Investigation on the Essential Oils of the Achillea Species: From Chemical Analysis to the In Silico Uptake against SARS-CoV-2 Main Protease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples (Plant Materials)
2.2. Essential Oil Extraction
2.3. GC-MS Analysis of the Essential Oil Components
2.4. Molecular Docking
Docking Studies
3. Results and Discussion
3.1. Achillea millefolium (Yarrow)
3.2. A. wilhelmsii C. Koch
3.3. A. tenuifolia Lam
3.4. Docking Studies of SARS-CoV-2 3CLpro
3.5. Docking Studies of SARS-CoV-1 3CLpro
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mirdavoudi, H.; Ghorbanian, D.; Zarekia, S.; Soleiman, J.M.; Ghonchepur, M.; Sweeney, E.M.; Mastinu, A. Ecological Niche Modelling and Potential Distribution of Artemisia sieberi in the Iranian Steppe Vegetation. Land 2022, 11, 2315. [Google Scholar] [CrossRef]
- Magiatis, P.; Skaltsounis, A.L.; Chinou, I.; Haroutounian, S.A. Chemical composition and in-vitro antimicrobial activity of the essential oils of three Greek Achillea species. Z. Naturforsch. C J. Biosci. 2002, 57, 287–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeidnia, S.; Gohari, A.; Mokhber-Dezfuli, N.; Kiuchi, F.A. A review on phytochemistry and medicinal properties of the genus Achillea. DARU J. Fac. Pharm. Tehran Univ. Med. Sci. 2011, 19, 173. [Google Scholar]
- Final report on the safety assessment of Yarrow (Achillea millefolium) extract. Int. J. Toxicol. 2001, 20, 79–84. [CrossRef] [PubMed]
- Chandler, R.; Hooper, S.; Harvey, M.J. Ethnobotany and phytochemistry of yarrow, Achillea millefolium, Compositae. Econ. Bot. 1982, 36, 203–223. [Google Scholar] [CrossRef]
- Applequist, W.L.; Moerman, D.E. Yarrow (Achillea millefolium L.): A neglected panacea? a review of ethnobotany, bioactivity, and biomedical research. Econ. Bot. 2011, 65, 209–225. [Google Scholar] [CrossRef]
- Ali, S.I.; Gopalakrishnan, B.; Venkatesalu, V. Pharmacognosy, phytochemistry and pharmacological properties of Achillea millefolium L.: A review. Phytother. Res. 2017, 31, 1140–1161. [Google Scholar] [CrossRef]
- Benedek, B.; Kopp, B.; Melzig, M.F. Achillea millefolium L. sl–Is the anti-inflammatory activity mediated by protease inhibition? J. Ethnopharmacol. 2007, 113, 312–317. [Google Scholar] [CrossRef]
- Mehraliyevaa, S.; Valiyeva, M.; Abbasli, N.; Suleymanova, T.; Musayeva, S.; Davaran, S.; Khalilov, R.; Eftekhari, A. Development of novel antibacterial gel using clove and calendula extracts with colloidal silver nanoparticles. ECC 2021, 3, 170–179. [Google Scholar]
- Mohammadhosseini, M.; Sarker, S.D.; Akbarzadeh, A. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. J. Ethnopharmacol. 2017, 199, 257–315. [Google Scholar] [CrossRef]
- Rehan, T.; Al-Lami, N.; Alanee, R. Anti-cancer and antioxidant activities of some new synthesized 3-secondary amine derivatives bearing imidazo [1, 2-A] pyrimidine. Eurasian Chem. Commun. 2021, 3, 339–351. [Google Scholar]
- Mirzaei, M.; Hajali, N.; Pourhadi, M. In Silico Interactions of Morphine Opioids with TLR4 and TRPV1 Targets. Biointerface Res. Appl. Chem. 2022, 13, 208. [Google Scholar]
- Manayi, A.; Mirnezami, T.; Saeidnia, S.; Ajani, Y. Pharmacognostical evaluation, phytochemical analysis and antioxidant activity of the roots of Achillea tenuifolia Lam. Pharmacogn. J. 2012, 4, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Moradkhani, S.; Kobarfard, F.; Ayatollahi, S.A.M. Phytochemical investigations on chemical constituents of Achillea tenuifolia Lam. IJPR 2014, 13, 1049. [Google Scholar]
- Gharibi, S.; Tabatabaei, B.E.S.; Saeidi, G. Comparison of essential oil composition, flavonoid content and antioxidant activity in eight Achillea species. J. Essent. Oil Bear. Plants 2015, 18, 1382–1394. [Google Scholar] [CrossRef]
- Kazemi, M. Gas chromatography-mass spectrometry analyses for detection and identification of antioxidant constituents of Achillea tenuifolia essential oil. Int. J. Food Prop. 2015, 18, 1936–1941. [Google Scholar] [CrossRef] [Green Version]
- Amirkhani, R.; Zarei, A.; Gholampour, M.; Tavakoli, H.; Ramazani, A. Honey and royal jelly natural products as possible antiviral nominations to combat SARS-CoV-2 main protease. ECC 2022, 4, 567–579. [Google Scholar]
- Dodangeh, M.; Ramazani, A.; Maghsoodlou, M.T.; Zarei, A.; Rezayati, S. Application of readily available metals for CH activation. Curr. Org. Chem. 2020, 24, 1582–1609. [Google Scholar] [CrossRef]
- Fadel, Z.; Al-Azzawi, A.M. Design, Synthesis and Antimicrobial Activity Evaluation of New Bisimidyl Sulfonamido Ketone Comprising Drug component. Chem. Methodol. 2021, 5, 464–470. [Google Scholar]
- Mohammadi, S.S.; Ghasemi, N.; Ramezani, M. Bio-fabrication of silver nanoparticles using naturally available wild herbaceous plant and its antibacterial activity. Eurasian Chem. Commun. 2020, 2, 87–102. [Google Scholar]
- Phillipson, J.D. Phytochemistry and pharmacognosy. Phytochemistry 2007, 68, 2960–2972. [Google Scholar] [CrossRef] [PubMed]
- Ramazani, A.; Shahkarami, F.; Zarei, A.; Rezayati, S.; Rezaei, A.; Bodaghi, A.; Youseftabar-Miri, L. Shikimic acid from staranise (Illicium verum Hook): Extraction, purification and determination. ECC 2021, 452–460. [Google Scholar]
- Taghvaei, M.; Fazilati, M.; Nazem, H.; Habibollahi, S.; Bastani, F. Comparison of Different Extracts of Nettle in Quercetin and Evaluation of its Antimicrobial Activity. Chem. Methodol. 2020, 4, 572–583. [Google Scholar]
- Zarei, A.; Ramazani, A.; Pourmand, S.; Sattari, A.; Rezaei, A.; Moradi, S. In silico evaluation of COVID-19 main protease interactions with honeybee natural products for discovery of high potential antiviral compounds. Nat. Prod. Res. 2021, 36, 4254–4260. [Google Scholar] [CrossRef]
- Zarei, A.; Ramazani, A.; Rezaei, A.; Moradi, S. Screening of honey bee pollen constituents against COVID-19: An emerging hot spot in targeting SARS-CoV-2-ACE-2 interaction. Nat. Prod. Res. 2022, 1–7. [Google Scholar] [CrossRef]
- Zarei, A.; Fardood, S.T.; Moradnia, F.; Ramazani, A. A Review on coronavirus family persistency and considerations of novel type, COVID-19 features. Eurasian Chem. Commun. 2020, 2, 798–811. [Google Scholar] [CrossRef]
- Angourani, H.R.; Heydari, M.; Yousefi, A.R.; Pashaei, B.; Mastinu, A. Nanoparticles Based-Plant Protein Containing Rosmarinus officinalis Essential Oil; Fabrication, Characterization, and Evaluation. Appl. Sci. 2022, 12, 9968. [Google Scholar] [CrossRef]
- Ghanaat, J.; Khalilzadeh, M.; Zareyee, D. KF/CP NPs as an efficient nanocatalyst for the synthesis of 1, 2, 4-triazoles: Study of antioxidant and antimicrobial activity. ECC 2020, 2, 2020–2212. [Google Scholar]
- Gharibvandi, A.; Karimmojeni, H.; Ehsanzadeh, P.; Rahimmalek, M.; Mastinu, A. Weed management by allelopathic activity of Foeniculum vulgare essential oil. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2022, 156, 1298–1306. [Google Scholar] [CrossRef]
- Ammarellou, A.; Yousefi, A.R.; Heydari, M.; Uberti, D.; Mastinu, A. Biochemical and Botanical Aspects of Allium sativum L. Sowing. BioTech 2022, 11, 16. [Google Scholar] [CrossRef]
- Jam, B.J.; Shekari, F.; Andalibi, B.; Fotovat, R.; Jafarian, V.; Najafi, J.; Uberti, D.; Mastinu, A. Impact of Silicon Foliar Application on the Growth and Physiological Traits of Carthamus tinctorius L. Exposed to Salt Stress. Silicon 2022. [Google Scholar] [CrossRef]
- Moradi, P.; Aghajanloo, F.; Moosavi, A.; Monfared, H.H.; Khalafi, J.; Taghiloo, M.; Khoshzaman, T.; Shojaee, M.; Mastinu, A. Anthropic Effects on the Biodiversity of the Habitats of Ferula gummosa. Sustainability 2021, 13, 7874. [Google Scholar] [CrossRef]
- Mohammadhosseini, M.; Nekoei, M. Chemical compositions of the essential oils and volatile compounds from the aerial parts of Ferula ovina using hydrodistillation, MAHD, SFME and HS-SPME methods. J. Essent. Oil Bear. Plants 2014, 17, 747–757. [Google Scholar] [CrossRef]
- Paidi, R.K.; Jana, M.; Raha, S.; McKay, M.; Sheinin, M.; Mishra, R.K.; Pahan, K. Eugenol, a Component of Holy Basil (Tulsi) and Common Spice Clove, Inhibits the Interaction Between SARS-CoV-2 Spike S1 and ACE2 to Induce Therapeutic Responses. J. Neuroimmune Pharmacol. 2021, 16, 743–755. [Google Scholar] [CrossRef] [PubMed]
- Panikar, S.; Shoba, G.; Arun, M.; Sahayarayan, J.J.; Usha Raja Nanthini, A.; Chinnathambi, A.; Alharbi, S.A.; Nasif, O.; Kim, H.J. Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (M(pro)) with pharmacokinetics and toxicological properties. J. Infect. Public Health 2021, 14, 601–610. [Google Scholar] [CrossRef]
- Mohammadhosseini, M. Essential oils extracted using microwave-assisted hydrodistillation from aerial parts of eleven Artemisia species: Chemical compositions and diversities in different geographical regions of Iran. Rec. Nat. Prod. 2017, 11, 114. [Google Scholar]
- Strub, D.J.; Talma, M.; Strub, M.; Rut, W.; Zmudzinski, M.; Brud, W.; Neyts, J.; Vangeel, L.; Zhang, L.; Sun, X.; et al. Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts. Sci. Rep. 2022, 12, 14230. [Google Scholar] [CrossRef]
- Gao, Y.; Yan, L.; Huang, Y.; Liu, F.; Zhao, Y.; Cao, L.; Wang, T.; Sun, Q.; Ming, Z.; Zhang, L.; et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 2020, 368, 779–782. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.; Rane, J.S.; Chatterjee, A.; Kumar, A.; Khan, R.; Prakash, A.; Ray, S. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: An in silico study for drug development. J. Biomol. Struct. Dyn. 2020, 39, 6306–6316. [Google Scholar] [CrossRef]
- Vuong, W.; Khan, M.B.; Fischer, C.; Arutyunova, E.; Lamer, T.; Shields, J.; Saffran, H.A.; McKay, R.T.; van Belkum, M.J.; Joyce, M.A.; et al. Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat. Commun. 2020, 11, 4282. [Google Scholar] [CrossRef]
- Gottlieb, R.L.; Nirula, A.; Chen, P.; Boscia, J.; Heller, B.; Morris, J.; Huhn, G.; Cardona, J.; Mocherla, B.; Stosor, V.; et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: A randomized clinical trial. JAMA 2021, 325, 632–644. [Google Scholar] [CrossRef] [PubMed]
- RECOVERY Collaborative Group. Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2022, 399, 665–676. [Google Scholar]
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Crespo Casal, M.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Early treatment for COVID-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N. Engl. J. Med. 2021, 385, 1941–1950. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Singh, A.; Singh, R.; Misra, A. An updated practical guideline on use of molnupiravir and comparison with agents having emergency use authorization for treatment of COVID-19. Diabetes Metab. Syndr. 2022, 16, 102396. [Google Scholar] [CrossRef] [PubMed]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the treatment of COVID-19. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
- Owen, D.R.; Allerton, C.M.N.; Anderson, A.S.; Aschenbrenner, L.; Avery, M.; Berritt, S.; Boras, B.; Cardin, R.D.; Carlo, A.; Coffman, K.J.; et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021, 374, 1586–1593. [Google Scholar] [CrossRef]
- Stephenson, J. FDA Authorizes Pharmacists to Prescribe Oral Antiviral Medication for COVID-19. In JAMA Health Forum; American Medical Association: Philadelphia, PA, USA, 2022. [Google Scholar]
- RECOVERY Collaborative Group. Effect of hydroxychloroquine in hospitalized patients with COVID-19. N. Engl. J. Med. 2020, 383, 2030–2040. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021, 397, 1637–1645. [Google Scholar]
- Kalil, A.C.; Patterson, T.F.; Mehta, A.K.; Tomashek, K.M.; Wolfe, C.R.; Ghazaryan, V.; Marconi, V.C.; Ruiz-Palacios, G.M.; Hsieh, L.; Kline, S.; et al. Baricitinib plus remdesivir for hospitalized adults with COVID-19. N. Engl. J. Med. 2021, 384, 795–807. [Google Scholar] [CrossRef]
- Lilly, E. A Study of Baricitinib (LY3009104) in Participants with COVID-19. 2020. Available online: https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/ictrp-NCT04421027 (accessed on 1 December 2022).
- Yoo, S.H.; Kim, L.; Lu, M.; Nagoshi, K.; Namchuk, M.N. A review of clinical efficacy data supporting emergency use authorization for COVID-19 therapeutics and lessons for future pandemics. Clin. Transl. Sci. 2022, 15, 2279–2292. [Google Scholar] [CrossRef]
- Ma, C.; Sacco, M.D.; Xia, Z.; Lambrinidis, G.; Townsend, J.A.; Hu, Y.; Meng, X.; Szeto, T.; Ba, M.; Zhang, X.; et al. Discovery of SARS-CoV-2 papain-like protease inhibitors through a combination of high-throughput screening and a FlipGFP-based reporter assay. ACS Cent. Sci. 2021, 7, 1245–1260. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, M.; Chen, C.Z.; Guo, H.; Shen, M.; Hu, X.; Shinn, P.; Klumpp-Thomas, C.; Michael, S.G.; Zheng, W. Identification of SARS-CoV-2 3CL protease inhibitors by a quantitative high-throughput screening. ACS Pharmacol. Transl. Sci. 2020, 3, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.D.; Jeon, S.; Kim, S.; Lee, S.Y. Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay. Proc. Natl. Acad. Sci. USA 2021, 118, e2024302118. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, A.; Narwal, M.; Majowicz, S.A.; Varricchio, C.; Toner, S.A.; Ballatore, C.; Brancale, A.; Murakami, K.S.; Jose, J. Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay. Commun. Biol. 2022, 5, 169. [Google Scholar] [CrossRef]
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Xia, Z.; Sacco, M.D.; Hu, Y.; Townsend, J.A.; Meng, X.; Choza, J.; Tan, H.; Jang, J.; Gongora, M.V.; et al. Discovery of di-and trihaloacetamides as covalent SARS-CoV-2 main protease inhibitors with high target specificity. J. Am. Chem. Soc. 2021, 143, 20697–20709. [Google Scholar] [CrossRef]
- Unoh, Y.; Uehara, S.; Nakahara, K.; Nobori, H.; Yamatsu, Y.; Yamamoto, S.; Maruyama, Y.; Taoda, Y.; Kasamatsu, K.; Suto, T.; et al. Discovery of S-217622, a Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19. J. Comput. Chem. 2022, 65, 6499–6512. [Google Scholar] [CrossRef] [PubMed]
- Zaidman, D.; Gehrtz, P.; Filep, M.; Fearon, D.; Gabizon, R.; Douangamath, A.; Prilusky, J.; Duberstein, S.; Cohen, G.; Owen, C.D.; et al. An automatic pipeline for the design of irreversible derivatives identifies a potent SARS-CoV-2 Mpro inhibitor. Cell Chem. Biol. 2021, 28, 1795–1806.e5. [Google Scholar] [CrossRef] [PubMed]
- Pharmacopoeia, B. Bernan Press; Hmso: London, UK, 1988; Volume 2, pp. A137–A138. [Google Scholar]
- Weiner, S.J.; Kollman, P.A.; Case, D.A.; Chandra Singh, U.; Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 1984, 106, 765–784. [Google Scholar] [CrossRef]
- Ribaudo, G.; Yun, X.; Ongaro, A.; Oselladore, E.; Ng, J.P.L.; Haynes, R.K.; Law, B.Y.K.; Memo, M.; Wong, V.K.W.; Coghi, P.; et al. Combining computational and experimental evidence on the activity of antimalarial drugs on papain-like protease of SARS-CoV-2: A repurposing study. Chem Biol Drug Des. 2022. [Google Scholar] [CrossRef]
- Mufti, A.; Tir, M.; Zarei, A.; del Mar Contreras, M.; Gómez-Cruz, I.; Feriani, A.; Ghazouani, L.; Saadaoui, E.; Salah Allagui, M.; Harrath, A.H.; et al. Phytochemical Profiling of Ephedra alata subsp. alenda Seeds by High-Performance Liquid Chromatography—Electrospray Ionization—Quadrupole-Time-of-Flight-Mass Spectrometry (HPLC-ESI-QTOF-MS), Molecular Docking, and Antioxidant, Anti-diabetic, and Acetylcholinesterase Inhibition. Anal. Lett. 2022, 55, 2450–2466. [Google Scholar]
- Suárez, D.; Díaz, N. SARS-CoV-2 main protease: A molecular dynamics study. J. Chem. Inf. Model. 2020, 60, 5815–5831. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020, 368, 409–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, X.; Yang, H.; Shen, W.; Zhao, Q.; Li, J.; Yang, K.; Chen, C.; Jin, Y.; Bartlam, M.; Rao, Z. Production of authentic SARS-CoV Mpro with enhanced activity: Application as a novel tag-cleavage endopeptidase for protein overproduction. J. Mol. Biol. 2007, 366, 965–975. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; He, Z.G.; Cheng, G.; Wang, S.J.; Hao, X.H.; Zou, M.J. Multidrug resistance P-glycoprotein: Crucial significance in drug disposition and interaction. Med. Sci. Monit. 2004, 10, RA5–RA14. [Google Scholar]
- Ribaudo, G.; Coghi, P.; Yang, L.J.; Ng, J.P.L.; Mastinu, A.; Memo, M.; Wong, V.K.W.; Gianoncelli, A. Computational and experimental insights on the interaction of artemisinin, dihydroartemisinin and chloroquine with SARS-CoV-2 spike protein receptor-binding domain (RBD). Nat. Prod. Res. 2022, 36, 5358–5363. [Google Scholar] [CrossRef]
Number | Main Compounds | RT | RI ± (SD) | % |
---|---|---|---|---|
1 | α-Pinene | 9.428 | 929 ± (2) | 2.21 |
2 | Camphene | 9.79 | 952 ± (2) | 2.38 |
3 | Sabinene | 10.236 | 976 ± (3) | 0.53 |
4 | Eucalyptol (1,8-cineole) | 11.54 | 1032 ± (2) | 5.71 |
5 | (+)-β-thujone | 12.258 | 1103 ± (2) | 2.55 |
6 | Nonanal | 12.856 | 1106 ± (3) | 4.25 |
7 | Trans-Verbenol | 13.899 | 1143 ± (2) | 0.88 |
8 | Camphor | 14.033 | 1147 ± (4) | 9.87 |
9 | (+)-2-bornanone | 14.103 | 1152 ± (2) | 5.59 |
10 | Endo-borneol | 14.421 | 1169 ± (2) | 4.05 |
11 | α-Terpineol | 14.803 | 1189 ± (2) | 4.46 |
12 | (−)-Myrtenol | 14.924 | 1208 ± (4) | 0.87 |
13 | Trans-p-Menth-1-en-3-ol | 15.108 | 1213 ± (2) | 2.58 |
14 | Cis-Chrysanthenol acetate | 15.999 | 1262 ± (3) | 0.97 |
15 | Rosefuran | 16.501 | 1093 ± (2) | 3.52 |
16 | Caryophyllene | 19.319 | 1418 ± (2) | 0.64 |
17 | D-Germacrene | 20.706 | 1481 ± (2) | 3.63 |
18 | Spathulenol | 23.218 | 1576 ± (2) | 3.44 |
19 | Caryophyllene oxide | 23.377 | 1583 ± (2) | 5.62 |
20 | Isospathulenol | 24.096 | 1638 ± (6) | 1.3 |
21 | 7-Epi β-Eudesmol | 24.611 | 1649 ± (2) | 1.88 |
Total | 66.93% |
Number | Main Compounds | RT | RI ± (SD) | % |
---|---|---|---|---|
1 | α-Pinene | 9.428 | 929 ± (2) | 2.21 |
2 | Camphene | 9.79 | 952 ± (2) | 2.38 |
3 | Sabinene | 10.236 | 976 ± (3) | 0.53 |
4 | Eucalyptol (1,8-cineole) | 11.54 | 1032 ± (2) | 5.71 |
5 | (+)-β-thujone | 12.258 | 1103 ± (2) | 2.55 |
6 | Nonanal | 12.856 | 1106 ± (3) | 4.25 |
7 | Trans-Verbenol | 13.899 | 1143 ± (2) | 0.88 |
8 | Camphor | 14.033 | 1147 ± (4) | 9.87 |
9 | (+)-2-bornanone | 14.103 | 1152 ± (2) | 5.59 |
10 | Endo-borneol | 14.421 | 1169 ± (2) | 4.05 |
11 | α-Terpineol | 14.803 | 1189 ± (2) | 4.46 |
12 | (−)-Myrtenol | 14.924 | 1208 ± (4) | 0.87 |
13 | Trans-p-Menth-1-en-3-ol | 15.108 | 1213 ± (2) | 2.58 |
14 | Cis-Chrysanthenol acetate | 15.999 | 1262 ± (3) | 0.97 |
15 | Rosefuran | 16.501 | 1093 ± (2) | 3.52 |
16 | Caryophyllene | 19.319 | 1418 ± (2) | 0.64 |
17 | D-Germacrene | 20.706 | 1481 ± (2) | 3.63 |
18 | Spathulenol | 23.218 | 1576 ± (2) | 3.44 |
19 | Caryophyllene oxide | 23.377 | 1583 ± (2) | 5.62 |
20 | Isospathulenol | 24.096 | 1638 ± (6) | 1.3 |
21 | 7-Epi β-Eudesmol | 24.611 | 1649 ± (2) | 1.88 |
Total | 66.93% |
Number | Main Compounds | RT | RI ± (SD) | % |
---|---|---|---|---|
1 | α-Pinene | 9.415 | 929 ± (4) | 5.35 |
2 | Camphene | 9.765 | 951 ± (2) | 2.45 |
3 | β-Pinene | 10.357 | 979 ± (3) | 1.68 |
4 | 3-Carene | 10.579 | 998 ± (3) | 1.87 |
5 | 4-Carene | 11.126 | 1011 ± (2) | 0.53 |
6 | o-Cymene | 11.311 | 1025 ± (0) | 3.93 |
7 | D-Limonene | 11.406 | 1031 ± (2) | 0.57 |
8 | Eucalyptol (1,8-Cineole) | 11.502 | 1032 ± (2) | 5.24 |
9 | Gamma.-Terpinene | 12.01 | 1060 ± (3) | 1.7 |
10 | Artemisia alcohol | 12.449 | 1084 ± (3) | 2.62 |
11 | Trans-Borneol | 13.974 | 1166 ± (2) | 16.48 |
12 | Endo-Borneol | 14.364 | 1171 ± (3) | 1.95 |
13 | α-Terpineol | 14.765 | 1182 ± (3) | 1.62 |
14 | Trans-p-Menth-1-en-3-ol | 15.07 | 1195 ± (4) | 2.15 |
15 | Carvomenthenone | 16.03 | 1254 ± (2) | 6.78 |
16 | Geranyl acetate | 16.215 | 1379 ± (3) | 2.18 |
17 | Germacrene D | 20.75 | 1481 ± (2) | 10.49 |
18 | Spathulenol | 23.142 | 1576 ± (2) | 1.34 |
19 | Bornyl tiglate | 23.454 | 1621 ± (3) | 1.02 |
20 | Epi-α-Cadinol | 24.3 | 1640 ± (3) | 0.85 |
21 | α-Cadinol | 24.573 | 1653 ± (4) | 2.68 |
Total | 73.48 |
Chemical Name | Lowest Binding Energy (Kcal/mol) with 6NUR | Number of Run in Cluster | Lowest Binding Energy (Kcal/mol) with 2H2Z | Number of Run in Cluster |
---|---|---|---|---|
Kessanyl acetate | −6.23 | 87 | −6.33 | 96 |
Chavibetol (m-Eugenol) | −5.69 | 123 | −5.85 | 153 |
Farnesol | −5.78 | 115 | −6.02 | 210 |
7-epi-β-Eudesmol | −5.47 | 73 | −5.76 | 168 |
Compound | Lipinski | Ghose | Veber | Egan | Muegge | Bioavailability Score |
---|---|---|---|---|---|---|
Kessanyl acetate | Yes | Yes | Yes | Yes | Yes | 0.55 |
Chavibetol (m-Eugenol) | Yes | Yes | Yes | Yes | No | 0.55 |
Farnesol | Yes | Yes | Yes | Yes | No | 0.55 |
7-epi-β-Eudesmol | Yes | Yes | Yes | Yes | No | 0.55 |
Compound | GI Absorption | BBB Permeation | P-glycoprotein Substrate | CYP1A2 Inhibitor | CYP2C19 Inhibitor | CYP2C9 Inhibitor | CYP2D6 Inhibitor | CYP3A4 Inhibitor | LD 50 mg/kg |
---|---|---|---|---|---|---|---|---|---|
Kessanyl acetate | High | Yes | No | No | No | No | No | No | 2000 |
Chavibetol (m-Eugenol) | High | Yes | No | Yes | No | No | No | No | 1230 |
Farnesol | High | Yes | No | Yes | No | No | No | No | 5000 |
7-epi-β-Eudesmol | High | Yes | No | No | No | Yes | No | No | 2000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angourani, H.R.; Zarei, A.; Moghadam, M.M.; Ramazani, A.; Mastinu, A. Investigation on the Essential Oils of the Achillea Species: From Chemical Analysis to the In Silico Uptake against SARS-CoV-2 Main Protease. Life 2023, 13, 378. https://doi.org/10.3390/life13020378
Angourani HR, Zarei A, Moghadam MM, Ramazani A, Mastinu A. Investigation on the Essential Oils of the Achillea Species: From Chemical Analysis to the In Silico Uptake against SARS-CoV-2 Main Protease. Life. 2023; 13(2):378. https://doi.org/10.3390/life13020378
Chicago/Turabian StyleAngourani, Hossein Rabbi, Armin Zarei, Maryam Manafi Moghadam, Ali Ramazani, and Andrea Mastinu. 2023. "Investigation on the Essential Oils of the Achillea Species: From Chemical Analysis to the In Silico Uptake against SARS-CoV-2 Main Protease" Life 13, no. 2: 378. https://doi.org/10.3390/life13020378
APA StyleAngourani, H. R., Zarei, A., Moghadam, M. M., Ramazani, A., & Mastinu, A. (2023). Investigation on the Essential Oils of the Achillea Species: From Chemical Analysis to the In Silico Uptake against SARS-CoV-2 Main Protease. Life, 13(2), 378. https://doi.org/10.3390/life13020378