Fluorescence Confocal Microscopy in Urological Malignancies: Current Applications and Future Perspectives
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Bladder Cancer
3.2. Upper Tract Urothelial Cancer
3.3. Prostate Cancer
3.4. Renal Cell Carcinoma
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Minsky, M. Memoir on Inventing the Confocal Scanning Microscope. Scanning 1988, 10, 128–138. [Google Scholar] [CrossRef]
- Paddock, S.W.; Eliceiri, K.W. Laser Scanning Confocal Microscopy: History, Applications, and Related Optical Sectioning Techniques. In Confocal Microscopy: Methods and Protocols; Humana Press: New York, NY, USA, 2014; pp. 9–47. [Google Scholar]
- Baba, E.R.; Safatle-Ribeiro, A.V.; Paduani, G.F.; Giovannini, M.; Maluf-Filho, F. Probe-Based Confocal Laser Endomicroscopy for the Differential Diagnosis of Gastric Tubular Adenoma and Intestinal Metaplasia in a Patient with Severe Atrophic Pangastritis. Gastrointest. Endosc. 2016, 84, 183. [Google Scholar] [CrossRef] [PubMed]
- Karia, K.; Kahaleh, M. A Review of Probe-Based Confocal Laser Endomicroscopy for Pancreaticobiliary Disease. Clin. Endosc. 2016, 49, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.-Q.; Ma, S.-J.; Hu, H.-Y.; Ge, J.; Zhou, L.-Z.; Huo, S.-T.; Qiu, M.; Chen, Q. Comparison of Narrow-Band Imaging and Confocal Laser Endomicroscopy for the Detection of Neoplasia in Barrett’s Esophagus: A Meta-Analysis. Clin. Res. Hepatol. Gastroenterol. 2018, 42, 31–39. [Google Scholar] [CrossRef]
- Ragazzi, M.; Longo, C.; Piana, S. Ex Vivo (Fluorescence) Confocal Microscopy in Surgical Pathology. Adv. Anat. Pathol. 2016, 23, 159–169. [Google Scholar] [CrossRef]
- Mir, M.C.; Bancalari, B.; Calatrava, A.; Casanova, J.; Dominguez Escrig, J.L.; Ramirez-Backhaus, M.; Gomez-Ferrer, A.; Collado, A.; Wong, A.; Iborra, I.; et al. Ex-Vivo Confocal Fluorescence Microscopy for Rapid Evaluation of Renal Core Biopsy. Minerva Urol. Nefrol. 2020, 72, 109–113. [Google Scholar] [CrossRef]
- Marenco, J.; Calatrava, A.; Casanova, J.; Claps, F.; Mascaros, J.; Wong, A.; Barrios, M.; Martin, I.; Rubio, J. Evaluation of Fluorescent Confocal Microscopy for Intraoperative Analysis of Prostate Biopsy Cores. Eur. Urol. Focus 2021, 7, 1254–1259. [Google Scholar] [CrossRef]
- Sonn, G.A.; Jones, S.N.E.; Tarin, T.V.; Du, C.B.; Mach, K.E.; Jensen, K.C.; Liao, J.C. Optical Biopsy of Human Bladder Neoplasia With In Vivo Confocal Laser Endomicroscopy. J. Urol. 2009, 182, 1299–1305. [Google Scholar] [CrossRef]
- Chang, T.C.; Liu, J.J.; Hsiao, S.T.; Pan, Y.; Mach, K.E.; Leppert, J.T.; McKenney, J.K.; Rouse, R.V.; Liao, J.C. Interobserver Agreement of Confocal Laser Endomicroscopy for Bladder Cancer. J. Endourol./Endourol. Soc. 2013, 27, 598–603. [Google Scholar] [CrossRef]
- Chen, S.P.; Liao, J.C. Confocal Laser Endomicroscopy of Bladder and Upper Tract Urothelial Carcinoma: A New Era of Optical Diagnosis? Curr. Urol. Rep. 2014, 15, 437. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.-C.; Luo, W.-J.; Dai, B.; Ye, D.-W.; Zhu, Y.-P. Diagnostic Performance of Confocal Laser Endomicroscopy for the Detection of Bladder Cancer: Systematic Review and Meta-Analysis. Urol. Int. 2020, 104, 523–532. [Google Scholar] [CrossRef]
- Chang, T.C.; Liu, J.J.; Liao, J.C. Probe-Based Confocal Laser Endomicroscopy of the Urinary Tract: The Technique. J. Vis. Exp. 2013, 71, e4409. [Google Scholar] [CrossRef]
- Puliatti, S.; Bertoni, L.; Pirola, G.M.; Azzoni, P.; Bevilacqua, L.; Eissa, A.; Elsherbiny, A.; Sighinolfi, M.C.; Chester, J.; Kaleci, S.; et al. Ex Vivo Fluorescence Confocal Microscopy: The First Application for Real-Time Pathological Examination of Prostatic Tissue. BJU Int. 2019, 124, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Rocco, B.; Sighinolfi, M.C.; Bertoni, L.; Spandri, V.; Puliatti, S.; Eissa, A.; Reggiani Bonetti, L.; Azzoni, P.; Sandri, M.; De Carne, C.; et al. Real-Time Assessment of Surgical Margins during Radical Prostatectomy: A Novel Approach That Uses Fluorescence Confocal Microscopy for the Evaluation of Peri-Prostatic Soft Tissue. BJU Int. 2020, 125, 487–489. [Google Scholar] [CrossRef]
- Su, L.M.; Kuo, J.; Allan, R.W.; Liao, J.C.; Ritari, K.L.; Tomeny, P.E.; Carter, C.M. Fiber-Optic Confocal Laser Endomicroscopy of Small Renal Masses: Toward Real-Time Optical Diagnostic Biopsy. J. Urol. 2016, 195, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Claps, F.; Mir, M.C.; van Rhijn, B.W.G.; Mazzon, G.; Soria, F.; D’Andrea, D.; Marra, G.; Boltri, M.; Traunero, F.; Massanova, M.; et al. Impact of the Controlling Nutritional Status (CONUT) Score on Perioperative Morbidity and Oncological Outcomes in Patients with Bladder Cancer Treated with Radical Cystectomy. Urol. Oncol. Semin. Orig. Investig. 2023, 41, 49.e13–49.e22. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Beltran, A.; Blanca, A.; Cimadamore, A.; Montironi, R.; Luque, R.J.; Volavšek, M.; Cheng, L. T1 Bladder Carcinoma with Variant Histology: Pathological Features and Clinical Significance. Virchows Arch. 2022, 480, 989–998. [Google Scholar] [CrossRef]
- Beijert, I.J.; Hentschel, A.E.; Bründl, J.; Compérat, E.M.; Plass, K.; Rodríguez, O.; Subiela Henríquez, J.D.; Hernández, V.; de la Peña, E.; Alemany, I.; et al. Prognosis of Primary Papillary Ta Grade 3 Bladder Cancer in the Non–Muscle-Invasive Spectrum. Eur. Urol. Oncol. 2023, 6, 214–221. [Google Scholar] [CrossRef]
- Claps, F.; van de Kamp, M.W.; Mayr, R.; Bostrom, P.J.; Shariat, S.F.; Hippe, K.; Bertz, S.; Neuzillet, Y.; Sanders, J.; Otto, W.; et al. Prognostic Impact of Variant Histologies in Urothelial Bladder Cancer Treated with Radical Cystectomy. BJU Int. 2023, 132, 170–180. [Google Scholar] [CrossRef]
- Claps, F.; Pavan, N.; Ongaro, L.; Tierno, D.; Grassi, G.; Trombetta, C.; Tulone, G.; Simonato, A.; Bartoletti, R.; Mertens, L.S.; et al. BCG-Unresponsive Non-Muscle-Invasive Bladder Cancer: Current Treatment Landscape and Novel Emerging Molecular Targets. Int. J. Mol. Sci. 2023, 24, 12596. [Google Scholar] [CrossRef]
- Beji, S.; Wrist Lam, G.; Østergren, P.B.; Toxvaerd, A.; Sønksen, J.; Fode, M. Diagnostic Value of Probe-Based Confocal Laser Endomicroscopy versus Conventional Endoscopic Biopsies of Non-Muscle Invasive Bladder Tumors: A Pilot Study. Scand. J. Urol. 2021, 55, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jeh, S.U.; Koh, D.H.; Chung, D.Y.; Kim, M.S.; Goh, H.J.; Lee, J.Y.; Choi, Y.D. Probe-Based Confocal Laser Endomicroscopy During Transurethral Resection of Bladder Tumors Improves the Diagnostic Accuracy and Therapeutic Efficacy. Ann. Surg. Oncol. 2019, 26, 1158–1165. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, Y.C.; Dai, B.; Ye, D.W.; Zhu, Y.P. Optical Biopsy of Bladder Cancer Using Confocal Laser Endomicroscopy. Int. Urol. Nephrol. 2019, 51, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
- Lucas, M.; Liem, E.I.M.L.; Savci-Heijink, C.D.; Freund, J.E.; Marquering, H.A.; Van Leeuwen, T.G.; De Bruin, D.M. Toward Automated in Vivo Bladder Tumor Stratification Using Confocal Laser Endomicroscopy. J. Endourol. 2019, 33, 930–937. [Google Scholar] [CrossRef]
- Liem, E.I.M.L.; Freund, J.E.; Savci-Heijink, C.D.; de la Rosette, J.J.M.C.H.; Kamphuis, G.M.; Baard, J.; Liao, J.C.; van Leeuwen, T.G.; de Reijke, T.M.; de Bruin, D.M. Validation of Confocal Laser Endomicroscopy Features of Bladder Cancer: The Next Step Towards Real-Time Histologic Grading. Eur. Urol. Focus. 2020, 6, 81–87. [Google Scholar] [CrossRef]
- Marien, A.; Rock, A.; El Maadarani, K.; Francois, C.; Gosset, P.; Mauroy, B.; Bonnal, J.L. Urothelial Tumors and Dual-Band Imaging: A New Concept in Confocal Laser Endomicroscopy. J. Endourol. 2017, 31, 538–544. [Google Scholar] [CrossRef]
- Sanguedolce, F.; Fontana, M.; Turco, M.; Territo, A.; Lucena, J.B.; Cortez, J.C.; Vanacore, D.; Meneghetti, I.; Gallioli, A.; Gaya, J.M.; et al. Endoscopic Management of Upper Urinary Tract Urothelial Carcinoma: Oncologic Outcomes and Prognostic Factors in a Contemporary Cohort. J. Endourol. 2021, 35, 1593–1600. [Google Scholar] [CrossRef]
- Freund, J.E.; Liem, E.I.M.L.; Savci-Heijink, C.D.; Baard, J.; Kamphuis, G.M.; de la Rosette, J.J.M.C.H.; de Bruin, D.M. Confocal Laser Endomicroscopy for Upper Tract Urothelial Carcinoma: Validation of the Proposed Criteria and Proposal of a Scoring System for Real-Time Tumor Grading. World J. Urol. 2019, 37, 2155–2164. [Google Scholar] [CrossRef]
- Prata, F.; Anceschi, U.; Taffon, C.; Rossi, S.M.; Verri, M.; Iannuzzi, A.; Ragusa, A.; Esperto, F.; Prata, S.M.; Crescenzi, A.; et al. Real-Time Urethral and Ureteral Assessment during Radical Cystectomy Using Ex-Vivo Optical Imaging: A Novel Technique for the Evaluation of Fresh Unfixed Surgical Margins. Curr. Oncol. 2023, 30, 3421–3431. [Google Scholar] [CrossRef]
- Breda, A.; Territo, A.; Guttilla, A.; Sanguedolce, F.; Manfredi, M.; Quaresima, L.; Gaya, J.M.; Algaba, F.; Palou, J.; Villavicencio, H. Correlation between Confocal Laser Endomicroscopy (Cellvizio®) and Histological Grading of Upper Tract Urothelial Carcinoma: A Step Forward for a Better Selection of Patients Suitable for Conservative Management. Eur. Urol. Focus. 2018, 4, 954–959. [Google Scholar] [CrossRef]
- Villa, L.; Cloutier, J.; Cotè, J.-F.; Salonia, A.; Montorsi, F.; Traxer, O. Confocal laser endomicroscopy in the management of endoscopically treated upper urinary tract transitional cell carcinoma: Preliminary data. J. Endourol. 2016, 30, 237–242. [Google Scholar] [CrossRef]
- Bui, D.; Mach, K.E.; Zlatev, D.V.; Rouse, R.V.; Leppert, J.T.; Liao, J.C. A Pilot Study of in Vivo Confocal Laser Endomicroscopy of Upper Tract Urothelial Carcinoma. J. Endourol. 2015, 29, 1418–1423. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, E.; Dell’Oglio, P.; Grivas, N.; Wit, E.; Donswijk, M.; Briganti, A.; Van Leeuwen, F.; Poel, H. van der Diagnostic Value, Oncologic Outcomes, and Safety Profile of Image-Guided Surgery Technologies During Robot-Assisted Lymph Node Dissection with Sentinel Node Biopsy for Prostate Cancer. J. Nucl. Med. 2021, 62, 1363–1371. [Google Scholar] [CrossRef] [PubMed]
- van Oosterom, M.N.; van Leeuwen, S.I.; Mazzone, E.; Dell’Oglio, P.; Buckle, T.; van Beurden, F.; Boonekamp, M.; van de Stadt, H.; Bauwens, K.; Simon, H.; et al. Click-on Fluorescence Detectors: Using Robotic Surgical Instruments to Characterize Molecular Tissue Aspects. J. Robot. Surg. 2022, 17, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Claps, F.; Ramírez-Backhaus, M.; Mir Maresma, M.C.; Gómez-Ferrer, Á.; Mascarós, J.M.; Marenco, J.; Collado Serra, A.; Casanova Ramón-Borja, J.; Calatrava Fons, A.; Trombetta, C.; et al. Indocyanine Green Guidance Improves the Efficiency of Extended Pelvic Lymph Node Dissection during Laparoscopic Radical Prostatectomy. Int. J. Urol. 2021, 28, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Rocco, B.; Sighinolfi, M.C.; Cimadamore, A.; Reggiani Bonetti, L.; Bertoni, L.; Puliatti, S.; Eissa, A.; Spandri, V.; Azzoni, P.; Dinneen, E.; et al. Digital Frozen Section of the Prostate Surface during Radical Prostatectomy: A Novel Approach to Evaluate Surgical Margins. BJU Int. 2020, 126, 336–338. [Google Scholar] [CrossRef] [PubMed]
- Rocco, B.; Sighinolfi, M.C.; Sandri, M.; Spandri, V.; Cimadamore, A.; Volavsek, M.; Mazzucchelli, R.; Lopez-Beltran, A.; Eissa, A.; Bertoni, L.; et al. Digital Biopsy with Fluorescence Confocal Microscope for Effective Real-Time Diagnosis of Prostate Cancer: A Prospective, Comparative Study. Eur. Urol. Oncol. 2021, 4, 784–791. [Google Scholar] [CrossRef]
- Gobbo, S.; Eccher, A.; Gallina, S.; D’aietti, D.; Princiotta, A.; Ditonno, F.; Tafuri, A.; Cerruto, M.A.; Marletta, S.; Sanguedolce, F.; et al. Validation of Real-Time Prostatic Biopsies Evaluation with Fluorescence Laser Confocal Microscopy. Minerva Urol. Nephrol. 2023, 75, 577–582. [Google Scholar] [CrossRef]
- Liu, J.; Wang, M.; Tulman, D.; Mandava, S.H.; Elfer, K.N.; Gabrielson, A.; Lai, W.; Abshire, C.; Sholl, A.B.; Brown, J.Q.; et al. Nondestructive Diagnosis of Kidney Cancer on 18-Gauge Core Needle Renal Biopsy Using Dual-Color Fluorescence Structured Illumination Microscopy. Urology 2016, 98, 195–199. [Google Scholar] [CrossRef]
- Babjuk, M.; Burger, M.; Capoun, O.; Cohen, D.; Compérat, E.M.; Dominguez Escrig, J.L.; Gontero, P.; Liedberg, F.; Masson-Lecomte, A.; Mostafid, A.H.; et al. European Association of Urology Guidelines on Non–Muscle-Invasive Bladder Cancer (Ta, T1, and Carcinoma in Situ). Eur. Urol. 2022, 81, 75–94. [Google Scholar] [CrossRef]
- Tang, Y.; Kortum, A.; Vohra, I.; Schwarz, R.A.; Carns, J.; Kannady, C.R.; Clavell-Hernandez, J.; Hu, Z.; Dhanani, N.; Richards-Kortum, R. Initial Results of First in Vivo Imaging of Bladder Lesions Using a High-Resolution Confocal Microendoscope. J. Endourol. 2021, 35, 1190–1197. [Google Scholar] [CrossRef] [PubMed]
- Jancke, G.; Rosell, J.; Jahnson, S. Residual Tumour in the Marginal Resection after a Complete Transurethral Resection Is Associated with Local Recurrence in Ta/T1 Urinary Bladder Cancer. Scand. J. Urol. Nephrol. 2012, 46, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Lamm, D.L. Carcinoma in Situ. Urol. Clin. N. Am. 1992, 19, 499–508. [Google Scholar]
- Rouprêt, M.; Seisen, T.; Birtle, A.J.; Capoun, O.; Compérat, E.M.; Dominguez-Escrig, J.L.; Gürses Andersson, I.; Liedberg, F.; Mariappan, P.; Hugh Mostafid, A.; et al. European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma: 2023 Update. Eur. Urol. 2023, 84, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Oderda, M.; Grimaldi, S.; Rovera, G.; Delsedime, L.; D’Agate, D.; Lavagno, F.; Marquis, A.; Marra, G.; Molinaro, L.; Deandreis, D.; et al. Robot-Assisted PSMA-Radioguided Surgery to Assess Surgical Margins and Nodal Metastases in Prostate Cancer Patients: Report on Three Cases Using an Intraoperative PET-CT Specimen Imager. Urology 2023, in press. [Google Scholar] [CrossRef] [PubMed]
- Berrens, A.-C.; Knipper, S.; Marra, G.; van Leeuwen, P.J.; van der Mierden, S.; Donswijk, M.L.; Maurer, T.; van Leeuwen, F.W.B.; van der Poel, H.G. State of the Art in Prostate-Specific Membrane Antigen–Targeted Surgery—A Systematic Review. Eur. Urol. Open Sci. 2023, 54, 43–55. [Google Scholar] [CrossRef]
- Liem, E.I.M.L.; Freund, J.E.; Baard, J.; Martijn De Bruin, D.; Pilar Laguna Pes, M.; Dilara Savci-Heijink, C.; Van Leeuwen, T.G.; De Reijke, T.M.; De La Rosette, J.J. Confocal Laser Endomicroscopy for the Diagnosis of Urothelial Carcinoma in the Bladder and the Upper Urinary Tract: Protocols for Two Prospective Explorative Studies. JMIR Res. Protoc. 2018, 7, e34. [Google Scholar] [CrossRef]
- Doyle, P.W.; Kavoussi, N.L. Machine Learning Applications to Enhance Patient Specific Care for Urologic Surgery. World J. Urol. 2022, 40, 679–686. [Google Scholar] [CrossRef]
- Suarez-Ibarrola, R.; Hein, S.; Reis, G.; Gratzke, C.; Miernik, A. Current and Future Applications of Machine and Deep Learning in Urology: A Review of the Literature on Urolithiasis, Renal Cell Carcinoma, and Bladder and Prostate Cancer. World J. Urol. 2020, 38, 2329–2347. [Google Scholar] [CrossRef]
- Rossin, G.; Zorzi, F.; Ongaro, L.; Piasentin, A.; Vedovo, F.; Liguori, G.; Zucchi, A.; Simonato, A.; Bartoletti, R.; Trombetta, C.; et al. Artificial Intelligence in Bladder Cancer Diagnosis: Current Applications and Future Perspectives. BioMedInformatics 2023, 3, 104–114. [Google Scholar] [CrossRef]
- Ellebrecht, D.B.; Heßler, N.; Schlaefer, A.; Gessert, N. Confocal Laser Microscopy for in Vivo Intraoperative Application: Diagnostic Accuracy of Investigator and Machine Learning Strategies. Visc. Med. 2021, 37, 533–541. [Google Scholar] [CrossRef]
- Patel, R.H.; Foltz, E.A.; Witkowski, A.; Ludzik, J. Analysis of Artificial Intelligence-Based Approaches Applied to Non-Invasive Imaging for Early Detection of Melanoma: A Systematic Review. Cancers 2023, 15, 4694. [Google Scholar] [CrossRef] [PubMed]
- Mowatt, G.; N’Dow, J.; Vale, L.; Nabi, G.; Boachie, C.; Cook, J.A.; Fraser, C.; Griffiths, T.R.L. Photodynamic Diagnosis of Bladder Cancer Compared with White Light Cystoscopy: Systematic Review and Meta-Analysis. Int. J. Technol. Assess. Health Care 2011, 27, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Gladkova, N.; Kiseleva, E.; Streltsova, O.; Prodanets, N.; Snopova, L.; Karabut, M.; Gubarkova, E.; Zagaynova, E. Combined Use of Fluorescence Cystoscopy and Cross-Polarization OCT for Diagnosis of Bladder Cancer and Correlation with Immunohistochemical Markers. J. Biophotonics 2013, 6, 687–698. [Google Scholar] [CrossRef] [PubMed]
Author | Year | Pat. (n.) | Setting | CFM System | Procedure | Se. (%) | Sp. (%) | PPV (%) | NPV (%) | Main Outcomes |
---|---|---|---|---|---|---|---|---|---|---|
Beji [22] | 2020 | 12 | In vivo | Cellvizio | TURB | 48.0 (LGUC vs. HGUC) | 82.7 (LGUC vs. HGUC) | 54.7 (LGUC vs. HGUC) | 82.3 (LGUC vs. HGUC) | NPV for CLE was inadequate to safely replace histopathological assessment for HGUC diagnosis. |
Lee [23] | 2019 | 75 | In vivo | Cellvizio | TURB | 91.7 (mal. vs. ben.) 94.5 (LGUC vs. HGUC) 71.4 (CIS vs. IT) | 73.9 (mal. vs. ben.) 66.7 (LGUC vs. HGUC) 81.3 (CIS vs. IT) | 93.6 (mal. vs. ben.) 89.7 (LGUC vs. HGUC) 83.3 (CIS vs. IT) | 68.0 (mal. vs. ben.) 80.0 (LGUC vs. HGUC) 68.4 (CIS vs. IT) | CLE represents a promising technology to provide real-time reliable diagnosis and grading of UC. Moreover, it might improve RFS. |
Wu [24] | 2019 | 21 | In vivo | Cellvizio | TURB/DC | NR | NR | NR | NR | The CLE accuracy related to the final biopsy histopathology was 81.0%. A total of six LGUC cases (85.7%) and eight HGBC cases (80.0%) were correctly staged though CLE images. |
Lucas [25] | 2019 | 53 | In vivo | Cellvizio + AI- image analysis | TURB | NR | NR | NR | NR | CLE accuracy regarding malignant vs. benign tissue distinction was 79%, while the HGUC vs. LGUC differentiation accuracy was 82%. |
Liem [26] | 2018 | 53 | In vivo | Cellvizio | TURB | 76.0 (LGUC) vs. 70.0 (HGUC) | 76.0 (LGUC) vs. 69.0 (HGUC) | NR | NR | Concordance between CLE-based classification and final histopathology was found in 19 LGUC cases (76%), 19 HGUC cases (70%), and 4 benign lesion cases (29%). |
Marien [27] | 2017 | 9 | Ex vivo | Cellvizio | TURB | 80.0 | 100.0 | NR | NR | CLE images from seven out of nine patients clearly showed cytoplasm of suspect cells and nuclei. |
Chang [10] | 2013 | 31 | Ex vivo | NR | TURB | 50.0 (LGUC) vs. 75.0 (HGUC) | 94.0 (LGUC) vs. 64.0 (HGUC) | NR | NR | Novice CLE observers achieved a diagnostic accuracy comparable to WLC-images-only observation after a short training. An expert CLE observer achieved higher accuracy rates compared to WLC-image-only analysis. |
Author | Year | Pat. (n.) | Setting | CFM System | Surgery | Se. (%) | Sp. (%) | PPV (%) | NPV (%) | Main Outcomes |
---|---|---|---|---|---|---|---|---|---|---|
Prata [30] | 2023 | 46 | Ex vivo | VivaScope 2500 | ORC | 53.8 (vs. H&E) | 90.9 (vs. H&E) | 90.9 (vs. H&E) | 83.3 (vs. H&E) | CFM showed similar results compared to frozen section analysis for ureteral margins evaluation. |
Sanguedolce [28] | 2021 | 7 | In vivo | Cellvizio | URS | 71.4 (total) 100.0 (HG lesions) | 57.1 (for HG lesions only) | NR | NR | Real time concordance with definitive histology in UTUC biopsy: 71.4% (5/7 cases) |
Freund [29] | 2019 | 36 | In vivo | Cellvizio | URS | 90.0 | 86.0 | 93.0 | 80.0 | CLE correctly assessed histopathological grading in 26 low-grade UTUCs (90%) and in 12 high-grade UTUCs (86%). |
Breda [31] | 2017 | 14 | In vivo | Cellvizio | f-URS | NR | NR | NR | NR | Correspondence between CLE images and final histopathological resulted in 7/7 low-grade UTUC (100%), 5/6 high-grade UTUC (83%), 1/1 CIS (100%). |
Villa [32] | 2016 | 11 | In vivo | Cellvizio | f-URS | NR | NR | NR | NR | CLE allows clear recognition of UTUC histological features. |
Bui [33] | 2015 | 14 | In vivo | Cellvizio | f-URS | NR | NR | NR | NR | CLE provided images of papillary structures, fibrovascular stalks, and pleomorphism. Lamina propria was identified in normal areas. |
Author | Year | Pat. (n.) | Setting | CFM System | Se. (%) | Sp. (%) | PPV (%) | NPV (%) | Main Outcomes |
---|---|---|---|---|---|---|---|---|---|
Gobbo [39] | 2023 | NR (75 biopsy slides) | Biopsy | VivaScope | NR | NR | NR | NR | Almost complete agreement was obtained for ISUP/WHO grade group I, IV, and V (k = 0.85). For the remaining noncancer stains, agreement was nearly complete (k = 0.81). |
Marenco [8] | 2020 | 57 biopsy-naive men | Biopsy | VivaScope | NR | NR | 85.0 (biopsy core) 83.8 (ROI level) | 95.1 (biopsy core) 85.7 (ROI level) | CFM and H&E concordance was evaluated on the biopsy core and ROI level; Cohen’s k for agreement between the techniques was 0.81 for the biopsy core level and 0.69 for the ROI level. The PPV and NPV were high at biopsy core and ROI levels. |
Rocco [15] | 2020 | 20 | Surgical margins (periprostatic tissue) during RP | VivaScope | NR | NR | NR | NR | CFM diagnostic performance in distinguishing between non-prostatic tissue, benign prostatic tissue, and PCa was high; CFM demonstrated almost perfect agreement with H&E in distinguishing all tissue types. |
Rocco [38] | 2020 | 54 | Biopsy | Vivascope | 86.3 | 97.2 | 88.5 | 96.7 | The diagnostic agreement between CFM and H&E for the detection of PCa was high (k = 0.84; 0.81–0.88 among four pathologists) with 95.1% correct diagnosis obtained (range 93.9–96.2). |
Rocco [37] | 2020 | 8 | Surgical margins (periprostatic tissue) during RP | Vivascope | NR | NR | NR | NR | 7/8 patients had overall negative SM in the sampled areas. The agreement between CFM and H&E in regard to the discrimination between cancerous and noncancerous tissue was 100%. |
Puliatti [14] | 2019 | 13 | Biopsy (on RP surgical specimen) | VivaScope | 83.3 | 93.5 | NR | NR | The overall diagnostic agreement between CFM and histopathological diagnoses was substantial with 91% correct diagnosis and an AUC of 0.884 (95% CI 0.840–0.920). |
Author | Year | Pat. (n.) | Setting | CFM System | Se. (%) | Sp. (%) | PPV (%) | NPV (%) | Main Outcomes |
---|---|---|---|---|---|---|---|---|---|
Mir [7] | 2020 | 4 | Ex vivo | VivaScope 2500 | NR | NR | NR | NR | Neoplastic and noncancer tissues were both detected in 100% of cases through CFM images analysis (one oncocytoma and three RCC). CFM images showed strong overlapping with traditional H&E-stained samples regarding cytoarchitectural features. |
Liu [40] | 2016 | 19 | Ex vivo | VR-SIM | 79.2 | 95.1 | 82.6 | 90.7 | CFM diagnostical outcomes were compared to traditional H&E staining; final accuracy was 89.2%. |
Su [16] | 2015 | 20 | Ex vivo | Cellvizio | NR | NR | NR | NR | CLE imaging properly evaluates normal renal parenchymal features. It allows a rapid distinction between cancer and normal tissue, as well as the possibility to distinguish between benign and malignant ones. Enhanced CLE images resolution was provided by topical fluorescein rather than by IV route administration. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ongaro, L.; Rossin, G.; Biasatti, A.; Pacini, M.; Rizzo, M.; Traunero, F.; Piasentin, A.; Perotti, A.; Trombetta, C.; Bartoletti, R.; et al. Fluorescence Confocal Microscopy in Urological Malignancies: Current Applications and Future Perspectives. Life 2023, 13, 2301. https://doi.org/10.3390/life13122301
Ongaro L, Rossin G, Biasatti A, Pacini M, Rizzo M, Traunero F, Piasentin A, Perotti A, Trombetta C, Bartoletti R, et al. Fluorescence Confocal Microscopy in Urological Malignancies: Current Applications and Future Perspectives. Life. 2023; 13(12):2301. https://doi.org/10.3390/life13122301
Chicago/Turabian StyleOngaro, Luca, Giulio Rossin, Arianna Biasatti, Matteo Pacini, Michele Rizzo, Fabio Traunero, Andrea Piasentin, Alessandro Perotti, Carlo Trombetta, Riccardo Bartoletti, and et al. 2023. "Fluorescence Confocal Microscopy in Urological Malignancies: Current Applications and Future Perspectives" Life 13, no. 12: 2301. https://doi.org/10.3390/life13122301