Pan-Genomics of Escherichia albertii for Antibiotic Resistance Profiling in Different Genome Fractions and Natural Product Mediated Intervention: In Silico Approach
Abstract
:1. Introduction
2. Material and Methods
2.1. Pan-Genomics and Core Genome Analysis
2.2. Prediction of Drug Targets
2.3. Structural Modeling and Virtual Screening Studies
2.4. Dynamic Simulation Studies
2.5. Pharmacokinetics of Shortlisted Drug Candidates
3. Results
3.1. Pan-Genomics and Resistome Evaluation
3.2. Essential Gene Prediction
3.3. Drug Target Prediction
3.4. Structure Modeling and Virtual Screening
3.5. Molecular Dynamic Simulation Studies
3.6. Pharmacokinetics of Lead Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lima, M.P.; Yamamoto, D.; Santos, A.C.M.; Ooka, T.; Hernandes, R.T.; Vieira, M.A.M.; Santos, F.F.; Silva, R.M.; Hayashi, T. Gomes TAT: Phenotypic characterization and virulence-related properties of Escherichia albertii strains isolated from children with diarrhea in Brazil. Pathog. Dis. 2019, 77, ftz014. [Google Scholar] [CrossRef]
- Masuda, K.; Ooka, T.; Akita, H.; Hiratsuka, T.; Takao, S.; Fukada, M.; Inoue, K.; Honda, M.; Toda, J. Sugitani W: Epidemiological aspects of Escherichia albertii outbreaks in Japan and genetic characteristics of the causative pathogen. Foodborne Pathog. Dis. 2020, 17, 144–150. [Google Scholar] [CrossRef]
- Ooka, T.; Ogura, Y.; Katsura, K.; Seto, K.; Kobayashi, H.; Kawano, K.; Tokuoka, E.; Furukawa, M.; Harada, S.; Yoshino, S. Defining the genome features of Escherichia albertii, an emerging enteropathogen closely related to Escherichia coli. Genome Biol. Evol. 2015, 7, 3170–3179. [Google Scholar]
- Inglis, T.J.; Merritt, A.J.; Bzdyl, N.; Lansley, S.; Urosevic, M.N. First bacteraemic human infection with Escherichia albertii. New Microbes New Infect 2015, 8, 171–173. [Google Scholar] [CrossRef] [Green Version]
- Albert, M.J.; Alam, K.; Islam, M.; Montanaro, J.; Rahaman, A.; Haider, K.; Hossain, M.A.; Kibriya, A.; Tzipori, S. Hafnia alvei, a probable cause of diarrhea in humans. Infect. Immun. 1991, 59, 1507–1513. [Google Scholar] [CrossRef] [Green Version]
- Huys, G.; Cnockaert, M.; Janda, J.M.; Swings, J. Escherichia albertii sp. nov., a diarrhoeagenic species isolated from stool specimens of Bangladeshi children. Int. J. Syst. Evol. Microbiol. 2003, 53, 807–810. [Google Scholar] [CrossRef] [Green Version]
- Asoshima, N.; Matsuda, M.; Shigemura, K.; Honda, M.; Yoshida, H.; Hiwaki, H.; Ogata, K.; Oda, T. Identification of Escherichia albertii as a causative agent of a food-borne outbreak occurred in 2003. Jpn. J. Infect Dis. 2014, 67, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Hinenoya, A.; Yasuda, N.; Mukaizawa, N.; Sheikh, S.; Niwa, Y.; Awasthi, S.P.; Asakura, M.; Tsukamoto, T.; Nagita, A.; Albert, M.J.; et al. Association of cytolethal distending toxin-II gene-positive Escherichia coli with Escherichia albertii, an emerging enteropathogen. Int. J. Med. Microbiol. 2017, 307, 564–571. [Google Scholar] [CrossRef]
- Perez, K.L.; Alam, M.J.; Castillo, A.; Taylor, T.M. Antibiotic resistance and growth of the emergent pathogen Escherichia albertii on raw ground beef stored under refrigeration, abuse, and physiological temperature. J. Food Prot. 2013, 76, 124–128. [Google Scholar] [CrossRef]
- Li, Q.; Wang, H.; Xu, Y.; Bai, X.; Wang, J.; Zhang, Z.; Liu, X.; Miao, Y.; Zhang, L.; Li, X.; et al. Multidrug-Resistant Escherichia albertii: Co-occurrence of beta-Lactamase and MCR-1 Encoding Genes. Front Microbiol. 2018, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Hinenoya, A.; Wang, H.; Patrick, E.M.; Zeng, X.; Cao, L.; Li, X.P.; Lindsey, R.L.; Gillespie, B.; He, Q.; Yamasaki, S.; et al. Longitudinal surveillance and comparative characterization of Escherichia albertii in wild raccoons in the United States. Microbiol. Res. 2022, 262, 127109. [Google Scholar] [CrossRef]
- Hinenoya, A.; Li, X.P.; Zeng, X.; Sahin, O.; Moxley, R.A.; Logue, C.M.; Gillespie, B.; Yamasaki, S.; Lin, J. Isolation and characterization of Escherichia albertii in poultry at the pre-harvest level. Zoonoses Public Health 2021, 68, 213–225. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Cao, L.; Zeng, X.; Gillespie, B.; Lin, J. Isolation and characterization of Escherichia albertii originated from the broiler farms in Mississippi and Alabama. Vet. Microbiol. 2022, 267, 109379. [Google Scholar] [CrossRef]
- Sonnevend, A.; Alali, W.Q.; Mahmoud, S.A.; Ghazawi, A.; Bharathan, G.; Melegh, S.; Rizvi, T.A.; Pal, T. Molecular Characterization of MCR-1 Producing Enterobacterales Isolated in Poultry Farms in the United Arab Emirates. Antibiotics 2022, 11, 305. [Google Scholar] [CrossRef]
- Gonzales-Siles, L.; Karlsson, R.; Schmidt, P.; Salva-Serra, F.; Jaen-Luchoro, D.; Skovbjerg, S.; Moore, E.R.B.; Gomila, M. A Pangenome Approach for Discerning Species-Unique Gene Markers for Identifications of Streptococcus pneumoniae and Streptococcus pseudopneumoniae. Front Cell Infect Microbiol. 2020, 10, 222. [Google Scholar] [CrossRef]
- Liao, J.; Guo, X.; Weller, D.L.; Pollak, S.; Buckley, D.H.; Wiedmann, M.; Cordero, O.X. Nationwide genomic atlas of soil-dwelling Listeria reveals effects of selection and population ecology on pangenome evolution. Nat. Microbiol. 2021, 6, 1021–1030. [Google Scholar] [CrossRef]
- Golanowska, M.; Potrykus, M.; Motyka-Pomagruk, A.; Kabza, M.; Bacci, G.; Galardini, M.; Bazzicalupo, M.; Makalowska, I.; Smalla, K.; Mengoni, A.; et al. Comparison of Highly and Weakly Virulent Dickeya solani Strains, With a View on the Pangenome and Panregulon of This Species. Front. Microbiol. 2018, 9, 1940. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Sun, X.; Haggblom, M.M.; Kolton, M.; Lan, L.; Li, B.; Dong, Y.; Xu, R.; Li, F. Identification of Antimonate Reducing Bacteria and Their Potential Metabolic Traits by the Combination of Stable Isotope Probing and Metagenomic-Pangenomic Analysis. Environ. Sci. Technol. 2021, 55, 13902–13912. [Google Scholar] [CrossRef]
- Poulsen, B.E.; Yang, R.; Clatworthy, A.E.; White, T.; Osmulski, S.J.; Li, L.; Penaranda, C.; Lander, E.S.; Shoresh, N.; Hung, D.T. Defining the core essential genome of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2019, 116, 10072–10080. [Google Scholar] [CrossRef] [Green Version]
- Jalal, K.; Khan, K.; Hayat, A.; Ahmad, D.; Alotaibi, G.; Uddin, R.; Mashraqi, M.M.; Alzamami, A.; Aurongzeb, M.; Basharat, Z. Mining therapeutic targets from the antibiotic-resistant Campylobacter coli and virtual screening of natural product inhibitors against its riboflavin synthase. Mol. Divers. 2022. [Google Scholar] [CrossRef]
- Khan, K.; Basharat, Z.; Jalal, K.; Mashraqi, M.M.; Alzamami, A.; Alshamrani, S.; Uddin, R. Identification of Therapeutic Targets in an Emerging Gastrointestinal Pathogen Campylobacter ureolyticus and Possible Intervention through Natural Products. Antibiotics 2022, 11, 680. [Google Scholar] [CrossRef]
- Basharat, Z.; Akhtar, U.; Khan, K.; Alotaibi, G.; Jalal, K.; Abbas, M.N.; Hayat, A.; Ahmad, D.; Hassan, S.S. Differential analysis of Orientia tsutsugamushi genomes for therapeutic target identification and possible intervention through natural product inhibitor screening. Comput. Biol. Med. 2022, 141, 105165. [Google Scholar] [CrossRef]
- Aslam, M.; Shehroz, M.; Ali, F.; Zia, A.; Pervaiz, S.; Shah, M.; Hussain, Z.; Nishan, U.; Zaman, A.; Afridi, S.G.; et al. Chlamydia trachomatis core genome data mining for promising novel drug targets and chimeric vaccine candidates identification. Comput. Biol. Med. 2021, 136, 104701. [Google Scholar] [CrossRef]
- Maia, E.H.B.; Assis, L.C.; de Oliveira, T.A.; da Silva, A.M.; Taranto, A.G. Structure-Based Virtual Screening: From Classical to Artificial Intelligence. Front. Chem. 2020, 8, 343. [Google Scholar] [CrossRef]
- Vora, J.; Patel, S.; Sinha, S.; Sharma, S.; Srivastava, A.; Chhabria, M.; Shrivastava, N. Structure based virtual screening, 3D-QSAR, molecular dynamics and ADMET studies for selection of natural inhibitors against structural and non-structural targets of Chikungunya. J. Biomol. Struct. Dyn. 2019, 37, 3150–3161. [Google Scholar] [CrossRef]
- Elseginy, S.A. Virtual screening and structure-based 3D pharmacophore approach to identify small-molecule inhibitors of SARS-CoV-2 M(pro). J. Biomol. Struct. Dyn. 2021, 40, 13658–13674. [Google Scholar] [CrossRef]
- Erlina, L.; Paramita, R.I.; Kusuma, W.A.; Fadilah, F.; Tedjo, A.; Pratomo, I.P.; Ramadhanti, N.S.; Nasution, A.K.; Surado, F.K.; Fitriawan, A.; et al. Virtual screening of Indonesian herbal compounds as COVID-19 supportive therapy: Machine learning and pharmacophore modeling approaches. BMC Complement Med. Ther. 2022, 22, 207. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M. International Natural Product Sciences T, Supuran CT: Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Barh, D.; Barve, N.; Gupta, K.; Chandra, S.; Jain, N.; Tiwari, S.; Leon-Sicairos, N.; Canizalez-Roman, A.; dos Santos, A.R.; Hassan, S.S.; et al. Exoproteome and secretome derived broad spectrum novel drug and vaccine candidates in Vibrio cholerae targeted by Piper betel derived compounds. PLoS ONE 2013, 8, e52773. [Google Scholar] [CrossRef]
- Basharat, Z.; Jahanzaib, M.; Rahman, N. Therapeutic target identification via differential genome analysis of antibiotic resistant Shigella sonnei and inhibitor evaluation against a selected drug target. Infect. Genet. Evol. 2021, 94, 105004. [Google Scholar] [CrossRef]
- Basharat, Z.; Jahanzaib, M.; Yasmin, A.; Khan, I.A. Pan-genomics, drug candidate mining and ADMET profiling of natural product inhibitors screened against Yersinia pseudotuberculosis. Genomics 2021, 113, 238–244. [Google Scholar] [CrossRef]
- Chaudhari, N.M.; Gupta, V.K.; Dutta, C. BPGA-an ultra-fast pan-genome analysis pipeline. Sci. Rep. 2016, 6, 24373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basharat, Z.; Yasmin, A.; He, T.; Tong, Y. Genome sequencing and analysis of Alcaligenes faecalis subsp. phenolicus MB207. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.-N.; Hua, Z.-G.; Huang, J.; Rao, N.; Guo, F.-B. CEG: A database of essential gene clusters. BMC Genom. 2013, 14, 769. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Lin, Y.; Liu, T.; Lai, F.-L.; Zhang, C.-T.; Gao, F.; Zhang, R. DEG 15, an update of the Database of Essential Genes that includes built-in analysis tools. Nucleic Acids Res. 2021, 49, D677–D686. [Google Scholar] [CrossRef]
- Sarangi, A.N.; Lohani, M.; Aggarwal, R. Proteome mining for drug target identification in Listeria monocytogenes strain EGD-e and structure-based virtual screening of a candidate drug target penicillin binding protein 4. J. Microbiol. Methods 2015, 111, 9–18. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, C.; Bell, E.W.; Zhang, Y. I-TASSER gateway: A protein structure and function prediction server powered by XSEDE. Future Gener Comput. Syst. 2019, 99, 73–85. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, W.; Li, Y.; Pearce, R.; Zhang, C.; Bell, E.W.; Zhang, G.; Zhang, Y. I-TASSER-MTD: A deep-learning-based platform for multi-domain protein structure and function prediction. Nat. Protoc. 2022, 17, 2326–2353. [Google Scholar] [CrossRef]
- Wei, M.P.; Qiu, J.D.; Li, L.; Xie, Y.F.; Yu, H.; Guo, Y.H.; Yao, W.R. Saponin fraction from Sapindus mukorossi Gaertn as a novel cosmetic additive: Extraction, biological evaluation, analysis of anti-acne mechanism and toxicity prediction. J. Ethnopharmacol. 2021, 268, 113552. [Google Scholar] [CrossRef]
- Banerjee, R.; Kumar, M.; Gaurav, I.; Thakur, S.; Thakur, A.; Singh, K.; Karak, S.; Das, R.; Chhabra, M. In-silico Prediction of the Beta-carboline Alkaloids Harmine and Harmaline as Potent Drug Candidates for the Treatment of Parkinson’s disease. Antiinflamm Antiallergy Agents Med. Chem. 2021, 20, 250–263. [Google Scholar] [CrossRef]
- Rai, H.; Barik, A.; Singh, Y.P.; Suresh, A.; Singh, L.; Singh, G.; Nayak, U.Y.; Dubey, V.K.; Modi, G. Molecular docking, binding mode analysis, molecular dynamics, and prediction of ADMET/toxicity properties of selective potential antiviral agents against SARS-CoV-2 main protease: An effort toward drug repurposing to combat COVID-19. Mol. Divers 2021, 25, 1905–1927. [Google Scholar] [CrossRef]
- Lu, A.T.; Frisella, M.E.; Johnson, K.C. Dissolution modeling: Factors affecting the dissolution rates of polydisperse powders. Pharm. Res. 1993, 10, 1308–1314. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Wu, J. A new algorithm for essential proteins identification based on the integration of protein complex co-expression information and edge clustering coefficient. Int. J. Data Min. Bioinform. 2015, 12, 257–274. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Gao, F.; Lin, Y. Evolutionary conservation analysis between the essential and nonessential genes in bacterial genomes. Sci. Rep. 2015, 5, 13210. [Google Scholar] [CrossRef] [Green Version]
- Shanmugham, B.; Pan, A. Identification and characterization of potential therapeutic candidates in emerging human pathogen Mycobacterium abscessus: A novel hierarchical in silico approach. PLoS ONE 2013, 8, e59126. [Google Scholar] [CrossRef] [PubMed]
- Vega, D.E.; Margolin, W. Direct Interaction between the Two Z Ring Membrane Anchors FtsA and ZipA. J. Bacteriol. 2019, 201, e00579-18. [Google Scholar] [CrossRef] [Green Version]
- Hale, C.A.; Shiomi, D.; Liu, B.; Bernhardt, T.G.; Margolin, W.; Niki, H.; de Boer, P.A. Identification of Escherichia coli ZapC (YcbW) as a component of the division apparatus that binds and bundles FtsZ polymers. J. Bacteriol. 2011, 193, 1393–1404. [Google Scholar] [CrossRef] [Green Version]
- Pazos, M.; Natale, P.; Vicente, M. A specific role for the ZipA protein in cell division: Stabilization of the FtsZ protein. J. Biol. Chem. 2013, 288, 3219–3226. [Google Scholar] [CrossRef] [Green Version]
- Moy, F.J.; Glasfeld, E.; Mosyak, L.; Powers, R. Solution structure of ZipA, a crucial component of Escherichia coli cell division. Biochemistry 2000, 39, 9146–9156. [Google Scholar] [CrossRef]
- Hyma, K.E.; Lacher, D.W.; Nelson, A.M.; Bumbaugh, A.C.; Janda, J.M.; Strockbine, N.A.; Young, V.B.; Whittam, T.S. Evolutionary genetics of a new pathogenic Escherichia species: Escherichia albertii and related Shigella boydii strains. J. Bacteriol. 2005, 187, 619–628. [Google Scholar] [CrossRef]
- Svanberg Frisinger, F.; Jana, B.; Donadio, S.; Guardabassi, L. In Silico Prediction and Prioritization of Novel Selective Antimicrobial Drug Targets in Escherichia coli. Antibiotics 2021, 10, 632. [Google Scholar] [CrossRef] [PubMed]
- Pepin, X.J.; Flanagan, T.R.; Holt, D.J.; Eidelman, A.; Treacy, D.; Rowlings, C.E. Justification of Drug Product Dissolution Rate and Drug Substance Particle Size Specifications Based on Absorption PBPK Modeling for Lesinurad Immediate Release Tablets. Mol. Pharm. 2016, 13, 3256–3269. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.W.; Zhu, Y.T.; Yu, M.M.; Zan, B.; Liu, J.; Zhang, Y.F.; Chen, X.Y.; Li, X.N.; Zhong, D.F. Preclinical pharmacokinetics of TPN729MA, a novel PDE5 inhibitor, and prediction of its human pharmacokinetics using a PBPK model. Acta Pharmacol. Sin. 2015, 36, 1528–1536. [Google Scholar] [CrossRef] [PubMed]
- Talapphetsakun, T.; Viyoch, J.; Waranuch, N.; Sermsappasuk, P. The Development of a Physiologically Based Pharmacokinetic (PBPK) Model of Andrographolide in Mice and Scaling It up to Rats, Dogs and Humans. Curr. Drug. Metab. 2022, 23, 538–552. [Google Scholar]
- Zhang, M.; You, X.; Ke, M.; Jiao, Z.; Wu, H.; Huang, P.; Lin, C. Prediction of Ticagrelor and its Active Metabolite in Liver Cirrhosis Populations Using a Physiologically Based Pharmacokinetic Model Involving Pharmacodynamics. J. Pharm. Sci. 2019, 108, 2781–2790. [Google Scholar] [CrossRef]
- Ye, L.; Ke, M.; You, X.; Huang, P.; Lin, C. A Physiologically Based Pharmacokinetic Model of Ertapenem in Pediatric Patients with Renal Impairment. J. Pharm. Sci. 2020, 109, 2909–2918. [Google Scholar]
- Ke, C.; You, X.; Lin, C.; Chen, J.; Guo, G.; Wu, W.; Ye, L.; Huang, P. Development of Physiologically Based Pharmacokinetic Model for Pregabalin to Predict the Pharmacokinetics in Pediatric Patients with Renal Impairment and Adjust Dosage Regimens: PBPK Model of Pregabalin in Pediatric Patients with Renal Impairment. J. Pharm. Sci. 2022, 111, 542–551. [Google Scholar] [CrossRef]
Library | Name | MM/PBSA of Ligand | MM/PBSA of Protein-Ligand Complex | S-Value | Atoms | Interaction | Bond Length (Å) | Energy kcal/mol |
---|---|---|---|---|---|---|---|---|
Ayurvedic | Psidinin C | −0.79 | −39.39 | −16.15 | O34 with Gln125 O76 with Glu222 C82 with Asp64 | H-donor H-donor H-donor | 2.59 3.12 2.82 | −2.8 −0.8 −1.6 |
Guajavin A | −0.91 | −39.32 | −15.63 | - | - | - | - | |
Ginsenoside Ra2 | −1.28 | −39.06 | −15.59 | O66 with Gln133 | H-acceptor | 2.86 | −1.9 | |
TCM | ZINC85624912 | −0.58 | −39.62 | −11.11 | C22 with Tyr66 N35 with Glu68 N37 with Glu68 N38 with Glu68 | H-donor Ionic bond Ionic bond Ionic bond | 3.14 2.77 2.57 3.34 | −0.5 −6.2 −8.2 −2.6 |
ZINC95910716 | −0.73 | −39.64 | −10.49 | - | - | - | - | |
ZINC70450950 | −0.16 | −39.85 | −10.31 | O28 with Gln5 O39 with His218 | H-acceptor H-pi | 2.36 4.38 | −0.9 −1.9 |
Library | Compound | Molar Refractivity | Total PSA (Å2) | Bioavailability Score | Lipinski Violations | Lead Likeness Violation | Consensus Log P | Skin Permeation (cm/s) |
---|---|---|---|---|---|---|---|---|
Ayurvedic | Psidinin C | 275.45 | 531.17 | 0.17 | 3 | 1 | 0.01 | −12.29 |
Guajavin A | 285.74 | 565.56 | 0.17 | 3 | 1 | 0.17 | −11.68 | |
Ginsenoside Ra2 | 289.86 | 415.98 | 0.17 | 3 | 2 | −1.44 | −14.14 | |
TCM | ZINC85624912 | 186.68 | 179.30 | 0.17 | 2 | 2 | 3.60 | −8.05 |
ZINC95910716 | 185.99 | 54.37 | 0.17 | 2 | 2 | 3.60 | −8.05 | |
ZINC70450950 | 135.28 | 271.20 | 0.17 | 3 | 1 | −2.12 | −11.64 |
Library | Absorbed Fraction of the Drug Fa [%] | Dose Reaching the Portal Vein FDp [%] | Bioavailability F [%] | Maximum Plasma Concentration Cmax [ug/mL] | Time of Cmax [h] | Absorbed Fraction of the Drug Fa [%] | AUC(0-inf) [ng-h/mL] | AUC(0-t) [ng-h/mL] |
---|---|---|---|---|---|---|---|---|
Ayurvedic | Psidinin C in healthy | 0.9879 | 0.6885 | 0.6305 | 0.0058 | 9.5444 | 327.24 | 28.243 |
Psidinin C in CP | 0.8983 | 0.6273 | 0.6273 | 0.0472 | 10 | 214.82 | 214.82 | |
Psidinin C in RI patient | 0.908 | 0.6516 | 0.6516 | 0.051 | 10 | 239.97 | 239.97 | |
Guajavin A in healthy | 2.5604 | 1.7364 | 1.4894 | 0.0147 | 8.3008 | 571.27 | 86.599 | |
Guajavin A in CP | 2.3592 | 1.5299 | 1.5299 | 0.1175 | 10 | 556.53 | 556.53 | |
Guajavin A in RI patient | 2.4877 | 1.5906 | 1.5906 | 0.1227 | 10 | 558.26 | 558.26 | |
Ginsenoside Ra2 in healthy | 5.0919 | 3.091 | 1.8541 | 0.0111 | 6.1048 | 195.96 | 71.161 | |
Ginsenoside Ra2 in CP | 5.2242 | 3.0946 | 3.0946 | 0.0575 | 10 | 280.97 | 280.97 | |
Ginsenoside Ra2 in RI patient | 5.335 | 3.2377 | 3.2377 | 0.0699 | 10 | 347.9 | 347.9 | |
TCM | ZINC85624912 in healthy | 50.29 | 47.188 | 45.071 | 0.1246 | 9.1224 | 43220 | 947.63 |
ZINC85624912 in CP | 47.613 | 44.505 | 44.505 | 0.2587 | 8.9028 | 14570 | 2122.5 | |
ZINC85624912 in RI patient | 49.613 | 46.628 | 46.628 | 0.2701 | 6.3164 | 184500 | 2189.2 | |
ZINC95910716 in healthy | 3.158 | 3.1571 | 3.1558 | 0.0196 | 10 | 146.32 | 146.32 | |
ZINC95910716 in CP | 3.2646 | 3.2638 | 3.2638 | 0.0089 | 2.1232 | 90.23 | 48.93 | |
ZINC95910716 in RI patient | 2.9727 | 2.9716 | 2.9716 | 0.01 | 2.5384 | 101.83 | 56.385 | |
ZINC70450950 in healthy | 13.043 | 11.493 | 10.761 | 0.1502 | 6.9704 | 6414.3 | 1086.5 | |
ZINC70450950 in CP | 13.471 | 11.975 | 11.975 | 0.5176 | 9.9728 | 45950 | 3424.7 | |
ZINC70450950 in RI patient | 14.462 | 12.693 | 12.693 | 0.5496 | 9.9792 | 10900 | 3520.5 |
Library | Compound | Maximum Tolerated Dose in Humans (log mg/kg/day) | Oral Rat Acute Toxicity (LD50) (mol/kg) | Oral Rat Chronic Toxicity (LOAEL) (log mg/kg_bw/day) | T. pyriformis Toxicity (log ug/L) | Minnow Toxicity (log mM) |
---|---|---|---|---|---|---|
Ayurvedic | Psidinin C | 0.438 | 0.438 | 17.76 | 0.285 | 12.923 |
Guajavin A | 0.438 | 2.482 | 21.14 | 0.285 | 21.762 | |
Ginsenoside Ra2 | 0.231 | 2.494 | 6.779 | 0.285 | 13.367 | |
TCM | ZINC85624912 | −0.351 | 2.679 | 1.812 | 0.285 | 2.278 |
ZINC95910716 | −0.438 | 2.171 | 2.468 | 0.342 | −3.178 | |
ZINC70450950 | 0.473 | 2.472 | 6.616 | 0.285 | 7.377 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalal, K.; Khan, K.; Hayat, A.; Alnasser, S.M.; Meshal, A.; Basharat, Z. Pan-Genomics of Escherichia albertii for Antibiotic Resistance Profiling in Different Genome Fractions and Natural Product Mediated Intervention: In Silico Approach. Life 2023, 13, 541. https://doi.org/10.3390/life13020541
Jalal K, Khan K, Hayat A, Alnasser SM, Meshal A, Basharat Z. Pan-Genomics of Escherichia albertii for Antibiotic Resistance Profiling in Different Genome Fractions and Natural Product Mediated Intervention: In Silico Approach. Life. 2023; 13(2):541. https://doi.org/10.3390/life13020541
Chicago/Turabian StyleJalal, Khurshid, Kanwal Khan, Ajmal Hayat, Sulaiman Mohammed Alnasser, Alotaibi Meshal, and Zarrin Basharat. 2023. "Pan-Genomics of Escherichia albertii for Antibiotic Resistance Profiling in Different Genome Fractions and Natural Product Mediated Intervention: In Silico Approach" Life 13, no. 2: 541. https://doi.org/10.3390/life13020541
APA StyleJalal, K., Khan, K., Hayat, A., Alnasser, S. M., Meshal, A., & Basharat, Z. (2023). Pan-Genomics of Escherichia albertii for Antibiotic Resistance Profiling in Different Genome Fractions and Natural Product Mediated Intervention: In Silico Approach. Life, 13(2), 541. https://doi.org/10.3390/life13020541