Relationships between Easily Available Biomarkers and Non-Dipper Blood Pressure Pattern in Patients with Stable Coronary Artery Disease
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kannel, W.B. Blood Pressure as a Cardiovascular Risk Factor: Prevention and Treatment. JAMA 1996, 275, 1571–1576. [Google Scholar] [CrossRef] [PubMed]
- Dorobantu, M.; Tautu, O.-F.; Dimulescu, D.; Sinescu, C.; Gusbeth-Tatomir, P.; Arsenescu-Georgescu, C.; Mitu, F.; Lighezan, D.; Pop, C.; Babes, K.; et al. Perspectives on Hypertension’s Prevalence, Treatment and Control in a High Cardiovascular Risk East European Country: Data from the SEPHAR III Survey. J. Hypertens. 2018, 36, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the Management of Arterial Hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, R.; Jiang, T.; Yang, G.; Chen, L. Circadian Blood Pressure Rhythm in Cardiovascular and Renal Health and Disease. Biomolecules 2021, 11, 868. [Google Scholar] [CrossRef]
- Routledge, F.S.; McFetridge-Durdle, J.A.; Dean, C.R. Night-Time Blood Pressure Patterns and Target Organ Damage: A Review. Can. J. Cardiol. 2007, 23, 132–138. [Google Scholar] [CrossRef]
- Mancia, G.; Parati, G. Ambulatory Blood Pressure Monitoring and Organ Damage. Hypertension 2000, 36, 894–900. [Google Scholar] [CrossRef]
- Salles, G.F.; Reboldi, G.; Fagard, R.H.; Cardoso, C.R.L.; Pierdomenico, S.D.; Verdecchia, P.; Eguchi, K.; Kario, K.; Hoshide, S.; Polonia, J.; et al. Prognostic Effect of the Nocturnal Blood Pressure Fall in Hypertensive Patients: The Ambulatory Blood Pressure Collaboration in Patients With Hypertension (ABC-H) Meta-Analysis. Hypertension 2016, 67, 693–700. [Google Scholar] [CrossRef]
- Pickering, T.G.; Kario, K. Nocturnal Non-Dipping: What Does It Augur? Curr. Opin. Nephrol. Hypertens. 2001, 10, 611–616. [Google Scholar] [CrossRef]
- Palatini, P.; Verdecchia, P.; Beilin, L.J.; Eguchi, K.; Imai, Y.; Kario, K.; Ohkubo, T.; Pierdomenico, S.D.; Saladini, F.; Schwartz, J.E.; et al. Association of Extreme Nocturnal Dipping With Cardiovascular Events Strongly Depends on Age. Hypertension 2020, 75, 324–330. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults. J. Am. Coll. Cardiol. 2018, 71, e127–e248. [Google Scholar] [CrossRef]
- Flack, J.M.; Adekola, B. Blood Pressure and the New ACC/AHA Hypertension Guidelines. Trends Cardiovasc. Med. 2020, 30, 160–164. [Google Scholar] [CrossRef]
- Bakris, G.; Ali, W.; Parati, G. ACC/AHA Versus ESC/ESH on Hypertension Guidelines. J. Am. Coll. Cardiol. 2019, 73, 3018–3026. [Google Scholar] [CrossRef]
- Erikssen, G.; Liestøl, K.; Bjørnholt, J.V.; Stormorken, H.; Thaulow, E.; Erikssen, J. Erythrocyte Sedimentation Rate: A Possible Marker of Atherosclerosis and a Strong Predictor of Coronary Heart Disease Mortality. Eur. Heart J. 2000, 21, 1614–1620. [Google Scholar] [CrossRef]
- Strang, F.; Schunkert, H. C-Reactive Protein and Coronary Heart Disease: All Said—Is Not It? Mediat. Inflamm. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Harrison, D.G.; Guzik, T.J.; Lob, H.E.; Madhur, M.S.; Marvar, P.J.; Thabet, S.R.; Vinh, A.; Weyand, C.M. Inflammation, Immunity, and Hypertension. Hypertension 2011, 57, 132–140. [Google Scholar] [CrossRef]
- Stefanadi, E.; Tousoulis, D.; Androulakis, E.S.; Papageorgiou, N.; Charakida, M.; Siasos, G.; Tsioufis, C.; Stefanadis, C. Inflammatory Markers in Essential Hypertension: Potential Clinical Implications. Curr. Vasc. Pharmacol. 2010, 8, 509–516. [Google Scholar] [CrossRef]
- Gunay, S.; Çalışkan, S.; Sigirli, D. Inflammation and Nocturnal Pattern of Blood Pressure in Normotensives. Int. J. Cardiovasc. Sci. 2021, 34, 685–691. [Google Scholar] [CrossRef]
- Kaya, M.G.; Yarlioglues, M.; Gunebakmaz, O.; Gunturk, E.; Inanc, T.; Dogan, A.; Kalay, N.; Topsakal, R. Platelet Activation and Inflammatory Response in Patients with Non-Dipper Hypertension. Atherosclerosis 2010, 209, 278–282. [Google Scholar] [CrossRef]
- Gunebakmaz, O.; Kaya, M.G.; Duran, M.; Akpek, M.; Elcik, D.; Eryol, N.K. Red Blood Cell Distribution Width in “non-Dippers” versus “Dippers”. Cardiology 2012, 123, 154–159. [Google Scholar] [CrossRef]
- Krenn-Pilko, S.; Langsenlehner, U.; Thurner, E.-M.; Stojakovic, T.; Pichler, M.; Gerger, A.; Kapp, K.S.; Langsenlehner, T. The Elevated Preoperative Platelet-to-Lymphocyte Ratio Predicts Poor Prognosis in Breast Cancer Patients. Br. J. Cancer 2014, 110, 2524–2530. [Google Scholar] [CrossRef]
- You, J.; Zhu, G.-Q.; Xie, L.; Liu, W.-Y.; Shi, L.; Wang, O.-C.; Huang, Z.-H.; Braddock, M.; Guo, G.-L.; Zheng, M.-H. Preoperative Platelet to Lymphocyte Ratio Is a Valuable Prognostic Biomarker in Patients with Colorectal Cancer. Oncotarget 2016, 7, 25516–25527. [Google Scholar] [CrossRef] [PubMed]
- Durmus, E.; Kivrak, T.; Gerin, F.; Sunbul, M.; Sari, I.; Erdogan, O. Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio Are Predictors of Heart Failure. Arq. Bras. Cardiol. 2015, 105, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Heidarpour, M.; Bashiri, S.; Vakhshoori, M.; Heshmat-Ghahdarijani, K.; Khanizadeh, F.; Ferdowsian, S.; Shafie, D. The Association between Platelet-to-Lymphocyte Ratio with Mortality among Patients Suffering from Acute Decompensated Heart Failure. BMC Cardiovasc. Disord. 2021, 21, 454. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.; Chen, Q.; Chen, X.; Liu, Y.; Yin, T.; Meng, Q.; Liu, Y.; Wei, H.; Zhou, Q. The Prognostic Role of Platelet-to-Lymphocyte Ratio in Patients with Acute Heart Failure: A Cohort Study. Sci. Rep. 2019, 9, 10639. [Google Scholar] [CrossRef] [PubMed]
- Willim, H.A.; Harianto, J.C.; Cipta, H. Platelet-to-Lymphocyte Ratio at Admission as a Predictor of In-Hospital and Long-Term Outcomes in Patients With ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis. Cardiol. Res. 2021, 12, 109–116. [Google Scholar] [CrossRef]
- Sun, X.-P.; Li, J.; Zhu, W.-W.; Li, D.-B.; Chen, H.; Li, H.-W.; Chen, W.-M.; Hua, Q. Impact of Platelet-to-Lymphocyte Ratio on Clinical Outcomes in Patients With ST-Segment Elevation Myocardial Infarction. Angiology 2017, 68, 346–353. [Google Scholar] [CrossRef]
- Dong, G.; Huang, A.; Liu, L. Platelet-to-lymphocyte Ratio and Prognosis in STEMI: A Meta-analysis. Eur. J. Clin. Invest. 2021, 51, e13386. [Google Scholar] [CrossRef]
- Azab, B.; Shah, N.; Akerman, M.; McGinn, J.T. Value of Platelet/Lymphocyte Ratio as a Predictor of All-Cause Mortality after Non-ST-Elevation Myocardial Infarction. J. Thromb. Thrombolysis 2012, 34, 326–334. [Google Scholar] [CrossRef]
- Ugur, M.; Gul, M.; Bozbay, M.; Cicek, G.; Uyarel, H.; Koroglu, B.; Uluganyan, M.; Aslan, S.; Tusun, E.; Surgit, O.; et al. The Relationship between Platelet to Lymphocyte Ratio and the Clinical Outcomes in ST Elevation Myocardial Infarction Underwent Primary Coronary Intervention. Blood Coagul. Fibrinolysis Int. J. Haemost. Thromb. 2014, 25, 806–811. [Google Scholar] [CrossRef]
- Zuo, K.; Yang, X. Decreased Platelet-to-Lymphocyte Ratio as Predictor of Thrombogenesis in Nonvalvular Atrial Fibrillation. Herz 2020, 45, 684–688. [Google Scholar] [CrossRef]
- Velioğlu, Y.; Yüksel, A. Utility of Platelet-to-Lymphocyte Ratio to Support the Diagnosis of Acute Deep Vein Thrombosis. Turk Gogus Kalp Damar Cerrahisi Derg. 2019, 27, 493–498. [Google Scholar] [CrossRef]
- Drugescu, A.; Roca, M.; Zota, I.M.; Costache, A.-D.; Gavril, O.I.; Gavril, R.S.; Vasilcu, T.F.; Mitu, O.; Esanu, I.M.; Roca, I.-C.; et al. Value of the Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio in Predicting CPET Performance in Patients with Stable CAD and Recent Elective PCI. Medicina 2022, 58, 814. [Google Scholar] [CrossRef]
- He, B.; Wu, J. Clinical Value of PLR, MLR, and NWR in Neoadjuvant Chemotherapy for Locally Advanced Gastric Cancer. Comput. Math. Methods Med. 2022, 2022, 8005975. [Google Scholar] [CrossRef]
- Chen, H.; Wu, X.; Wen, Z.; Zhu, Y.; Liao, L.; Yang, J. The Clinicopathological and Prognostic Value of NLR, PLR and MLR in Non-Muscular Invasive Bladder Cancer. Arch. Esp. Urol. 2022, 75, 467–471. [Google Scholar] [CrossRef]
- Cui, H.X.; Chen, C.; Jung, Y.M.; Guo, Z.Y.; Dong, C.Y.; Lee, S.M.; Zhang, Y.H. Neutrophil-to-Lymphocyte Ratio (NLR) as a Predictive Index for Liver and Coagulation Dysfunction in Preeclampsia Patients. BMC Pregnancy Childbirth 2023, 23, 4. [Google Scholar] [CrossRef]
- Ramos-Peñafiel, C.O.; Santos-González, B.; Flores-López, E.N.; Galván-Flores, F.; Hernández-Vázquez, L.; Santoyo-Sánchez, A.; Oca-Yemha, R.M.d.; Bejarano-Rosales, M.; Rosas-González, É.; Olarte-Carrillo, I.; et al. Usefulness of the Neutrophil-to-Lymphocyte, Monocyte-to-Lymphocyte and Lymphocyte-to-Platelet Ratios for the Prognosis of COVID-19-Associated Complications. Gac. Med. Mex. 2020, 156, 405–411. [Google Scholar] [CrossRef]
- Ozdemir, E.; Safak, O.; AltIn, M.; Akgun, D.; Emren, S.; AvcI, E.; Tokac, M.; AkyIldIz, F. Correlation Between the Severity of Coronary Artery Ectasia and Monocyte/Lymphocyte, Platelet/Lymphocyte, and HDL/LDL Ratios. J. Coll. Physicians Surg. Pak. 2020, 30, 235–239. [Google Scholar] [CrossRef]
- Akpek, M.; Kaya, M.G.; Lam, Y.Y.; Sahin, O.; Elcik, D.; Celik, T.; Ergin, A.; Gibson, C.M. Relation of Neutrophil/Lymphocyte Ratio to Coronary Flow to in-Hospital Major Adverse Cardiac Events in Patients with ST-Elevated Myocardial Infarction Undergoing Primary Coronary Intervention. Am. J. Cardiol. 2012, 110, 621–627. [Google Scholar] [CrossRef]
- Tamhane, U.U.; Aneja, S.; Montgomery, D.; Rogers, E.-K.; Eagle, K.A.; Gurm, H.S. Association between Admission Neutrophil to Lymphocyte Ratio and Outcomes in Patients with Acute Coronary Syndrome. Am. J. Cardiol. 2008, 102, 653–657. [Google Scholar] [CrossRef]
- Park, J.J.; Jang, H.-J.; Oh, I.-Y.; Yoon, C.-H.; Suh, J.-W.; Cho, Y.-S.; Youn, T.-J.; Cho, G.-Y.; Chae, I.-H.; Choi, D.-J. Prognostic Value of Neutrophil to Lymphocyte Ratio in Patients Presenting with ST-Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Am. J. Cardiol. 2013, 111, 636–642. [Google Scholar] [CrossRef]
- Sunbul, M.; Gerin, F.; Durmus, E.; Kivrak, T.; Sari, I.; Tigen, K.; Cincin, A. Neutrophil to Lymphocyte and Platelet to Lymphocyte Ratio in Patients with Dipper versus Non-Dipper Hypertension. Clin. Exp. Hypertens. 2014, 36, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Turgay Yıldırım, Ö.; Akşit, E.; Aydın, F.; Hüseyinoglu Aydın, A.; Dağtekin, E. Can Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio Be Used as Biomarkers for Non-Dipper Blood Pressure? J. Surg. Med. 2018, 3, 4–7. [Google Scholar] [CrossRef]
- Gong, P.; Liu, Y.; Gong, Y.; Chen, G.; Zhang, X.; Wang, S.; Zhou, F.; Duan, R.; Chen, W.; Huang, T.; et al. The Association of Neutrophil to Lymphocyte Ratio, Platelet to Lymphocyte Ratio, and Lymphocyte to Monocyte Ratio with Post-Thrombolysis Early Neurological Outcomes in Patients with Acute Ischemic Stroke. J. Neuroinflam. 2021, 18, 51. [Google Scholar] [CrossRef] [PubMed]
- Mitu, M.; Suceveanu, M.; Mitu, F. Cardiovascular Rehabilitation in Romania. Rom. J. Cardiol. 2020, 30, 1–6. [Google Scholar] [CrossRef]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the Diagnosis and Management of Chronic Coronary Syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S13–S28. [Google Scholar] [CrossRef]
- Afari, M.E.; Bhat, T. Neutrophil to Lymphocyte Ratio (NLR) and Cardiovascular Diseases: An Update. Expert Rev. Cardiovasc. Ther. 2016, 14, 573–577. [Google Scholar] [CrossRef]
- Elçik, D.; Duran, M.; Keleşoğlu, Ş.; Çetinkaya, Z.; Boyluğ, S.; Yurt, R.; Doğan, A.; İNanç, M.T.; Kalay, N. Effect of Nondipper Hypertension on Coronary Artery Disease Progression in Patients with Chronic Coronary Syndrome. Turk. J. Med. Sci. 2021, 51, 1273–1280. [Google Scholar] [CrossRef]
- Genta-Pereira, D.C.; Furlan, S.F.; Omote, D.Q.; Giorgi, D.M.A.; Bortolotto, L.A.; Lorenzi-Filho, G.; Drager, L.F. Nondipping Blood Pressure Patterns Predict Obstructive Sleep Apnea in Patients Undergoing Ambulatory Blood Pressure Monitoring. Hypertension 2018, 72, 979–985. [Google Scholar] [CrossRef]
- Yoshikane, H.; Yamamoto, T.; Ozaki, M.; Matsuzaki, M. Clinical significance of high-sensitivity C-reactive protein in lifestyle-related disease and metabolic syndrome. J. Cardiol. 2007, 50, 175–182. [Google Scholar]
- Chaikriangkrai, K.; Kassi, M.; Chang, S.; Alchalabi, S.; Bala, S.; Adigun, R.; Botero, S. Association between Hematological Indices and Coronary Calcification in Symptomatic Patients without History of Coronary Artery Disease. N. Am. J. Med. Sci. 2014, 6, 433. [Google Scholar] [CrossRef]
- Madjid, M.; Awan, I.; Willerson, J.T.; Casscells, S.W. Leukocyte Count and Coronary Heart Disease. J. Am. Coll. Cardiol. 2004, 44, 1945–1956. [Google Scholar] [CrossRef]
- Verdoia, M.; Barbieri, L.; Di Giovine, G.; Marino, P.; Suryapranata, H.; De Luca, G. Neutrophil to Lymphocyte Ratio and the Extent of Coronary Artery Disease: Results From a Large Cohort Study. Angiology 2016, 67, 75–82. [Google Scholar] [CrossRef]
- Andresdottir, M.B.; Sigfusson, N.; Sigvaldason, H.; Gudnason, V. Erythrocyte Sedimentation Rate, an Independent Predictor of Coronary Heart Disease in Men and Women: The Reykjavik Study. Am. J. Epidemiol. 2003, 158, 844–851. [Google Scholar] [CrossRef]
- Caillon, A.; Paradis, P.; Schiffrin, E.L. Role of Immune Cells in Hypertension. Br. J. Pharmacol. 2019, 176, 1818–1828. [Google Scholar] [CrossRef]
- Lüscher, T.F. Hypertension and vascular diseases: Molecular and cellular mechanisms. Schweiz. Med. Wochenschr. 1995, 125, 270–282. [Google Scholar]
- Xu, J.-P.; Zeng, R.-X.; Zhang, Y.-Z.; Lin, S.-S.; Tan, J.-W.; Zhu, H.-Y.; Mai, X.-Y.; Guo, L.-H.; Zhang, M.-Z. Systemic Inflammation Markers and the Prevalence of Hypertension: A NHANES Cross-Sectional Study. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2023. [Google Scholar] [CrossRef]
- Musiał, K.; Bargenda-Lange, A.; Mazurkiewicz, P.; Gaik, M.; Gralec, S.; Zwolińska, D. Lymphocyte to Monocyte Ratio and Blood Pressure Variability in Childhood Hypertension-a Pilot Study. Pediatr. Res. 2023, 93, 137–142. [Google Scholar] [CrossRef]
- Verdecchia, P.; Schillaci, G.; Reboldi, G.; Franklin, S.S.; Porcellati, C. Different Prognostic Impact of 24-Hour Mean Blood Pressure and Pulse Pressure on Stroke and Coronary Artery Disease in Essential Hypertension. Circulation 2001, 103, 2579–2584. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q.; Wu, H.; Du, H.; Liu, L.; Shi, H.; Wang, C.; Xia, Y.; Guo, X.; Li, C.; et al. Blood Neutrophil to Lymphocyte Ratio as a Predictor of Hypertension. Am. J. Hypertens. 2015, 28, 1339–1346. [Google Scholar] [CrossRef]
- Kılıçaslan, B.; Dursun, H.; Kaymak, S.; Aydın, M.; Ekmekçi, C.; Susam, İ.; Özdoğan, Ö. The Relationship between Neutrophil to Lymphocyte Ratio and Blood Pressure Variability in Hypertensive and Normotensive Subjecs. Turk. Kardiyol. Dern. Ars. 2015, 43, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Belen, E.; Sungur, A.; Sungur, M.A.; Erdoğan, G. Increased Neutrophil to Lymphocyte Ratio in Patients With Resistant Hypertension. J. Clin. Hypertens. Greenwich Conn 2015, 17, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Uçar, F.M.; Açar, B.; Gul, M.; Özeke, Ö.; Aydogdu, S. The Association between Platelet/Lymphocyte Ratio and Coronary Artery Disease Severity in Asymptomatic Low Ejection Fraction Patients. Korean Circ. J. 2016, 46, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Bayrakci, N.; Ozkayar, N.; Akyel, F.; Ates, I.; Akyel, S.; Dede, F. The Platelet-to-Lymphocyte Ratio as an Inflammation Marker in Non-Dipper Hypertensive Patients. Hippokratia 2015, 19, 114–118. [Google Scholar] [PubMed]
- Çelebi, S. Platelet Lenfosit Oranı ve Hipertansiyonun Diürnal Ritmi Arasındaki Ilişki. Turk. J. Clin. Lab. 2020, 2, 29–34. [Google Scholar] [CrossRef]
- Bozduman, F.; Yildirim, E.; Cicek, G. Biomarkers of Nondipper Hypertension in Prehypertensive and Hypertensive Patients. Biomark. Med. 2019, 13, 371–378. [Google Scholar] [CrossRef]
- Emlek, N.; Aydin, C. The Pattern of Systemic Inflammation Index in Normotensive Non-Dipper and Dipper Hypertensive Patients. Heart Vessel. Transplant. 2021, 5, 177. [Google Scholar] [CrossRef]
- Cortez, A.F.; Muxfeldt, E.S.; Cardoso, C.R.L.; Salles, G.F. Prognostic Value of C-Reactive Protein in Resistant Hypertension. Am. J. Hypertens. 2016, 29, 992–1000. [Google Scholar] [CrossRef]
- Celik, T.; Kaya, M.G.; Akpek, M.; Gunebakmaz, O.; Balta, S.; Sarli, B.; Duran, M.; Demirkol, S.; Uysal, O.K.; Oguzhan, A.; et al. Predictive Value of Admission Platelet Volume Indices for In-Hospital Major Adverse Cardiovascular Events in Acute ST-Segment Elevation Myocardial Infarction. Angiology 2015, 66, 155–162. [Google Scholar] [CrossRef]
- Prasad, K. C-Reactive Protein (CRP)-Lowering Agents. Cardiovasc. Drug Rev. 2006, 24, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Fulop, T.; Rule, A.D.; Schmidt, D.W.; Wiste, H.J.; Bailey, K.R.; Kullo, I.J.; Schwartz, G.L.; Mosley, T.H.; Boerwinkle, E.; Turner, S.T. C-Reactive Protein among Community-Dwelling Hypertensives on Single-Agent Antihypertensive Treatment. J. Am. Soc. Hypertens. 2009, 3, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Fici, F.; Celik, T.; Balta, S.; Iyisoy, A.; Unlu, M.; Demitkol, S.; Yaman, H.; Brambilla, G.; Kardesoglu, E.; Kilic, S.; et al. Comparative Effects of Nebivolol and Metoprolol on Red Cell Distribution Width and Neutrophil/Lymphocyte Ratio in Patients with Newly Diagnosed Essential Hypertension. J. Cardiovasc. Pharmacol. 2013, 62, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Karaman, M.; Balta, S.; Seyit Ahmet, A.Y.; Cakar, M.; Naharci, I.; Demirkol, S.; Celik, T.; Arslan, Z.; Kurt, O.; Kocak, N.; et al. The Comparative Effects of Valsartan and Amlodipine on VWf Levels and N/L Ratio in Patients with Newly Diagnosed Hypertension. Clin. Exp. Hypertens. 2013, 35, 516–522. [Google Scholar] [CrossRef]
- Erdoğan, D.; İçli, A.; Aksoy, F.; Akçay, S.; Yücel, H.; Ersoy, İ.; Özaydın, M. The Effect of Fixed-Dose Combination of Valsartan and Amlodipine on Nighttime Blood Pressure in Patients with Non-Dipper Hypertension. Turk. Kardiyol. Dern. Ars. 2016, 44, 404–413. [Google Scholar] [CrossRef]
- Liu, J.; Su, X.; Nie, Y.; Zeng, Z.; Chen, H. Dosing Time Matters? Nighttime vs. Daytime Administration of Nifedipine Gastrointestinal Therapeutic System (GITS) or Amlodipine on Non-Dipper Hypertension: A Randomized Controlled Trial of NARRAS. Front. Cardiovasc. Med. 2021, 8, 755403. [Google Scholar] [CrossRef]
- Mertoglu, C.; Gunay, M. Neutrophil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio as Useful Predictive Markers of Prediabetes and Diabetes Mellitus. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S127–S131. [Google Scholar] [CrossRef]
- Turner, J.R.; Viera, A.J.; Shimbo, D. Ambulatory Blood Pressure Monitoring in Clinical Practice: A Review. Am. J. Med. 2015, 128, 14–20. [Google Scholar] [CrossRef]
Parameters | All Patients (n = 80) | Dipper Pattern (n = 36) | Non-Dipper Pattern (n = 44) | p Value * |
---|---|---|---|---|
Age (years) × | 55.51 ± 11.83 | 53.28 ± 11.39 | 57.34 ± 12 | 0.12 |
Males, n (%) □ | 57 (71.3) | 27 (75) | 30 (68.1) | 0.42 |
Grade 1 HTN, n (%) □ | 14 (17.5) | 7 (19.4) | 9 (20.4) | 0.59 |
Grade 2 HTN, n (%) □ | 23 (28.75) | 11 (30.5) | 11 (25) | 0.98 |
Grade 3 HTN, n (%) □ | 43 (53.75) | 18 (50.1) | 24 (54.5) | 0.24 |
NLR † | 1.75 (1.39–2.58) | 2 (1–2) | 2 (2–3) | <0.001 |
PLR † | 147 (116–177) | 116 (102–145) | 175 (144–215) | <0.001 |
MLR † | 0.26 (0.2–0.32) | 0.21 (0.17–0.26) | 0.31 (0.23–0.39) | <0.001 |
Platelet count, ×103/μL † | 243 (195–284) | 237 (211–265) | 252 (221–305) | 0.08 |
WBC count, ×103/μL † | 5.5 (4.7–7.1) | 5.95 (5–7.1) | 5.1 (4.55–7.25) | 0.33 |
Neutrophil count, ×103/μL † | 3.15 (2.47–4) | 3.35 (2.49–3.93) | 3.05 (2.47–4.41) | 0.71 |
Lymphocyte count, ×103/μL † | 1.72 (1.44–1.99) | 1.93 (1.63–2.49) | 1.54 (1.16–1.74) | <0.001 |
Monocyte count, ×103/μL † | 0.42 (0.35–0.53) | 0.41 (0.34–0.49) | 0.44 (0.35–0.56) | 0.21 |
CRP (mg/L) † | 0.41 (0.24–1.04) | 0.37 (0.19–0.89) | 0.42 (0.14–0.6) | 0.68 |
ESR (mm/h) † | 12 (6–23.5) | 11 (4.24–25) | 12.5 (7–22) | 0.54 |
BMI (kg/m2) † | 28.7 (27.4–33) | 30.53 (27.4–33.02) | 28.85 (27.2–32.7) | 0.46 |
Diabetes, n (%) □ | 22 (27.5) | 10 (27.8) | 12 (27.3) | 0.96 |
HbA1c (%) × | 6.92 (6.01–7.46) | 6.99 (5.81–8.29) | 6.79 (6.1–7.42) | 0.96 |
LDL (mg/dL) × | 107.7 (73.2–137.6) | 105.9 (81.1–136.4) | 110.6 (70.85–146) | 0.74 |
HDL (mg/dL) × | 45 (39.02–56) | 42.05 (38.17–54.67) | 46.85 (39.35–57.8) | 0.41 |
HDL/LDL × | 0.44 (0.31–0.6) | 0.43 (0.31–0.58) | 0.45 (0.31–0.69) | 0.65 |
Medication Class | All Patients (n = 80) | Dipper Pattern (n = 36) | Non-Dipper Pattern (n = 44) | p Value |
---|---|---|---|---|
Beta-blocker | 65 (81.3) | 28 (77.8) | 37 (84.1) | 0.56 |
ACE inhibitors/ARBs | 63 (78.7) | 30 (83.3) | 33 (75) | 0.62 |
Calcium antagonists (dihydropyridines) | 27 (33.8) | 23 (63.9) | 4 (9.1) | 0.001 |
Diuretics (thiazide-like) | 67 (83.7) | 27 (75) | 40 (90.9) | 0.62 |
Spironolactone | 16 (20) | 9 (25) | 7 (15.9) | 0.42 |
Central alpha antagonists | 10 (12.5) | 3 (8.3) | 7 (15.9) | 0.18 |
Drug treatment strategy | ||||
Monotherapy | 20 (25) | 6 (16.7) | 14 (31.8) | 0.19 |
Dual combination | 36 (45) | 14 (38.8) | 22 (50) | 0.63 |
Triple combination | 15 (18.7) | 10 (27.7) | 5 (11.3) | 0.32 |
>3 drugs | 9 (11.2) | 6 (16.6) | 3 (6.8) | 0.25 |
Variables | Odds Ratio | 95% Confidence Interval | p |
---|---|---|---|
Lymphocyte count, ×103/μL | 1.002 | 0.999–1.005 | 0.18 |
NLR | 2333 | 0.439–12.392 | 0.32 |
PLR | 1.071 | 1.024–1.120 | 0.002 |
MLR | 6.64 × 106 | 9.0645–4.86 × 1012 | 0.022 |
Calcium antagonists (dihydropyridines) | 0.03 | 0.003–0.319 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drugescu, A.; Roca, M.; Zota, I.M.; Costache, A.-D.; Leon-Constantin, M.-M.; Gavril, O.I.; Gavril, R.S.; Vasilcu, T.F.; Mitu, O.; Ghiciuc, C.M.; et al. Relationships between Easily Available Biomarkers and Non-Dipper Blood Pressure Pattern in Patients with Stable Coronary Artery Disease. Life 2023, 13, 640. https://doi.org/10.3390/life13030640
Drugescu A, Roca M, Zota IM, Costache A-D, Leon-Constantin M-M, Gavril OI, Gavril RS, Vasilcu TF, Mitu O, Ghiciuc CM, et al. Relationships between Easily Available Biomarkers and Non-Dipper Blood Pressure Pattern in Patients with Stable Coronary Artery Disease. Life. 2023; 13(3):640. https://doi.org/10.3390/life13030640
Chicago/Turabian StyleDrugescu, Andrei, Mihai Roca, Ioana Mădălina Zota, Alexandru-Dan Costache, Maria-Magdalena Leon-Constantin, Oana Irina Gavril, Radu Sebastian Gavril, Teodor Flaviu Vasilcu, Ovidiu Mitu, Cristina Mihaela Ghiciuc, and et al. 2023. "Relationships between Easily Available Biomarkers and Non-Dipper Blood Pressure Pattern in Patients with Stable Coronary Artery Disease" Life 13, no. 3: 640. https://doi.org/10.3390/life13030640
APA StyleDrugescu, A., Roca, M., Zota, I. M., Costache, A.-D., Leon-Constantin, M.-M., Gavril, O. I., Gavril, R. S., Vasilcu, T. F., Mitu, O., Ghiciuc, C. M., & Mitu, F. (2023). Relationships between Easily Available Biomarkers and Non-Dipper Blood Pressure Pattern in Patients with Stable Coronary Artery Disease. Life, 13(3), 640. https://doi.org/10.3390/life13030640