In Silico Analysis of Publicly Available Transcriptomic Data for the Identification of Triple-Negative Breast Cancer-Specific Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Publicly Available Breast Cancer Transcriptomic Datasets
2.2. Identification of Differentially Expressed Genes
2.3. Gene Ontology and Pathway Analysis
2.4. Observing DEG Expression in Patients
3. Results
3.1. Survival Rates of TNBC Patients Are Affected by FOXA1 Expression
3.2. Functional Analysis of the Common DEGs Reveal the Involvement of Estrogen-Dependent Gene Expression Pathway and Related Genes
3.3. GATA3 Is Down-Regulated in TNBC Which Leads to Poor Survival
3.4. Three Immune Cell Types Are Found in the Tumor Site
4. Discussions
4.1. Most DEGs Are Down-Regulated in TNBC Which Can Be Attributed to Poor Prognosis
4.2. FOXA1 Can Increase Malignancy in Breast Cancer
4.3. GATA3 Is a Major Transcription Factor That Is Found in Many Breast Cancer Subtypes
4.4. Estrogen-Dependent Gene Expression Plays a Vital Role in Breast Cancer
4.5. GATA3, ESR1, TFF3, FOXA1 Interaction
4.6. IRF1 Is a Major Transcriptional Factor Target
4.7. Immune Cell Involvement in Triple-Negative Breast Cancer Can Lead to Better or Worse Prognosis
4.8. Clinical Implications
4.9. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MBRU | Mohammed Bin Rashid University of Medicine and Health Sciences |
ER | estrogen receptor |
PR | progesterone receptor |
HER2 | human epidermal growth factor receptor 2 |
NCBI | National Center for Biotechnology Information |
GEO | Gene Expression Omnibus |
IRF-1 | interferon regulatory factor 1 |
MCODE | Molecular Complex Detection |
DMFS | distant metastasis-free survival |
OS | overall survival |
PKR | protein kinase R |
STAT | signal transducer and activator of transcription |
JAK | Janus kinase |
NR3A1 | nuclear subfamily 3, group A, member 1 |
HNF-3A | hepatocyte nuclear factor 3-alpha |
References
- Wild, W.E.; Stewart, B.W. (Eds.) World Cancer Report: Cancer Research for Cancer Prevention; International Agency for Research on Cancer: Lyon, France, 2020.
- Eliyatkın, N.; Yalçın, E.; Zengel, B.; Aktaş, S.; Vardar, E. Molecular Classification of Breast Carcinoma: From Traditional, Old-Fashioned Way to A New Age, and A New Way. J. Breast Health 2015, 11, 59–66. [Google Scholar] [CrossRef]
- Almansour, N.M. Triple-Negative Breast Cancer: A Brief Review About Epidemiology, Risk Factors, Signaling Pathways, Treatment and Role of Artificial Intelligence. Front. Mol. Biosci. 2022, 9, 836417. [Google Scholar] [CrossRef]
- Ramadan, W.S.; Talaat, I.M.; Hachim, M.Y.; Lischka, A.; Gemoll, T.; El-Awady, R. The impact of CBP expression in estrogen receptor-positive breast cancer. Clin. Epigenetics 2021, 13, 72. [Google Scholar] [CrossRef]
- Dass, S.A.; Tan, K.L.; Selva Rajan, R.; Mokhtar, N.F.; Mohd Adzmi, E.R.; Wan Abdul Rahman, W.F.; Tengku Din, T.; Balakrishnan, V. Triple Negative Breast Cancer: A Review of Present and Future Diagnostic Modalities. Medicina 2021, 57, 62. [Google Scholar] [CrossRef]
- Hachim, M.Y.; Hachim, I.Y.; Talaat, I.M.; Yakout, N.M.; Hamoudi, R. M1 Polarization Markers Are Upregulated in Basal-Like Breast Cancer Molecular Subtype and Associated With Favorable Patient Outcome. Front. Immunol. 2020, 11, 560074. [Google Scholar] [CrossRef]
- Dana-Farber Cancer Institute. “Liquid Biopsy” Blood Test Accurately Detects Key Genetic Mutations in Most Common Form of Lung Cancer, Study Finds. In News Wise; Dana-Farber Cancer Institute: Boston, MA, USA, 2016. [Google Scholar]
- Kashyap, D.; Kaur, H. Cell-free miRNAs as non-invasive biomarkers in breast cancer: Significance in early diagnosis and metastasis prediction. Life Sci. 2020, 246, 117417. [Google Scholar] [CrossRef]
- Abramson, V.G.; Mayer, I.A. Molecular Heterogeneity of Triple Negative Breast Cancer. Curr. Breast Cancer Rep. 2014, 6, 154–158. [Google Scholar] [CrossRef]
- Zhou, J.; Tang, Z.; Gao, S.; Li, C.; Feng, Y.; Zhou, X. Tumor-Associated Macrophages: Recent Insights and Therapies. Front. Oncol. 2020, 10, 188. [Google Scholar] [CrossRef]
- Petitprez, F.; Vano, Y.A.; Becht, E.; Giraldo, N.A.; de Reyniès, A.; Sautès-Fridman, C.; Fridman, W.H. Transcriptomic analysis of the tumor microenvironment to guide prognosis and immunotherapies. Cancer Immunol. Immunother. 2018, 67, 981–988. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
- López-Ozuna, V.M.; Kogan, L.; Hachim, M.Y.; Matanes, E.; Hachim, I.Y.; Mitric, C.; Kiow, L.L.C.; Lau, S.; Salvador, S.; Yasmeen, A.; et al. Identification of Predictive Biomarkers for Lymph Node Involvement in Obese Women With Endometrial Cancer. Front. Oncol. 2021, 11, 695404. [Google Scholar] [CrossRef] [PubMed]
- Busch, M.; Dünker, N. Trefoil factor family peptides--friends or foes? Biomol. Concepts 2015, 6, 343–359. [Google Scholar] [CrossRef]
- Dai, X.; Cheng, H.; Chen, X.; Li, T.; Zhang, J.; Jin, G.; Cai, D.; Huang, Z. FOXA1 is Prognostic of Triple Negative Breast Cancers by Transcriptionally Suppressing SOD2 and IL6. Int. J. Biol. Sci. 2019, 15, 1030–1041. [Google Scholar] [CrossRef]
- Rangel, N.; Fortunati, N.; Osella-Abate, S.; Annaratone, L.; Isella, C.; Catalano, M.G.; Rinella, L.; Metovic, J.; Boldorini, R.; Balmativola, D.; et al. FOXA1 and AR in invasive breast cancer: New findings on their co-expression and impact on prognosis in ER-positive patients. BMC Cancer 2018, 18, 703. [Google Scholar] [CrossRef]
- Badve, S.; Turbin, D.; Thorat, M.A.; Morimiya, A.; Nielsen, T.O.; Perou, C.M.; Dunn, S.; Huntsman, D.G.; Nakshatri, H. FOXA1 expression in breast cancer--correlation with luminal subtype A and survival. Clin. Cancer Res. 2007, 13, 4415–4421. [Google Scholar] [CrossRef]
- Byrne, D.J.; Deb, S.; Takano, E.A.; Fox, S.B. GATA3 expression in triple-negative breast cancers. Histopathology 2017, 71, 63–71. [Google Scholar] [CrossRef]
- Voduc, D.; Cheang, M.; Nielsen, T. GATA-3 expression in breast cancer has a strong association with estrogen receptor but lacks independent prognostic value. Cancer Epidemiol. Biomark. Prev. 2008, 17, 365–373. [Google Scholar] [CrossRef]
- Wasserman, J.K.; Williams, P.A.; Islam, S.; Robertson, S.J. GATA-3 expression is not associated with complete pathological response in triple negative breast cancer patients treated with neoadjuvant chemotherapy. Pathol. Res. Pract. 2016, 212, 539–544. [Google Scholar] [CrossRef]
- Kim, S.; Moon, B.-I.; Lim, W.; Park, S.; Cho, M.S.; Sung, S.H. Expression patterns of GATA3 and the androgen receptor are strongly correlated in patients with triple-negative breast cancer. Human Pathol. 2016, 55, 190–195. [Google Scholar] [CrossRef]
- Asif, A.; Mushtaq, S.; Hassan, U.; Akhtar, N.; Azam, M. Expression of Gata 3 in Epithelial Tumors. PAFMJ 2020, 70 (Suppl. S1), S20–S25. [Google Scholar]
- Cimino-Mathews, A.; Subhawong, A.P.; Illei, P.B.; Sharma, R.; Halushka, M.K.; Vang, R.; Fetting, J.H.; Park, B.H.; Argani, P. GATA3 expression in breast carcinoma: Utility in triple-negative, sarcomatoid, and metastatic carcinomas. Hum. Pathol. 2013, 44, 1341–1349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krings, G.; Nystrom, M.; Mehdi, I.; Vohra, P.; Chen, Y.Y. Diagnostic utility and sensitivities of GATA3 antibodies in triple-negative breast cancer. Hum. Pathol. 2014, 45, 2225–2232. [Google Scholar] [CrossRef]
- Treeck, O.; Schüler-Toprak, S.; Ortmann, O. Estrogen Actions in Triple-Negative Breast Cancer. Cells 2020, 9, 2358. [Google Scholar] [CrossRef] [PubMed]
- Filardo, E.J.; Quinn, J.A.; Bland, K.I.; Frackelton, A.R., Jr. Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol. Endocrinol. 2000, 14, 1649–1660. [Google Scholar] [CrossRef]
- Hoffmann, W. Trefoil Factor Family (TFF) Peptides and Their Links to Inflammation: A Re-evaluation and New Medical Perspectives. Int. J. Mol. Sci. 2021, 22, 4909. [Google Scholar] [CrossRef]
- Karakuş, F.; Eyol, E.; Yılmaz, K.; Ünüvar, S. Inhibition of cell proliferation, migration and colony formation of LS174T Cells by carbonic anhydrase inhibitor. Afr. Health Sci. 2018, 18, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Helzer, K.T.; Szatkowski Ozers, M.; Meyer, M.B.; Benkusky, N.A.; Solodin, N.; Reese, R.M.; Warren, C.L.; Pike, J.W.; Alarid, E.T. The Phosphorylated Estrogen Receptor α (ER) Cistrome Identifies a Subset of Active Enhancers Enriched for Direct ER-DNA Binding and the Transcription Factor GRHL2. Mol. Cell. Biol. 2019, 39, e00417-18. [Google Scholar] [CrossRef]
- Laganière, J.; Deblois, G.; Lefebvre, C.; Bataille, A.R.; Robert, F.; Giguère, V. From the Cover: Location analysis of estrogen receptor alpha target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc. Natl. Acad. Sci. USA 2005, 102, 11651–11656. [Google Scholar] [CrossRef]
- Manavathi, B.; Samanthapudi, V.S.; Gajulapalli, V.N. Estrogen receptor coregulators and pioneer factors: The orchestrators of mammary gland cell fate and development. Front. Cell. Dev. Biol. 2014, 2, 34. [Google Scholar] [CrossRef]
- Theodorou, V.; Stark, R.; Menon, S.; Carroll, J.S. GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility. Genome Res. 2013, 23, 12–22. [Google Scholar] [CrossRef]
- Yi, J.; Ren, L.; Li, D.; Wu, J.; Li, W.; Du, G.; Wang, J. Trefoil factor 1 (TFF1) is a potential prognostic biomarker with functional significance in breast cancers. Biomed. Pharmacother. 2020, 124, 109827. [Google Scholar] [CrossRef] [PubMed]
- Ohsugi, T.; Yamaguchi, K.; Zhu, C.; Ikenoue, T.; Takane, K.; Shinozaki, M.; Tsurita, G.; Yano, H.; Furukawa, Y. Anti-apoptotic effect by the suppression of IRF1 as a downstream of Wnt/β-catenin signaling in colorectal cancer cells. Oncogene 2019, 38, 6051–6064. [Google Scholar] [CrossRef] [PubMed]
- Rah, B.; Rather, R.A.; Bhat, G.R.; Baba, A.B.; Mushtaq, I.; Farooq, M.; Yousuf, T.; Dar, S.B.; Parveen, S.; Hassan, R.; et al. JAK/STAT Signaling: Molecular Targets, Therapeutic Opportunities, and Limitations of Targeted Inhibitions in Solid Malignancies. Front. Pharmacol. 2022, 13, 821344. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wu, Y.; Yi, K.; Hu, Y.; Ding, W.; Xing, C. IRF1 regulates the progression of colorectal cancer via interferon-induced proteins. Int. J. Mol. Med. 2021, 47, 104. [Google Scholar] [CrossRef] [PubMed]
- Burugu, S.; Asleh-Aburaya, K.; Nielsen, T.O. Immune infiltrates in the breast cancer microenvironment: Detection, characterization and clinical implication. Breast Cancer 2017, 24, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Dieci, M.V.; Miglietta, F.; Guarneri, V. Immune Infiltrates in Breast Cancer: Recent Updates and Clinical Implications. Cells 2021, 10, 223. [Google Scholar] [CrossRef]
- Gabrilovich, D.I.; Ishida, T.; Nadaf, S.; Ohm, J.E.; Carbone, D.P. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin. Cancer Res. 1999, 5, 2963–2970. [Google Scholar]
- Saqib, U.; Sarkar, S.; Suk, K.; Mohammad, O.; Baig, M.S.; Savai, R. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget 2018, 9, 17937–17950. [Google Scholar] [CrossRef]
- Tiainen, S.; Tumelius, R.; Rilla, K.; Hämäläinen, K.; Tammi, M.; Tammi, R.; Kosma, V.M.; Oikari, S.; Auvinen, P. High numbers of macrophages, especially M2-like (CD163-positive), correlate with hyaluronan accumulation and poor outcome in breast cancer. Histopathology 2015, 66, 873–883. [Google Scholar] [CrossRef]
- Palma, G.; Frasci, G.; Chirico, A.; Esposito, E.; Siani, C.; Saturnino, C.; Arra, C.; Ciliberto, G.; Giordano, A.; D’Aiuto, M. Triple negative breast cancer: Looking for the missing link between biology and treatments. Oncotarget 2015, 6, 26560–26574. [Google Scholar] [CrossRef] [Green Version]
GEO Accession Number | Study Title | Samples | PMID |
---|---|---|---|
GSE2741 | Breast Tumor’s study | TNBC = 3 Non-TNBC = 8 Total samples = 11 | 16230372 |
GSE45255 | Expression Profiles of Breast Tumors from Singapore and Europe | TNBC = 15 Non-TNBC = 124 Total samples = 139 | 23618380 |
GSE30682 | Search for a gene-expression signature of breast cancer local recurrence in young women | TNBC = 58 Non-TNBC = 285 Total samples = 343 | 22271875 |
GSE36295 | Transcriptomic analysis of breast cancer | TNBC = 11 Non-TNBC = 27 Total samples = 38 | 27177292 |
GSE19615 | Integrated genomic and function characterization of the 8q22 gain | TNBC = 28 Non-TNBC = 87 Total samples = 115 | 20098429 |
GSE37751 | Molecular Profiles of Human Breast Cancer and Their Association with Tumor Subtypes and Disease Prognosis (Affymetrix) | TNBC = 14 Non-TNBC = 47 Total samples = 61 | 30501643 |
GSE97177 | Genome-wide multi-omics profiling reveals extensive genetic complexity in 8p11-p12 amplified breast carcinomas [expression] | TNBC = 9 Non-TNBC = 44 Total samples = 53 | 29844878 |
GSE18864 | Tumor expression data from neoadjuvant trial of cisplatin monotherapy in triple-negative breast cancer patients | TNBC = 38 Non-TNBC = 46 Total samples = 84 | 20100965 |
GSE40115 | Classifications within Molecular Subtypes Enables Identification of BRCA1/BRCA2 Mutation Carriers by RNA Tumor Profiling | TNBC = 31 Non-TNBC = 152 Total samples = 182 | 23704984 |
Genes | Gene Name | Number of Datasets the Gene Was DE in | Percentage of Datasets the Gene Was DE in | Regulation of the DEG in TNBC |
---|---|---|---|---|
FOXA1 | Forkhead box A1 | 9 | 100% | Down-regulated |
AGR2 | Anterior gradient 2 | 7 | 78% | Down-regulated |
CA12 | Carbonic anhydrase 12 | 7 | 78% | Down-regulated |
ESR1 | Estrogen receptor 1 | 7 | 78% | Down-regulated |
GATA3 | GATA binding protein 3 | 7 | 78% | Down-regulated |
INPP4B | Inositol polyphosphate-4-phosphatase type II B | 7 | 78% | Down-regulated |
MLPH | Melanophilin | 7 | 78% | Down-regulated |
TBC1D9 | TBC1 domain family member 9 | 7 | 78% | Down-regulated |
AGR3 | Anterior gradient 3 | 6 | 67% | Down-regulated |
AR | Androgen receptor | 6 | 67% | Down-regulated |
DACH1 | Dachshund family transcription factor 1 | 6 | 67% | Down-regulated |
DSC2 | Desmocollin 2 | 6 | 67% | Up-regulated |
FOXC1 | Forkhead box C1 | 6 | 67% | Up-regulated |
SPDEF | SAM pointed domain containing ETS transcription factor | 6 | 67% | Down-regulated |
TFF3 | Trefoil factor 3 | 6 | 67% | Down-regulated |
VAV3 | Vav guanine nucleotide exchange factor 3 | 6 | 67% | Down-regulated |
XBP1 | X-box binding protein 1 | 6 | 67% | Down-regulated |
DNALI1 | Dynein axonemal light intermediate chain 1 | 6 | 67% | Down-regulated |
VGLL1 | Vestigial-like family member 1 | 5 | 56% | Up-regulated |
GABRP | Gamma-aminobutyric acid type A receptor subunit pi | 5 | 56% | Up-regulated |
AFF3 | ALF transcription elongation factor 3 | 5 | 56% | Down-regulated |
ANKRD3OA | Ankyrin repeat domain 30A | 5 | 56% | Down-regulated |
ART3 | ADP-ribosyltransferase 3 (inactive) | 5 | 56% | Up-regulated |
BCL11A | BCL11 transcription factor A | 5 | 56% | Up-regulated |
CXXC5 | CXXC finger protein 5 | 5 | 56% | Down-regulated |
ELF5 | E74-like ETS transcription factor 5 | 5 | 56% | Up-regulated |
ERBB4 | Erb-b2 receptor tyrosine kinase 4 | 5 | 56% | Down-regulated |
FAM174B | Family with sequence similarity 174 member B | 5 | 56% | Down-regulated |
FBP1 | Fructose-bisphosphatase 1 | 5 | 56% | Down-regulated |
RHOB | Ras homolog family member B | 5 | 56% | Down-regulated |
SCUBE2 | Signal peptide, CUB domain and EGF-like domain containing 2 | 5 | 56% | Down-regulated |
UGT8 | UDP glycosyltransferase 8 | 5 | 56% | Up-regulated |
HORMAD1 | HORMA domain containing 1 | 5 | 56% | Up-regulated |
SMIM14 | Small integral membrane protein 14 | 5 | 56% | Down-regulated |
Cancer | Infiltrates | p-Value | Adjusted p-Value |
---|---|---|---|
BRCA-Basal (n = 191) | Myeloid dendritic cell activated | 0.00151881 | 0.005368 |
BRCA-Basal (n = 191) | Neutrophil | 0.019378582 | 0.049857 |
BRCA-Basal (n = 191) | Macrophage | 0.006514787 | 0.019388 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaddoura, R.; Alqutami, F.; Asbaita, M.; Hachim, M. In Silico Analysis of Publicly Available Transcriptomic Data for the Identification of Triple-Negative Breast Cancer-Specific Biomarkers. Life 2023, 13, 422. https://doi.org/10.3390/life13020422
Kaddoura R, Alqutami F, Asbaita M, Hachim M. In Silico Analysis of Publicly Available Transcriptomic Data for the Identification of Triple-Negative Breast Cancer-Specific Biomarkers. Life. 2023; 13(2):422. https://doi.org/10.3390/life13020422
Chicago/Turabian StyleKaddoura, Rachid, Fatma Alqutami, Mohamed Asbaita, and Mahmood Hachim. 2023. "In Silico Analysis of Publicly Available Transcriptomic Data for the Identification of Triple-Negative Breast Cancer-Specific Biomarkers" Life 13, no. 2: 422. https://doi.org/10.3390/life13020422
APA StyleKaddoura, R., Alqutami, F., Asbaita, M., & Hachim, M. (2023). In Silico Analysis of Publicly Available Transcriptomic Data for the Identification of Triple-Negative Breast Cancer-Specific Biomarkers. Life, 13(2), 422. https://doi.org/10.3390/life13020422