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Abstract: Background: Breast cancer is the most common type of cancer among women and is
classified into multiple subtypes. Triple-negative breast cancer (TNBC) is the most aggressive
subtype, with high mortality rates and limited treatment options such as chemotherapy and radiation.
Due to the heterogeneity and complexity of TNBC, there is a lack of reliable biomarkers that can be
used to aid in the early diagnosis and prognosis of TNBC in a non-invasive screening method. Aim:
This study aims to use in silico methods to identify potential biomarkers for TNBC screening and
diagnosis, as well as potential therapeutic markers. Methods: Publicly available transcriptomic data
of breast cancer patients published in the NCBI’s GEO database were used in this analysis. Data
were analyzed with the online tool GEO2R to identify differentially expressed genes (DEGs). Genes
that were differentially expressed in more than 50% of the datasets were selected for further analysis.
Metascape, Kaplan-Meier plotter, cBioPortal, and the online tool TIMER were used for functional
pathway analysis to identify the biological role and functional pathways associated with these genes.
Breast Cancer Gene-Expression Miner v4.7 was used to validify the obtained results in a larger cohort
of datasets. Results: A total of 34 genes were identified as differentially expressed in more than half of
the datasets. The DEG GATA3 had the highest degree of regulation, and it plays a role in regulating
other genes. The estrogen-dependent pathway was the most enriched pathway, involving four crucial
genes, including GATA3. The gene FOXA1 was consistently down-regulated in TNBC in all datasets.
Conclusions: The shortlisted 34 DEGs will aid clinicians in diagnosing TNBC more accurately as
well as developing targeted therapies to improve patient prognosis. In vitro and in vivo studies are
further recommended to validate the results of the current study.

Keywords: triple-negative breast cancer; in silico analysis; differentially expressed gene; biomarkers;
GATA 3; FOXA1; tumor microenvironment

1. Introduction

Breast cancer is one of the most common types of cancer amongst women, with a
very complex pathophysiology and 2.3 million newly identified cases globally in the year
2020, and a total of 7.8 million diagnoses by the end of that year [1]. Breast cancer is
most commonly classified based on the molecular subtypes, which are dependent on the
molecular profiles of the estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor recpetor (HER2) [2]. Of the different molecular subtypes, the
triple-negative breast cancer (TNBC) subtype is negative for all these receptors, accounts
for 15–25% of the cases, and is considered to be the most aggressive subtype [3]. In the
United States, TNBC has been found to yield a low five-year survival rate, of 8–16%, in
comparison to the other molecular sybtypes [3].There has been a gradual increase in the
incidence of breast cancer annually, with management of the disease being dependent on
enhancing the outcome and survival of patients through early detection and diagnosis [4].

Current diagnostic procedures include imaging and immunohistochemistry, which
aid in subtyping and classifying the disease for enhancing treatment options [5]. Recent
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technical developments in the transcriptomic and genomic profiling of tumors have shifted
the traditional clinicopathological classification into an advanced classification based on
subtyping, which demonstrated prognostic and therapeutic features [6]. Furthermore, the
introduction of a minimally invasive procedures, such as liquid biopsies, can potentially
increase the rate of early diagnosis as opposed to a more demanding and less appealing
option—the solid biopsy. In a study that involved newly diagnosed patients, for example,
the “predictive value” of plasma ddPCR using liquid biopsy for both primary EGFR
mutation and KRAS mutation was 100 percent, meaning that patients who tested positive
for either mutation carried said mutation in their tumor [7]. This screening accuracy,
paired with the minimally invasive nature of liquid biopsies, could aid in introducing
screening tests as a more common procedure, especially for situations such as of ruling out
triple-negative breast cancers [7].

There is a clear distinction in the protein expression levels between the molecular sub-
types of breast cancer—Luminal A, Luminal B, and HER2-enriched breast cancer—which
is not present in TNBC. This lack of a precise molecular mechanism to explain TNBC limits
treatment plans to the likes of chemotherapy, with an ambiguity in the levels of protein
expression that are detrimental to TNBC diagnosis. Due to the disease complexity and
heterogeneity, TNBC cannot be treated as a single entity, and there is no single biomarker
that can be used for diagnosis, making it difficult for early recognition and prognosis [8,9].
To date, no clinical tools have been identified to easily assess whether the patient will
respond to standard breast cancer treatment or have resistant de novo mutations in TNBC
subtypes [9]. Therefore, there has been an increase in the drive to obtain reliable and
accurate biomarkers to aid in the early detection and prognosis of TNBC, which is the
motivation behind the conduction of this study.

Furthermore, in recent years, many immune cells have been found in the tumor
microenvironment, each playing a different role. These different immune cells can be used
as either biomarkers for tumor classification or potential therapeutic targets. For example,
recruitment of tumor-associated macrophages is a potential target for tumor treatments in
breast cancer [10]. Similarly, the proportion of immune cells in the tumor microenvironment
can not only predict but also explain a patient’s outcome and prognosis [11].

A comprehensive understanding of the molecular changes in TNBC might identify
new players that can explain the pathogenesis and serve as potential and reliable markers,
which is another incentive of this study. Output omics databases and patient datasets
that are publicly available, as used in this study, are an excellent source for identifying
such markers.

Breast cancer patients’ expression profiles were re-analyzed after grouping them into
TNBC and non-TNBC groups within their respective datasets. The aim of this study was
to identify consistently differentially expressed genes (DEGs)—genes found in more than
50% of datasets—and their pathways, as well as potential patient impact. The shortlisted
genes will aid clinicians in diagnosing TNBC more accurately as well as developing targeted
therapies to improve patient prognosis.

2. Materials and Methods
2.1. Publicly Available Breast Cancer Transcriptomic Datasets

In order to identify consistently differentially expressed genes specific to TNBC com-
pared to other types of breast cancer, we explored the publicly available transcriptomics
data repository of the National Center for Biotechnology Information (NCBI), the Gene
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/, accessed on 2 January
2023)—a genomic data repository—for datasets of patients with breast cancer. For con-
sistency, we selected publicly available datasets which can be analyzed using GEO2R, a
built-in platform within NCBI GEO, to carry out differential gene expression analysis on
microarray data. This platform utilizes the computer language R and the limma statistical
package to carry out various statistical calculations, such as the empirical Bayes statistics,
to identify genes that are differentially expressed between different patient groups.

https://www.ncbi.nlm.nih.gov/geo/
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The inclusion criteria for the datasets were: human sample sources, data type was
expression profiling by microarray, and datasets had breast cancer patients with TNBC
patients included. A total of nine datasets (n = 1027; TNBC n = 207) were used for analysis
(Table 1). Patients of each respective dataset were grouped into two groups: a TNBC group
and non-TNBC group. Figure 1 illustrates a simplified flowchart of the re-analysis process.

Table 1. List of breast cancer studies used in this analysis from NCBI GEO database. TNBC: triple-
negative breast cancer.

GEO Accession Number Study Title Samples PMID

GSE2741 Breast Tumor’s study
TNBC = 3
Non-TNBC = 8
Total samples = 11

16230372

GSE45255 Expression Profiles of Breast Tumors from Singapore
and Europe

TNBC = 15
Non-TNBC = 124
Total samples = 139

23618380

GSE30682 Search for a gene-expression signature of breast
cancer local recurrence in young women

TNBC = 58
Non-TNBC = 285
Total samples = 343

22271875

GSE36295 Transcriptomic analysis of breast cancer
TNBC = 11
Non-TNBC = 27
Total samples = 38

27177292

GSE19615 Integrated genomic and function characterization of
the 8q22 gain

TNBC = 28
Non-TNBC = 87
Total samples = 115

20098429

GSE37751
Molecular Profiles of Human Breast Cancer and
Their Association with Tumor Subtypes and Disease
Prognosis (Affymetrix)

TNBC = 14
Non-TNBC = 47
Total samples = 61

30501643

GSE97177
Genome-wide multi-omics profiling reveals
extensive genetic complexity in 8p11-p12 amplified
breast carcinomas [expression]

TNBC = 9
Non-TNBC = 44
Total samples = 53

29844878

GSE18864
Tumor expression data from neoadjuvant trial of
cisplatin monotherapy in triple-negative breast
cancer patients

TNBC = 38
Non-TNBC = 46
Total samples = 84

20100965

GSE40115
Classifications within Molecular Subtypes Enables
Identification of BRCA1/BRCA2 Mutation Carriers
by RNA Tumor Profiling

TNBC = 31
Non-TNBC = 152
Total samples = 182

23704984

2.2. Identification of Differentially Expressed Genes

Each dataset was processed individually to identify DEGs using the GEO2R online tool
(https://www.ncbi.nlm.nih.gov/geo/geo2r/, accessed on 1 October 2021). Samples were
assigned to groups based on their subtype and analyzed using the standardized parameters
of the tool. These standardized parameters include automated log2 transformation of
non-transformed data, empirical Bayes method of calculation through the limma statistical
package, and adjustment of p value using the default Benjamini and Hochberg (false
discovery rate) method. p-value < 0.05 was used to indicate statistical significance.

https://www.ncbi.nlm.nih.gov/geo/geo2r/
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Figure 1. Schematic representation and summary of the re-analysis process of the nine publicly
available datasets retrieved from the GEO database. Publicly available data were identified from
the NCBI GEO database and analyzed using the GEO2R online tool. The common differentially
expressed genes (DEGs) in all datasets were identified and then further analyzed using Metascape,
TIMER, cBioPortal, and Breast Cancer Gene-Expression Miner v4.7. Created with Biorender.com
accessed on 1 October 2021.

To identify consistent DEGs across the nine datasets, all DEGs were intersected using
the ‘ComplexUpset’ and ‘UpSetR’ libraries and functions in R studio (R version 4.2.2).
Genes that were found to be common in more than 50% of the datasets (5/9 datasets or
more) were selected for further analysis.

2.3. Gene Ontology and Pathway Analysis

The online database Metascape (http://metascape.org, accessed on 1 October 2021)
was used to identify the biological role and functional pathways associated with the
common DEGs. Metascape combines a variety of functions including gene annotation,
functional enrichment, and membership in over 40 independent databases within a single
integrated portal [12]. This tool was used to highlight the significance of the potential con-
nectivity network of our genes and those needed for consideration in order to understand
the full biological process [13]. Additionally, this tool streamlines different analysis types
instead of searching each database individually. Outcomes include enriched pathways, top
transcriptional factors, gene regulators, and protein–protein interactions.

2.4. Observing DEG Expression in Patients

To evaluate the expression of the identified DEGs in a clinically relevant cohort,
several databases with patient genomic data were used to analyze these DEGs. Patients in
these databases can be classified based on their tumor type and subtype. Such databases
include the Breast Cancer Gene-Expression Miner v4.7 and the Kaplan-Meier plotter (https:
//doi.org/10.1016/j.csbj.2021.07.014, accessed on 1 October 2021) to identify the survival
of patients based on the expression of selected DEGs.

http://metascape.org
https://doi.org/10.1016/j.csbj.2021.07.014
https://doi.org/10.1016/j.csbj.2021.07.014
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The cancer genomic database cBioPortal (https://www.cbioportal.org/, accessed on
1 October 2021) was used to identify the survival of patients based on mutations in these
common DEGs, as well as to visualize the expression of these genes. cBioPortal hosts
multiple cancer databases and/or datasets, and for the basis of this analysis, the TCGA
PanCancer atlas was used.

The webserver “TIMER”, an inclusive reserve that analyzes immune infiltrates across
various cancer types, was used to evaluate the diagnostic and prognostic value of those
specific genes, as well as identify the top immune infiltrates in the breast cancer datasets in
relation to these genes.

3. Results

Our search yielded nine datasets that met our criteria, with a total of 1350 patient
samples across the nine datasets. The re-analysis of these datasets revealed a total of 1217
DEGs in all datasets (Supplementary Files S1–S9), 34 of which are consistent across five
of the nine datasets (50%) (Figure 2, Table 2, Supplementary File S10), with these genes
being either up- or down-regulated. Of the significant and common 34 genes, 26.4% of the
genes (n = 9) were up-regulated, and the remaining 73.5% (n = 25) were down-regulated.
FOXA1 was the only consistently down-regulated gene across all nine datasets. The log
fold change of the 34 DEGs is represented in Figure 3.
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Figure 2. Upset plot illustrating the common DEGs across all nine datasets. Most datasets share at
least one DEG with other datasets. FOXA1 is the only DEG that is present in all datasets, and the
study GSE30682 has 33 of the 34 common DEGs.

https://www.cbioportal.org/
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Table 2. Differentially expressed genes present in 50% or more of the datasets analyzed. DEG:
differentially expressed gene, DE: differentially expressed.

Genes Gene Name Number of Datasets
the Gene Was DE in

Percentage of Datasets
the Gene Was DE in

Regulation of the
DEG in TNBC

FOXA1 Forkhead box A1 9 100% Down-regulated

AGR2 Anterior gradient 2 7 78% Down-regulated

CA12 Carbonic anhydrase 12 7 78% Down-regulated

ESR1 Estrogen receptor 1 7 78% Down-regulated

GATA3 GATA binding protein 3 7 78% Down-regulated

INPP4B Inositol polyphosphate-4-phosphatase
type II B 7 78% Down-regulated

MLPH Melanophilin 7 78% Down-regulated

TBC1D9 TBC1 domain family member 9 7 78% Down-regulated

AGR3 Anterior gradient 3 6 67% Down-regulated

AR Androgen receptor 6 67% Down-regulated

DACH1 Dachshund family transcription
factor 1 6 67% Down-regulated

DSC2 Desmocollin 2 6 67% Up-regulated

FOXC1 Forkhead box C1 6 67% Up-regulated

SPDEF SAM pointed domain containing ETS
transcription factor 6 67% Down-regulated

TFF3 Trefoil factor 3 6 67% Down-regulated

VAV3 Vav guanine nucleotide exchange
factor 3 6 67% Down-regulated

XBP1 X-box binding protein 1 6 67% Down-regulated

DNALI1 Dynein axonemal light intermediate
chain 1 6 67% Down-regulated

VGLL1 Vestigial-like family member 1 5 56% Up-regulated

GABRP Gamma-aminobutyric acid type A
receptor subunit pi 5 56% Up-regulated

AFF3 ALF transcription elongation factor 3 5 56% Down-regulated

ANKRD3OA Ankyrin repeat domain 30A 5 56% Down-regulated

ART3 ADP-ribosyltransferase 3 (inactive) 5 56% Up-regulated

BCL11A BCL11 transcription factor A 5 56% Up-regulated

CXXC5 CXXC finger protein 5 5 56% Down-regulated

ELF5 E74-like ETS transcription factor 5 5 56% Up-regulated

ERBB4 Erb-b2 receptor tyrosine kinase 4 5 56% Down-regulated

FAM174B Family with sequence similarity 174
member B 5 56% Down-regulated

FBP1 Fructose-bisphosphatase 1 5 56% Down-regulated

RHOB Ras homolog family member B 5 56% Down-regulated

SCUBE2 Signal peptide, CUB domain and
EGF-like domain containing 2 5 56% Down-regulated

UGT8 UDP glycosyltransferase 8 5 56% Up-regulated

HORMAD1 HORMA domain containing 1 5 56% Up-regulated

SMIM14 Small integral membrane protein 14 5 56% Down-regulated
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nine datasets.

3.1. Survival Rates of TNBC Patients Are Affected by FOXA1 Expression

A Kaplan–Meier plot was used to test the FOXA1 regulation effect on the survival rate
of all breast cancer patients (n = 2976). Patients with high and low FOXA1 expression were
compared at a follow-up threshold of five years. Figure 4a reveals that high expression
of FOXA1 is associated with a worse prognosis. This low prognosis was consistent when
each subtype of breast cancer—TNBC (n = 126), ER/PR–positive (n = 2005), and HER2-
positive (n = 30)—was analyzed individually, as shown in Figure 4b–d. Furthermore,
another analysis of the TCGA breast cancer dataset from cBioPortal showed that patients
with a mutated FOXA1 had a lower survival rate than those without a FOXA1 mutation
(Figure 5). However, it is of importance that only one TNBC patient had a mutated FOXA1
in this dataset.
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Figure 4. The effect of FOXA1 expression on survival rates. (a) Overall survival rate of high vs. low
FOXA1 expression in BC patients for the first 60 months since diagnosis; those with high expression
rates had lower survival rates. (b) Overall survival rate of high vs. low FOXA1 expression in TNBC
patients. (c) Overall survival rate of high vs. low FOXA1 expression in ER+ and PR+ BC patients.
(d) Overall survival rate of high vs. low FOXA1 expression in HER2+ BC patients. Created by Breast
Cancer Gene-Expression Miner v4.7.
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Figure 5. Survival of patients with FOXA1 mutations in (a) breast cancer, and in (b) patients who are
classified as TNBC. Survival decreases in the presence of mutations in the gene; however, in TNBC
patients, only one had the mutation and, therefore, this is not of statistical significance. Created
by cBioPortal.

3.2. Functional Analysis of the Common DEGs Reveal the Involvement of Estrogen-Dependent
Gene Expression Pathway and Related Genes

The functional pathway analysis of the 34 common DEGs performed via Metascape
provided the pathways these genes were associated with (Figure 6). The most enriched
pathway is that of estrogen-dependent gene expression followed by epithelial cell differen-
tiation. Furthermore, the majority of these genes appear to be regulated by the transcription
factor interferon regulatory factor 1 (IRF-1), as illustrated in Figure 7.
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Figure 6. Enriched pathways of the 34 common DEGs using Metascape reveal that estrogen–
dependent gene expression is the most significant and enriched pathway. Created by Metascape.

The Molecular Complex Detection (MCODE) algorithm was utilized to identify
densely connected network components. Four genes (GATA3, FOXA1, TFF3, and ESR1)
were found to be involved in protein–protein interactions (Figure 8a). Extended enrichment
analysis showed that most of the genes were regulated primarily by GATA3, as shown
in Figure 8b.
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3.3. GATA3 Is Down-Regulated in TNBC Which Leads to Poor Survival

To evaluate the significance of GATA3 expression in terms of diagnostic and prognostic
values across the four subtypes of breast cancer in a larger number of patient datasets, Breast
Cancer Gene-Expression Miner v4.7 was used. Our analysis revealed a significant decrease
in the expression of GATA3 (p < 0.0001) in TNBC patients in comparison to non-TNBC
patients, as illustrated in Figure 9a. Furthermore, GATA3 expression and nodal involvement
in breast cancer were not correlated with each other (p = 0.4288), as illustrated in Figure 9b.
TNBC with low GATA3 mRNA expression also had a lower distant metastasis-free survival
rate as well as a decreased overall survival rate, as shown in Figure 9c,d, respectively.
Furthermore, TCGA patient data show that GATA3 is only mutated in 14% of the TNBC
patients, with most of these mutations being amplification, while in non-TNBC patients,
GATA3 mutations occur in 16% of patients and there are different types of mutations in
these patients such as in-frame mutations, splice mutations, and truncating mutations.
Consequently, GATA3 expression is higher in non-TNBC patients, followed by TNBC
patients with GATA3 amplification and TNBC patients without any GATA3 mutations.
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3.4. Three Immune Cell Types Are Found in the Tumor Site

Immune cell infiltrates analyzed with the web server “TIMER” reveal that there are
three immune cell populations that are particularly involved with GATA3 expression in
BRCA-Basal breast cancer are myeloid dendritic cells, neutrophils, and macrophages, as
illustrated in Table 3. These immune infiltrates play a role in the innate immune response.
The presence of antigen-presenting cells such as macrophages and dendritic cells in the
immune microenvironment of the tumor plays a role in tumor progression.

Table 3. Immune cell involvement in basal-like breast cancer.

Cancer Infiltrates p-Value Adjusted p-Value

BRCA-Basal (n = 191) Myeloid dendritic cell
activated 0.00151881 0.005368

BRCA-Basal (n = 191) Neutrophil 0.019378582 0.049857

BRCA-Basal (n = 191) Macrophage 0.006514787 0.019388
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4. Discussions
4.1. Most DEGs Are Down-Regulated in TNBC Which Can Be Attributed to Poor Prognosis

Within the nine TNBC datasets, there were 34 genes that were consistently differen-
tially expressed, with the majority of these genes being down-regulated, and only nine
genes being up-regulated. FOXA1 is the only gene that was down-regulated in all datasets
analyzed and has been linked with poor prognosis.

Many of these genes have different roles and functions in breast cancer that affect
tumor survival and response to therapy. The R-HSA-9018519 estrogen-dependent gene
expression pathway involves the following DEGs: ERBB4, ESR1, GATA3, FOXA1, TFF3,
CXXC5, ELF5, and VAV3, with four of these genes being involved in protein–protein
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interactions and regulated by GATA3. Furthermore, this pathway includes the reaction
‘R-HSA-9018494: FOXA1 and GATA3 bind TFF genes’ that utilizes both FOXA1 and GATA3
to aid oncogenesis and metastasis [14]. The most enriched transcription factor target is
IRF1, a transcription regulator and tumor suppressor, which activates genes in both innate
and acquired immune responses.

4.2. FOXA1 Can Increase Malignancy in Breast Cancer

FOXA1 is a transcriptional factor that plays an important role in hormone signaling in
both breast cancer and normal breast tissues [15]. It has been shown that low expression
of FOXA1 can increase malignancy and cancer stemness [15]. This gene has been used as
one of many subtyping markers in the identification of triple-negative breast cancers [15].
Knock down studies have shown that reduction or deletion of FOXA1 decreases apoptosis
and accelerates cell proliferation, which can explain the aggressive nature of TNBC and
its worsening prognosis [15]. Furthermore, it has been shown that loss of FOXA1 expres-
sion is associated with worse survival and increased expression is an indicator of good
prognosis [16,17]. Our re-analysis (Figure 4a) links increased expresion with lower survival
rates in the first 60 months for breast cancer patients, which contradicts previous findings.
However, when comparing the high and low expression of FOXA1 in TNBC patients,
there is no statistical difference. On the other hand, the difference in FOXA1 expression is
statistically significant in ER+/PR+ breast cancer. This indicates that FOXA1 might have a
different mechanism in TNBCs compared to other sutypes.

4.3. GATA3 Is a Major Transcription Factor That Is Found in Many Breast Cancer Subtypes

GATA3 is a transcription factor that is involved in the embryonic development of
different types of tissues as well as in inflammatory and humoral immune responses. It is a
potent regulator of the tumor microenvironment and plays a role in the proper functioning
of the endothelium layer in various types of blood vessels. GATA3 has been proven to be
affected in multiple breast cancer subtypes, such as its high expression in the Luminal A
subtype due to its strong association with estrogen receptor expression [18]. As seen in our
analysis, GATA3 also regulates other DEGs that are affected in TNBC. Due to the strong link
between GATA3 and ER expression, high GATA3 levels observed in immunohistochemistry
can be used as a positive prognostic method and are linked with favorable pathological
features such as positive ER status [19]. This is in line with our results (Figure 9), which link
low GATA3 expression with a lower overall survival and distant metastasis-free rate. On
the other hand, the lack of an ER receptor in TNBC also reduces GATA3, which is reflected
in immunhistochemistry staining sensitivity and is linked with a worse prognosis, distant
metastasis-free survival rate, and overall survival [20]. A study carried out in 205 TNBC
samples that were divided into five molecular subtypes showed that GATA3 is categorized
with a negative stain score (staining intensity x proportion) in 74.6% of all samples [21]. On
the other hand, the rate of focal positivity was significantly higher in one of the molecular
apocrine subtypes, at 73.9% [21].

However, GATA3 can still stain positive in TNBC, and can be useful when used as
a diagnostic and prognostic measuring tool when characterizing metastatic tumors of
unknown origin, which is also demonstrated in Figure 9 [22]. This has been supported
with a systematic evaluation conducted by Ashley et al., which demonstrated a 44% stain
positivity rate of GATA3 across 44 TNBC patients at a staining threshold of 5% [23], and
another study revealing a 66% positivity rate when the staining threshold was 1% [24].

Furthermore, mRNA expression of TCGA patients reveals that non-TNBC patients
had higher GATA3 expression compared to TNBC patients (Figure 9d). In TNBC patients,
those with mutations in their GATA3 had a significantly higher expression (p = 0.001)
than those without any mutation in their GATA3. These TNBC patients with the GATA3
mutation—all of which are amplification—had a higher survival rate than those without
the mutation, which supports the idea that increased GATA3 expression increases survival.
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4.4. Estrogen-Dependent Gene Expression Plays a Vital Role in Breast Cancer

The R-HSA-9018519 estrogen-dependent gene expression pathway has been shown to
be involved in most of the 34 DEGs identified in this study (Figure 6). This is consistent
with results from a study published by Treeck O et al., highlighting the effect of estrogen
on TNBC, a breast cancer subtype that does not express the estrogen receptor, and yet
plays a vital role in pathogenesis [25]. ERα—estrogen receptor alpha—is a major driver of
about 70% of breast cancers, with TNBCs being responsive to ERα-independent pathways,
which are involved in pathogenesis. A study using a TNBC experimental metastasis
model comparing ovariectomy and estrogen supplementation showed that ovariectomy
is 56% more efficient in decreasing the frequency of brain metastasis [25]. In addition
to ovariectomy, the aromatase inhibitor letrozole reduced the frequency of large lesions
by 14.4% in the estrogen control [25]. Another study demonstrated that elevated levels
of circulating estrogens were enough to stimulate the development and progression of
ERα-negative cancers [26].

The mentioned studies demonstrate that estrogen can act on cells that are distinct from
cancer cells, promoting angiogenesis via a systemic pathway by promoting mobilization
and recruitment of bone marrow stromal-derived cells in TNBC. This, along with our
results (Figure 6), illustrates how these DEGs can serve as biomarkers for TNBC, and how
estrogen plays a pivotal role in the pathophysiology of TNBC regardless of the estrogen
receptor expression.

4.5. GATA3, ESR1, TFF3, FOXA1 Interaction

Of the genes involved in the estrogen-dependent pathway, four genes have been found
to be involved in protein–protein interactions. These genes are GATA3, ESR1, TFF3, and
FOXA1. ESR1, also known as NR3A1 (nuclear receptor subfamily 3, group A, member 1),
is one of the two main types of estrogen receptors. TFF3 is a secretory protein that has
multiple and diverse functions such as protection of the mucosa, thickening of the mucosa,
and increasing epithelial healing rates [27]. TFF3 has not been well defined, yet closely
resmbles the gene TFF1. Some of the properties of TFF1 include inhibition of cell growth,
colony formation, and migration and invasion of breast cancer cells in vitro [28].

A study showed that FOXA1 enhances the response to estrogen due to its regulatory
properties on the ER binding of the promoter region of its targets [29,30]. The expression
of FOXA1 is regulated by GATA3, which, in turn, enhances the expression of the estrogen
receptor in epithelial cells [31]. Therefore, if one gene is down-regulated, it will negatively
influence genes downstream, which is seen in this study where GATA3 is down-regulated
and, therefore, the genes affected by it are also down-regulated. This is indicated in cancer
cells that have GATA3 depletion, where there is decreased ESR1-binding affinity, which, in
turn, decreases the expression of FOXA1 [32].

While not being involved in the same pathway, TFF1 mRNA expression was correlated
with that of FOXA1, GATA3, ESR1, XBP1, and MYB. Additionally, breast cancer patients
with a positive ER expressed TFF1 higher than those who were negative for ER [33]. This
shows a correlation between TFF1 and the status of estrogen receptor, as seen in the down-
regulated TFF3 in TNBC patients. While possessing many genetic interactions, the novel
variant TFF3 remains understudied, and further evaluation is required to validate its role
and effect in TNBC.

4.6. IRF1 Is a Major Transcriptional Factor Target

IRF1 is a transcriptional factor regulator and tumor suppressor that involves immune
responses to pathogens such as bacteria and viruses, as well as playing a role in cell
proliferation and DNA damage response. This protein represses the transcription of other
genes such as by regulating the transcription of INF and INF-induced genes (provided by
RefSeq, August 2017). Many of the DEGs identified in this study appear to be associated
with this transcription factor.
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IRF1 exerts an anti-oncogenic and anti-proliferative effect by its ability to induce
the expression of cell growth down-regulatory target genes [34]. Genes targeted by IRF1
include protein kinase R (PKR) and signal transducer and activator of transcription (STAT)
and (STAT1) in the Janus kinase (JAK)-STAT pathway. The JAK-STAT pathway signaling is
a pathway whose dysregulated activation is known and recorded in many types of tumors
and is being studied as a molecular target for cancer therapeutics [35].

The enrichment analysis carried out in this study has shown that the DEGs identified
in TNBC are linked to IRF1, a protein that has been considered a potential diagnostic and
prognostic biomarker for recurrence-free survival in patients with colorectal cancer by some
studies [36]. Therefore, not only can IRF1 be used as a biomarker, but these DEGs can be
used as well.

4.7. Immune Cell Involvement in Triple-Negative Breast Cancer Can Lead to Better or
Worse Prognosis

The tumor microenvironment is an important and variable aspect in the progression
of breast cancer. Both the innate and adaptive immune systems with a variety of immune
cells are involved in breast cancer [37].

In this study, ‘TIMER’ identified three types of immune cells that were involved in
the pathogenesis of TNBC based on the gene expression of GATA3: myeloid dendritic
cells, neutrophils, and macrophages. Myeloid dendritic cells were shown to be the most
significant immune cell infiltrate. Dendritic cells are a major part of innate immunity and
are linked to adaptive immunity through their antigen-presenting properties [38]. A study
conducted by Gabrilovich et al. demonstrated the presence of a defect in the dendritic cells
of cancer patients, citing that these cells were not effectively presenting antigens [39].

Furthermore, macrophages appear to be significantly involved in basal-like breast
cancer based on the TIMER analysis. Macrophages, like dendtritic cells, are antigen-
presenting cells and an important part of the innate system. There are two subtypes
of macrophages, M1 and M2, which exhibit both inflammatory and anti-inflammatory
properties [40]. Breast cancer polarizes macrophages to the M2 form, which is the subtype
that promotes tumor growth and cell proliferation [40]. Tumors displaying this subtype
of macrophages are often associated with unfavorable prognosis, and favoring features
such as nodal involvement and metastasis [41]. Our results demonstrate three immune cell
populations involved in breast cancer in relation to GATA3 expression, and the importance
of this gene towards the immune microenvironment. Similarly, a study conducted by Dieci
M et al. demonstrates the importance of immune infiltrations’ involvement in breast cancer
and the possibility of their use as potential biomarkers [38].

4.8. Clinical Implications

Significant key information about tumors can be obtained from the identified biomark-
ers, especially as a prognostic tool. Patient prognosis can be evaluated according to the
biomarkers present in tumor DNA, which is an advisable screening option due to the lack
of well-defined molecular targets that make cytotoxic chemotherapy the only treatment
option for TNBC patients [42]. In order to avoid such harsh treatment plans, understanding
genetic biomarkers could provide a platform for new diagnostic and therapeutic options
specifically designed to target TNBC, with the expression of selected markers being used as
identifiers for the ideal course of treatment and response to such treatments. For example,
GATA3 can be used to evaluate response to hormonal treatments targeting the estrogen
receptor pathways.

Another implication is that four of the genes identified in this study—AGR2, AGR3,
TFF3, and SCUBE2—have protein products that are secreted in the blood by breast cancer.
This can lead to the use of non-invasive methods such as blood tests for preliminary
diagnosis before tissue biopsies, which can lead to more tests being conducted and earlier
detection. Another benefit of using blood tests can include increased testing for more robust
monitoring of the disease, such as taking a test before and after treatments.
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4.9. Strengths and Limitations

This study was carried out using in silico methods and tools, which revolve around
the use of publicly available transcriptomic data to mimic in vitro studies. A benefit to in
silico analysis is the data accessibility and cost-effectiveness of this method, with a large
body of patient data and databases available. This approach could reduce the time for the
conceptualization of a hypothesis before going into in vitro testing, as well as identifying
targets for in vitro testing and validation. Furthermore, this in silico study helped create a
shortlist of potential genes that are involved in TNBC, which can be studied further and
used to generate different hypotheses.

However, these in silico studies need in vitro validation to confirm any final conclu-
sions. Furthermore, in silico data can result in contradicting results due to the varying
patient types and accompanying clinical information in each dataset. This has been ob-
served in some of our data, as cBioPortal has only one TNBC patient with a FOXA1
mutation, compared to Breast Cancer Gene-Expression Miner v4.7, which has several
TNBC patients with high or low expression. Therefore, the use of one database is not
enough and several tools need to be used, as we have in our re-analysis.

5. Conclusions

In conclusion, our study identified 34 DEGs in TNBC compared to the other subtypes
of breast cancer. The generated shortlisted genes could be used in clinical settings as
biomarkers to detect TNBC at an early stage and improve the overall prognosis of the
patient as well as aiding in their treatment course. This in silico analysis study demonstrated
the various physiological effects of the genes involved in TNBC such as estrogen-dependant
pathways, which provide possible alternative targeted treatment options as compared to
the standard non-specicific options currently available. Given that this study is an in silico
analysis, we had access to a limited number of patients in certain subtypes of disease, and
need further validation. We believe that our findings could provide advancements in the
field of TNBC, and we encourage future in vitro and in vivo studies to further solidify the
validity of these results.
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