept.–Nov. 2021 (%) |
---|---|---|---|---|---|---|
11–20 | 44.1 | 36.5 | 42.2 | 30.7 | 44.4 | 50.0 |
21–30 | 36.5 | 47.7 | 38.3 | 37.5 | 44.7 | 40.7 |
31–40 | 31.6 | 46.5 | 38.8 | 42.9 | 43.3 | 43.6 |
41–50 | 38.8 | 52.8 | 44.3 | 48.9 | 44.0 | 52.6 |
51–60 | 50.3 | 61.5 | 53.5 | 59.1 | 53.0 | 61.8 |
61–70 | 61.1 | 72.6 | 66.2 | 69.5 | 64.8 | 70.6 |
71–80 | 71.8 | 81.7 | 76.3 | 79.4 | 75.5 | 81.0 |
81–90 | 81.2 | 87.8 | 84.8 | 88.3 | 84.3 | 88.2 |
>90 | 86.2 | 92.0 | 88.0 | 88.6 | 87.3 | 90.8 |
Min | 31.6 | 36.5 | 38.3 | 30.7 | 43.3 | 40.7 |
Max | 86.2 | 90.0 | 88.0 | 88.6 | 87.3 | 90.8 |
Mean | 55.7 | 64.3 | 59.1 | 60.4 | 60.1 | 64.3 |
p * | 0.267 | 0.863 | 0.730 |
Quarter | 11–20 Year | 21–30 Year | 31–40 Year | 41–50 Year | 51–60 Year | 61–70 Year | 71–80 Year | 81–90 Year | >90 Year |
---|---|---|---|---|---|---|---|---|---|
Mar.–May 2020 (%) | 44.1 | 36.5 | 31.6 | 38.8 | 50.3 | 61.1 | 71.8 | 81.2 | 86.2 |
Jun.–Aug. 2020 (%) | 42.0 | 38.3 | 38.8 | 44.3 | 53.5 | 66.2 | 76.3 | 84.8 | 88.0 |
Sept.–Nov. 2020 (%) | 44.4 | 44.7 | 43.3 | 44.0 | 53.0 | 64.8 | 75.5 | 84.3 | 87.3 |
Dec.–Feb. 2020–2021 (%) | 48.4 | 43.4 | 43.2 | 47.6 | 57.3 | 69.2 | 79.5 | 85.8 | 90.8 |
Mar.–May 2021 (%) | 36.5 | 47.7 | 46.5 | 52.8 | 61.5 | 72.6 | 81.7 | 87.8 | 92.0 |
Jun.–Aug. 2021 (%) | 30.7 | 37.5 | 42.9 | 48.9 | 59.1 | 69.5 | 79.4 | 88.3 | 88.6 |
Sept.–Nov. 2021 (%) | 50.0 | 40.7 | 43.6 | 52.6 | 61.8 | 70.6 | 81.0 | 88.2 | 90.8 |
Median | 44.1 | 40.7 | 43.2 | 47.6 | 57.3 | 69.2 | 79.4 | 85.8 | 88.6 |
Mean | 42.3 | 41.2 | 41.3 | 47.0 | 56.6 | 67.7 | 77.8 | 85.7 | 89.1 |
p | p < 0.001 * |
Age (Years) | Mar.–May 2020 (%) | Mar.–May 2021 (%) | Jun.–Aug. 2020 (%) | Jun.–Aug. 2021 (%) | Sept.–Nov. 2020 (%) | Sept.–Nov. 2021 (%) |
---|---|---|---|---|---|---|
11–20 | 77.8 | 45.5 | 50.0 | 66.7 | 0.0 | 100.0 |
21–30 | 41.7 | 64.2 | 34.2 | 57.7 | 55.6 | 43.8 |
31–4 | 47.5 | 66.3 | 49.7 | 61.0 | 66.1 | 59.1 |
41–50 | 48.6 | 67.9 | 59.1 | 64.6 | 56.0 | 53.4 |
51–60 | 60.4 | 76.0 | 65.0 | 72.3 | 63.1 | 67.9 |
61–70 | 66.9 | 81.2 | 74.3 | 74.9 | 74.5 | 68.2 |
71–80 | 77.7 | 86.1 | 81.0 | 85.4 | 85.4 | 84.7 |
81–90 | 85.4 | 88.7 | 86.1 | 89.0 | 88.1 | 88.4 |
>90 | 86.8 | 96.8 | 86.2 | 91.3 | 90.0 | 95.0 |
Min | 41.7 | 45.5 | 34.2 | 57.7 | 0.0 | 43.8 |
Max | 86.8 | 96.8 | 86.2 | 91.3 | 90.0 | 100.0 |
Mean | 65.8 | 74.7 | 59.1 | 73.6 | 64.3 | 73.4 |
p * | 0.340 | 0.321 | 0.604 |
Quarters | 11–20 Year | 21–30 Year | 31–40 Year | 41–50 Year | 51–60 Year | 61–70 Year | 71–80 Year | 81–90 Year | >90 Year |
---|---|---|---|---|---|---|---|---|---|
Mar.–May 2020 (%) | 77.8 | 41.7 | 47.5 | 48.6 | 60.4 | 66.9 | 77.7 | 85.4 | 86.8 |
Jun.–Aug. 2020 (%) | 50.0 | 34.20 | 49.7 | 59.1 | 65.0 | 74.3 | 81.0 | 86.1 | 86.1 |
Sept.–Nov. 2020 (%) | 0 | 55.6 | 66.1 | 56.0 | 63.1 | 74.5 | 85.4 | 88.1 | 90.0 |
Dec.–Feb. 2020–2021 (%) | 50.0 | 48.0 | 57.5 | 61.1 | 72.4 | 78.3 | 84.6 | 88.5 | 94.1 |
Mar.–May 2021 (%) | 45.5 | 64.2 | 66.3 | 67.9 | 76.0 | 81.200 | 86.1 | 88.7 | 96.8 |
Jun.–Aug. 2021 (%) | 66.7 | 57.7 | 61.0 | 64.6 | 72.3 | 74.900 | 85.4 | 89.0 | 91.3 |
Sept.–Nov. 2021 (%) | 100.0 | 43.8 | 59.1 | 53.4 | 67.9 | 68.200 | 84.7 | 88.4 | 95.0 |
Mean | 55.7 | 49.3 | 58.1 | 58.6 | 68.1 | 74.0 | 83.5 | 87.7 | 91.4 |
p | p < 0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
e Silva Malzone, J.R.; Ribeiro, A.P.; de Souza, T.S.; Wilbert, D.D.; Novo, N.F.; Juliano, Y. Clinical and Epidemiological Characteristics of Patients with COVID-19 Admitted to the Intensive Care Unit: A Two-Year Retrospective Analysis. Life 2023, 13, 741. https://doi.org/10.3390/life13030741
e Silva Malzone JR, Ribeiro AP, de Souza TS, Wilbert DD, Novo NF, Juliano Y. Clinical and Epidemiological Characteristics of Patients with COVID-19 Admitted to the Intensive Care Unit: A Two-Year Retrospective Analysis. Life. 2023; 13(3):741. https://doi.org/10.3390/life13030741
Chicago/Turabian Stylee Silva Malzone, Juliana Raimondo, Ana Paula Ribeiro, Tatiane Silva de Souza, Debora Driemeyer Wilbert, Neil Ferreira Novo, and Yara Juliano. 2023. "Clinical and Epidemiological Characteristics of Patients with COVID-19 Admitted to the Intensive Care Unit: A Two-Year Retrospective Analysis" Life 13, no. 3: 741. https://doi.org/10.3390/life13030741