Polyplacophoran Feeding Traces on Mediterranean Pliocene Sirenian Bones: Insights on the Role of Grazing Bioeroders in Shallow-Marine Vertebrate Falls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Institutional Abbreviations
2.2. Specimen Preparation and Documentation
2.3. Stratigraphic and Palaeoecological Framework
2.4. Nomenclatural Acts
3. Systematic Ichnology
4. Discussion
4.1. Identification of the Tracemaker
4.2. Palaeoethological Inferences
4.3. Broader Palaeobiological Outcome
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaas, P.; Jones, A.M. Class Polyplacophora: Morphology and Physiology, In Mollusca: The Southern Synthesis Part A, Fauna of Australia; Beesley, P.L., Ross, G.J.B., Wells, A., Eds.; CSIRO: Melbourne, Australia, 1998; pp. 163–174. [Google Scholar]
- Stebbins, T.D.; Eernisse, D.J. Chitons (Mollusca: Polyplacophora) known from benthic monitoring programs in the Southern California Bight. Festivus 2009, 41, 53–100. [Google Scholar]
- Kázmér, M.; Taboroši, D. Bioerosion on the small scale–examples from the tropical and subtropical littoral. Hantkeniana 2012, 7, 37–94. [Google Scholar]
- Kázmér, M.; Leman, M.S.; Mohamed, K.R.; Ali, C.A.; Taboroši, D. Features of intertidal bioerosion and bioconstruction on limestone coasts of Langkawi Islands, Malaysia. Sains Malays. 2015, 44, 921–929. [Google Scholar] [CrossRef]
- Voigt, E. On grazing traces produced by the radula of fossil and recent gastropods and chitons. Geol. J. 1977, Special Issue 9, 335–346. [Google Scholar]
- Juch, P.J.W.; Boekschoten, G.J. Trace fossils and grazing traces produced by Littorina and Lepidochitona, Dutch Wadden Sea. Geol. Mijnb. 1980, 59, 33–42. [Google Scholar]
- Bromley, R.G.; Hanken, N.-M.; Asgaard, U. Shallow marine bioerosion: Preliminary results of an experimental study. Bull. Geol. Soc. Den. 1990, 38, 85–99. [Google Scholar] [CrossRef]
- Bromley, R.G.; Asgaard, U. Two bioerosion ichnofacies produced by early and late burial associated with sea-level change. Geol. Rundsch. 1993, 82, 276–280. [Google Scholar] [CrossRef]
- de Gibert, J.M.; Domenech, R.; Martinell, J.C. Bioerosion in shell beds from the Pliocene Roussillon Basin, France: Implications for the (macro)bioerosion ichnofacies model. Acta Palaeontol. Pol. 2007, 52, 783–798. [Google Scholar]
- Wisshak, M.; Tribollet, A.; Golubic, S.; Jakobsen, J.; Freiwald, A. Temperate bioerosion: Ichnodiversity and biodiversity from intertidal to bathyal depths (Azores). Geobiology 2011, 9, 492–520. [Google Scholar] [CrossRef]
- Lopes, R.P.; Pereira, J.C. Molluskan grazing traces (Ichnogenus Radulichnus Voigt, 1977) on a Pleistocene bivalve from southern Brazil, with the proposal of a new ichnospecies. Ichnos 2019, 26, 141–157. [Google Scholar] [CrossRef]
- Jagt, J.W.M. The ichnofossil genera Radulichnus and Renichnus in the Maastrichtian of The Netherlands and Belgium. Bull. Inst. R. Sci. Nat. Belg.-Sci. 2003, 73, 175–184. [Google Scholar]
- Vendrasco, M.J.; Wood, T.E.; Runnegar, B.N. Articulated Palaeozoic fossil with 17 plates greatly expands disparity of early chitons. Nature 2004, 429, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Benvenuti, M.; Papini, M.; Rook, L. Mammal biochronology, UBSU and paleoenvironment evolution in a post-collisional basin; evidence from the late Miocene Baccinello Cinigiano Basin in southern Tuscany, Italy. Boll. Soc. Geol. Ital. 2001, 120, 97–118. [Google Scholar]
- Tinelli, C.; Ribolini, A.; Bianucci, G.; Bini, M.; Landini, W. Ground penetrating radar and palaeontology: The detection of sirenian fossil bones under a sunflower field in Tuscany (Italy). Comptes Rendus Palevol 2012, 11, 445–454. [Google Scholar] [CrossRef]
- Dominici, S.; Forli, M. Lower Pliocene molluscs from southern Tuscany (Italy). Boll. Soc. Paleontol. Ital. 2021, 60, 69–98. [Google Scholar]
- Dominici, S.; Danise, S.; Benvenuti, M. Pliocene stratigraphic paleobiology in Tuscany and the fossil record of marine megafauna. Earth-Sci. Rev. 2018, 176, 277–310. [Google Scholar] [CrossRef]
- Lourens, L.J.; Hilgen, F.J.; Laskar, J.; Shackleton, N.J.; Wilson, D. Appendix 2. Orbital tuning calibrations and conversions for the Neogene period, 469–484. In A Geologic Time Scale 2004; Gradstein, F., Ogg, J., Smith, A., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 469–484. [Google Scholar]
- Sorbi, S.; Domning, D.P.; Vaiani, S.C.; Bianucci, G. Metaxytherium subapenninum (Bruno, 1839) (Mammalia, Dugongidae), the latest sirenian of the Mediterranean Basin. J. Vertebr. Paleontol. 2012, 32, 686–707. [Google Scholar] [CrossRef]
- Benvenuti, M.; Del Conte, S.; Scarselli, N.; Dominici, S. Hinterland basin development and infilling through tectonic and eustatic processes: Latest Messinian–Gelasian Valdelsa Basin, Northern Apennines, Italy. Basin Res. 2014, 26, 387–402. [Google Scholar] [CrossRef]
- Bianucci, G.; Pesci, F.; Collareta, A.; Tinelli, C. A new Monodontidae (Cetacea, Delphinoidea) from the lower Pliocene of Italy supports a warm-water origin for narwhals and white whales. J. Vertebr. Paleontol. 2019, 39, e1645148. [Google Scholar] [CrossRef]
- Merella, M.; Collareta, A.; Granata, V.; Casati, S.; Bianucci, G. New remains of Casatia thermophila (Cetacea, Monodontidae) from the lower Pliocene marine vertebrate-bearing locality of Arcille (Tuscany, Italy). Riv. Ital. Paleontol. Stratigr. 2022, 128, 229–240. [Google Scholar] [CrossRef]
- Collareta, A.; Mollen, F.H.; Merella, M.; Casati, S.; Di Cencio, A. Remarkable multicuspid teeth in a new elusive skate (Chondrichthyes, Rajiformes) from the Mediterranean Pliocene. Palaontol. Z. 2021, 95, 117–128. [Google Scholar] [CrossRef]
- Collareta, A.; Merella, M.; Casati, S.; Di Cencio, A. First fossils of the extant blacktip shark Carcharhinus limbatus from Europe and the Mediterranean Basin. Neues Jahrb. Geol. Palaöntologie Abh. 2021, 301, 109–118. [Google Scholar] [CrossRef]
- Tinelli, C. Marine vertebrates from Pliocene shell beds from Tuscany (Italy): Prospecting, taphonomy, palaeoecology and systematic palaeontology. Ph.D. Dissertation, Università di Pisa, Pisa, Italy, 2013. [Google Scholar]
- Merella, M.; Collareta, A.; Casati, S.; Di Cencio, A.; Bianucci, G. An Unexpected Deadly Meeting: Deep-Water (Hexanchid) Shark Bite Marks on a Sirenian Skeleton from Pliocene Shoreface Deposits of Tuscany (Italy). Neues Jahrb. Geol. Palaöntologie Abh. 2021, 301, 295–305. Available online: https://www.schweizerbart.de/papers/njgpa/detail/301/100131/An_unexpected_deadly_meeting_deep_water_hexanchid_shark_bite_marks_on_a_sirenian_skeleton_from_Pliocene_shoreface_deposits_of_Tuscany_Italy (accessed on 2 January 2023). [CrossRef]
- Merella, M.; Collareta, A.; Casati, S.; Di Cencio, A.; Bianucci, G. Erratum: Merella M, Collareta A., Casati S., Di Cencio A.; Bianucci G. An Unexpected Deadly Meeting: Deep-Water (Hexanchid) Shark Bite Marks on a Sirenian Skeleton from Pliocene Shoreface Deposits of Tuscany (Italy). Neues Jahrb. Für Geol. Und Paläontologie Abh. 2021, 301, 295–305. Neues Jahrb. Geol. Paläontologie Abh. 2022, 303, 1–3. Available online: https://www.schweizerbart.de/papers/njgpa/detail/303/100963/Erratum_Merella_M_Collareta_A_Casati_S_Di_Cencio_A__Bianucci_G_2021_An_unexpected_deadly_meeting_deep_water_hexanchid_shark_bite_marks_on_a_sirenian_skeleton_from_Pliocene_shoreface_deposits_of_Tuscany_Italy (accessed on 2 January 2023). [CrossRef]
- Raffi, S.; Monegatti, P. Bivalve taxonomic diversity throughout the Italian Pliocene as a tool for climatic-oceanographic and stratigraphic inference. Cienc. Terra (UNL) 1993, 12, 45–50. [Google Scholar]
- Monegatti, P.; Raffi, S. Taxonomic diversity and stratigraphic distribution of Mediterranean Pliocene bivalves. Palaeogeogr. Palaeoclim. Palaeoecol. 2001, 165, 171–193. [Google Scholar] [CrossRef]
- Wisshak, M.; Knaust, D.; Bertling, M. Bioerosion ichnotaxa: Review and annotated list. Facies 2019, 65, 1–39. [Google Scholar] [CrossRef]
- Roberts, E.M.; Rogers, R.R.; Foreman, B.Z. Continental insect borings in dinosaur bone: Examples from the Late Cretaceous of Madagascar and Utah. J. Paleontol. 2007, 81, 201–208. [Google Scholar] [CrossRef]
- Paes Neto, V.D.; Parkinson, A.H.; Pretto, F.A.; Soares, M.B.; Schwanke, C.; Schultz, C.L.; Kellner, A.W. Oldest evidence of osteophagic behavior by insects from the Triassic of Brazil. Palaeogeogr. Palaeoclim. Palaeoecol. 2016, 453, 30–41. [Google Scholar] [CrossRef]
- Godfrey, S.J.; Collareta, A. A new ichnotaxonomic name for burrows in vertebrate coprolites from the Miocene Chesapeake Group of Maryland, USA. Swiss J. Palaeontol. 2022, 141, 9. [Google Scholar] [CrossRef]
- Donovan, S.K.; Ewin, T.A. Substrate is a poor ichnotaxobase: A new demonstration. Swiss J. Palaeontol. 2018, 137, 103–107. [Google Scholar] [CrossRef]
- Zonneveld, J.-P.; AbdelGawad, M.K.; Miller, E.R. Ectoparasite borings, mesoparasite borings, and scavenging traces in early Miocene turtle and tortoise shell: Moghra Formation, Wadi Moghra, Egypt. J. Paleontol. 2022, 96, 304–322. [Google Scholar] [CrossRef]
- Höpner, S.; Bertling, M. Holes in bones: Ichnotaxonomy of bone borings. Ichnos 2017, 24, 259–282. [Google Scholar] [CrossRef]
- Lucas, S.G. Two new, substrate-controlled nonmarine ichnofacies. Ichnos 2016, 23, 248–261. [Google Scholar] [CrossRef]
- Hunt, A.P.; Lucas, S.G.; Klein, H. Late Triassic nonmarine vertebrate and invertebrate trace fossils and the pattern of the Phanerozoic record of vertebrate trace fossils. Top. Geobiol. 2018, 46, 447–543. [Google Scholar]
- Mulder, E.W.A.; Jagt, J.W.M.; Schulp, A.S. Another record of a hadrosaurid dinosaur from the Maastrichtian type area (The Netherlands, Belgium): Seeley (1883) revisited. Bull. Inst. R. Sci. Nat. Belg.-Sci. 2005, 75, 201–206. [Google Scholar]
- Janssen, R.; Van Baal, R.R.; Schulp, A.S. Bone damage in Allopleuron hofmanni (Cheloniidae, Late Cretaceous). Neth. J. Geosci. 2013, 92, 153–157. [Google Scholar] [CrossRef]
- Bisconti, M.; Damarco, P.; Santagati, P.; Pavia, M.; Carnevale, G. Taphonomic patterns in the fossil record of baleen whales from the Pliocene of Piedmont, north-west Italy (Mammalia, Cetacea, Mysticeti). Boll. Soc. Paleontol. Ital. 2021, 60, 183–211. [Google Scholar]
- Brooker, L.R.; Shaw, J.A. The chiton radula: A unique model for biomineralization studies. In Advanced Topics in Biomineralization, Seto, J., Ed.; InTech Publishing: London, UK, 2012; pp. 65–84. [Google Scholar]
- Wang, C.; Li, Q.Y.; Wang, S.N.; Qu, S.X.; Wang, X.X. Microstructure and self-sharpening of the magnetite cap in chiton tooth. Mat. Sci. Eng. C-Mater. 2014, 37, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Brooker, L.R.; Macey, D.J. Biomineralization in chiton teeth and its usefulness as a taxonomic character in the genus Acanthopleura Guilding, 1829 (Mollusca: Polyplacophora). Am. Malacol. Bull. 2001, 16, 203–215. [Google Scholar]
- Bromley, R.G.; Hanken, N.M. Shallow marine bioerosion at Vardø, Arctic Norway. Bull. Geol. Soc. Den. 1981, 29, 103–109. [Google Scholar] [CrossRef]
- Akpan, E.B.; Farrow, G.E.; Morris, N. Limpet grazing on cretaceous algal-bored ammonites. Palaentology 1982, 25, 361–367. [Google Scholar]
- Radley, J.D.; Twitchett, R.J. Bioerosion, preparation and curation. Geol. Curator 2004, 8, 29–31. [Google Scholar] [CrossRef]
- Barnawell, E.B. The carnivorous habit among the Polyplacophora. Veliger 1960, 2, 85–88. [Google Scholar]
- Langer, P.D. Diet analysis of three subtidal coexisting chitons from the northwestern Atlantic (Mollusca: Polyplacophora). Veliger 1983, 25, 370–377. [Google Scholar]
- Latyshev, N.A.; Khardin, A.S.; Kasyanov, S.P.; Ivanova, M.B. A study on the feeding ecology of chitons using analysis of gut contents and fatty acid markers. J. Molluscan Stud. 2004, 70, 225–230. [Google Scholar] [CrossRef]
- Sirenko, B.I. New Chilean chiton-epizoophagus Gallardoia valdiviensis gen. et sp. nov. (Mollusca, Polyplacophora). Ruthenica Russ. Malacol. J. 2007, 17, 13–21. [Google Scholar]
- Anderson, G.S. Decomposition and invertebrate colonization of cadavers in coastal marine environments. In Current Concepts in Forensic Entomology; Amendt, J., Goff, M.L., Campobasso, C.P., Grassberger, M., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 223–272. [Google Scholar]
- Hughes, J.L. Taphonomic Alteration to Juvenile Porcine Bone after Exposure to a Marine Environment. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2018. [Google Scholar]
- Egeland, C.P.; Pickering, T.R. Cruel traces: Bone surface modifications and their relevance to forensic science. WIREs Forensic Sci. 2021, 3, e1400. [Google Scholar] [CrossRef]
- Higgs, N.; Pokines, J.T. Marine environmental alterations to bone. In Manual of Forensic Taphonomy; Pokines, J.T., Symes, S.A., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 143–179. [Google Scholar]
- Jans, M.M.E. Microbial bioerosion of bone—A review. In Current Developments in Bioerosion; Wisshak, M., Tapanila, L., Eds.; Springer: Heidelberg, Germany; London, UK, 2008; pp. 397–413. [Google Scholar]
- Pokines, J.T.; Higgs, N. Macroscopic taphonomic alterations to human bone recovered from marine environments. J. Forensic Identif. 2015, 65, 953–984. [Google Scholar]
- Fernández-Jalvo, Y.; Andrews, P. Atlas of Taphonomic Identifications: 1001+ Images of Fossil and Recent Mammal Bone Modification; Springer: New York, NY, USA, 2016. [Google Scholar]
- Anderson, R.C. Collection and husbandry of veiled chitons. Drum Croak. 1997, 6, 6–8. [Google Scholar]
- Schwabe, E.; Sellanes, J. Revision of Chilean bathyal chitons (Mollusca: Polyplacophora) associated with cold-seeps, including description of a new species of Leptochiton (Leptochitonidae). Org. Divers. Evol. 2010, 10, 31–55. [Google Scholar] [CrossRef]
- Aronson, H.S.; Zellmer, A.J.; Goffredi, S.K. The specific and exclusive microbiome of the deep-sea bone-eating snail, Rubyspira osteovora. FEMS Microbiol. Ecol. 2017, 93, fiw250. [Google Scholar] [CrossRef] [Green Version]
- Schwabe, E.; Sellanes, J. A new species of Lepidozona (Mollusca: Polyplacophora: Ischnochitonidae), found on whale bones off the coast of Chile. Iberus 2004, 22, 147–153. [Google Scholar]
- Glover, A.G.; Källström, B.; Smith, C.R.; Dahlgren, T.G. World-wide whale worms? A new species of Osedax from the shallow north Atlantic. Proc. R. Soc. B-Biol. Sci. 2005, 272, 2587–2592. [Google Scholar] [CrossRef] [Green Version]
- Verna, C.; Ramette, A.; Wiklund, H.; Dahlgren, T.G.; Glover, A.G.; Gaill, F.; Dubilier, N. High symbiont diversity in the bone-eating worm Osedax mucofloris from shallow whale-falls in the North Atlantic. Environ. Microbiol. 2010, 12, 2355–2370. [Google Scholar] [CrossRef]
- Taboada, S.; Riesgo, A.; Bas, M.; Arnedo, M.A.; Cristobo, J.; Rouse, G.W.; Avila, C. Bone-eating worms spread: Insights into shallow-water Osedax (Annelida, Siboglinidae) from Antarctic, Subantarctic, and Mediterranean waters. PLoS ONE 2015, 10, e0140341. [Google Scholar] [CrossRef] [Green Version]
- Shears-Ozeki, C.; Martill, D.M.; Smith, R.E.; Ibrahim, N. Biological modification of bones in the Cretaceous of North Africa. Cretac. Res. 2020, 114, 104529. [Google Scholar]
- Trueman, C.N.; Martill, D.M. The long-term survival of bone: The role of bioerosion. Archaeometry 2002, 44, 371–382. [Google Scholar] [CrossRef]
- Belaústegui, Z.; de Gibert, J.M.; Domènech, R.; Muñiz, F.; Martinell, J. Clavate borings in a Miocene cetacean skeleton from Tarragona (NE Spain) and the fossil record of marine bone bioerosion. Palaeogeogr. Palaeoclim. Palaeoecol. 2012, 323, 68–74. [Google Scholar] [CrossRef]
- Bosio, G.; Collareta, A.; Di Celma, C.; Lambert, O.; Marx, F.G.; de Muizon, C.; Gioncada, A.; Gariboldi, K.; Malinverno, E.; Varas-Malca, R.; et al. Taphonomy of marine vertebrates of the Pisco Formation (Miocene, Peru): Insights into the origin of an outstanding Fossil-Lagerstätte. PLoS ONE 2021, 16, 102399. [Google Scholar] [CrossRef]
- de Buffrénil, V.; Canoville, A.; D’Anastasio, R.; Domning, D.P. Evolution of sirenian pachyosteosclerosis, a model-case for the study of bone structure in aquatic tetrapods. J. Mamm. Evol. 2010, 17, 101–120. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collareta, A.; Merella, M.; Casati, S.; Di Cencio, A.; Tinelli, C.; Bianucci, G. Polyplacophoran Feeding Traces on Mediterranean Pliocene Sirenian Bones: Insights on the Role of Grazing Bioeroders in Shallow-Marine Vertebrate Falls. Life 2023, 13, 327. https://doi.org/10.3390/life13020327
Collareta A, Merella M, Casati S, Di Cencio A, Tinelli C, Bianucci G. Polyplacophoran Feeding Traces on Mediterranean Pliocene Sirenian Bones: Insights on the Role of Grazing Bioeroders in Shallow-Marine Vertebrate Falls. Life. 2023; 13(2):327. https://doi.org/10.3390/life13020327
Chicago/Turabian StyleCollareta, Alberto, Marco Merella, Simone Casati, Andrea Di Cencio, Chiara Tinelli, and Giovanni Bianucci. 2023. "Polyplacophoran Feeding Traces on Mediterranean Pliocene Sirenian Bones: Insights on the Role of Grazing Bioeroders in Shallow-Marine Vertebrate Falls" Life 13, no. 2: 327. https://doi.org/10.3390/life13020327
APA StyleCollareta, A., Merella, M., Casati, S., Di Cencio, A., Tinelli, C., & Bianucci, G. (2023). Polyplacophoran Feeding Traces on Mediterranean Pliocene Sirenian Bones: Insights on the Role of Grazing Bioeroders in Shallow-Marine Vertebrate Falls. Life, 13(2), 327. https://doi.org/10.3390/life13020327