Atherosclerosis from Newborn to Adult—Epidemiology, Pathological Aspects, and Risk Factors
Abstract
:1. Introduction
2. Epidemiology
3. Pathophysiology
4. Risk Factors for Atherosclerosis in Children
4.1. Arterial Hypertension
Risk Factors | Coronary Arteries | Abdominal Aorta |
---|---|---|
Age (years) | ||
15–19 years old | 0 | 0 |
20–24 years old | 5 | 5 |
25–29 years old | 10 | 10 |
30–34 years old | 15 | 15 |
Sex | ||
Female | −1 | 1 |
Male | 0 | 0 |
Non-HDL-cholesterol | ||
>130 mg/dL | 0 | 0 |
130–159 mg/dL | 2 | 1 |
160–189 mg/dL | 4 | 2 |
190–219 mg/dL | 6 | 3 |
≥220 μγ/δΛ | 8 | 4 |
HDL-cholesterol | ||
<40 mg/dL | 1 | 0 |
40–59 mg/dL | 0 | 0 |
≥60 μγ/δΛ | −1 | 0 |
Smoking | ||
Non-smoker | 0 | 0 |
Smoker | 1 | 4 |
Arterial hypertension | 4 | 3 |
Overweight/Obesity | ||
Male | ||
BMI < 30 kg/m2 | 0 | 0 |
BMI > 30 kg/m2 | 6 | 0 |
Women | ||
BMI < 30 kg/m2 | 0 | 0 |
BMI > 30 kg/m2 | 0 | 0 |
Diabetes mellitus | ||
Glycated hemoglobin (A1c) < 8% | 0 | 0 |
Glycated hemoglobin (A1c) > 8% | 5 | 3 |
Total score | Probability of CA lesions | Probability of AA lesions |
0 | 0 | 0 |
5 | 5 | 0 |
10 | 5 | 2 |
15 | 10 | 8 |
20 | 20 | 20 |
25 | 40 | 50 |
30 | 60 | 80 |
4.2. Chronic Inflammation and Immune System Dysregulation
4.3. Dyslipidemia
4.4. Smoking
4.5. Systemic Diseases Associated with Increased Atherosclerotic Risk
5. Pharmacologic and Non-Pharmacologic Ways of Dealing with Atherosclerosis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017, 70, 1–25. [Google Scholar] [CrossRef]
- Beaglehole, R.; Yach, D. Globalisation and the prevention and control of non-communicable disease: The neglected chronic diseases of adults. Lancet 2003, 362, 903–908. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Status Report on Noncommunicable Diseases 2014; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Paul, S.; Lancaster, G.I.; Meikle, P.J. Plasmalogens. A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog. Lipid Res. 2019, 74, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Reiss, A.B.; Grossfeld, D.; Kasselman, L.J.; Renna, H.A.; Vernice, N.A.; Drewes, W.; Konig, J.; Carsons, S.E.; DeLeon, J. Adenosine and the Cardiovascular System. Am. J. Cardiovasc. Drugs 2019, 19, 449–464. [Google Scholar] [CrossRef] [PubMed]
- Pahwa, R.; Jialal, I. Atherosclerosis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Goldstein, J.L.; Brown, M.S. A century of cholesterol and coronaries: From plaques to genes to statins. Cell 2015, 161, 161–172. [Google Scholar] [CrossRef]
- Libby, P.; Loscalzo, J.; Ridker, P.M.; Farkouh, M.E.; Hsue, P.Y.; Fuster, V.; Hasan, A.A.; Amar, S. Inflammation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2018, 72, 2071–2081. [Google Scholar] [CrossRef]
- Mallat, Z.; Binder, C.J. The why and how of adaptive immune responses in ischemic cardiovascular disease. Nat. Cardiovasc. Res. 2022, 1, 431–444. [Google Scholar] [CrossRef]
- Tsiantoulas, D.; Diehl, C.J.; Witztum, J.L.; Binder, C.J. B cells and humoral immunity in atherosclerosis. Circ. Res. 2014, 114, 1743–1756. [Google Scholar] [CrossRef]
- Despina, D.B.; Malamitsi-Puchner, A. Coronary intimal thickening begins in fetuses: Proof of concept for the “Fetal origins of adult disease”. Hypothesisngiology 2020, 71, 89. [Google Scholar]
- Guerri-Guttenberg, R.; Castilla, R.; Cao, G.; Azzato, F.; Ambrosio, G.; Milei, J. Coronary Intimal Thickening Begins in Fetuses and Progresses in Pediatric Population and Adolescents to Atherosclerosis. Angiology 2020, 71, 62–69. [Google Scholar] [CrossRef]
- Burlutskaya, A.V.; Tril, V.E.; Polischuk, L.V.; Pokrovskii, V.M. Dyslipidemia in pediatrician’s practice. Rev. Cardiovasc. Med. 2021, 22, 817–834. [Google Scholar] [CrossRef]
- Mozaffarian, D. Global scourge of cardiovascular disease: Time for health care systems reform and precision population health. J. Am. Coll. Cardiol. 2017, 70, 26–28. [Google Scholar] [CrossRef]
- Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef]
- Hong, Y.M. Atherosclerotic cardiovascular disease beginning in childhood. Korean Circ. J. 2010, 40, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mainieri, F.; La Bella, S.; Chiarelli, F. Hyperlipidemia and Cardiovascular Risk in Children and Adolescents. Biomedicines 2023, 11, 809. [Google Scholar] [CrossRef] [PubMed]
- Touboul, P.J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Woo, K.S.; et al. Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). An update on behalf of the advisory board of the 3rd, 4th and 5th Watching the Risk Symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc. Dis. 2012, 34, 290–296. [Google Scholar] [PubMed]
- O’Leary, D.H.; Bots, M.L. Imaging of atherosclerosis: Carotid intima-media thickness. Eur. Heart. J. 2010, 31, 1682–1689. [Google Scholar] [CrossRef] [PubMed]
- Enos, W.F.; Holmes, R.H.; Beyer, J. Coronary disease among United States soldiers killed in action in Korea; preliminary report. J. Am. Med. Assoc. 1953, 152, 1090–1093. [Google Scholar] [CrossRef] [PubMed]
- Stary, H.C. Evolution and progression of atherosclerotic lesions in coronary arteries in children and young adults. Arteriosclerosis 1989, 9 (Suppl. I), I19–I32. [Google Scholar]
- Tanaka, K.; Masuda, J.; Imamura, T.; Sueishi, K.; Nakashima, T.; Sakurai, I.; Shozawa, T.; Hosoda, Y.; Yoshida, Y.; Nishiyama, Y.; et al. A nation-wide study of atherosclerosis in infants, children and young adults in Japan. Atherosclerosis 1988, 72, 143–156. [Google Scholar] [CrossRef]
- Holman, R.L.; McGill, H.C., Jr.; Strong, J.P.; Geer, J.C. The natural history of atherosclerosis. The early aortic lesions as seen in New Orleans in the middle of the 20th century. Am. J. Pathol. 1958, 2, 209–235. [Google Scholar]
- Zafiraki, V.K.; Kosmacheva, E.D.; Zakharova, I.N.; Korneva, V.A.; Susekov, A.V. Homozygous familial hypercholesterolemia: Modern aspects of pathogenesis, diagnosis and therapy. Med. Advice 2018, 17, 253–259. (In Russian) [Google Scholar]
- Alouffi, S.; Faisal, M.; Alatar, A.A.; Ahmad, S. Oxidative modification of LDL by various Physiochemical Techniques: Its probable role in diabetes coupled with CVDs. Biomed. Res. Int. 2018, 2018, 7390612. [Google Scholar] [CrossRef] [PubMed]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Catapano, A.L.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef]
- Baigent, C.; Keech, A.; Kearney, P.M.; Blackwell, L.; Buck, G.; Pollicino, C.; Kirby, A.; Sourjina, T.; Peto, R.; Collins, R.; et al. Efficacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005, 366, 1267–1278. [Google Scholar]
- Musunuru, K.; Kathiresan, S. Surprises from genetic analyses of lipid risk factors for atherosclerosis. Circ. Res. 2016, 118, 579–585. [Google Scholar] [CrossRef]
- Safarova, M.S.; Yezhov, M.V. Lipoprotein(a) as a risk factor for cardiovascular diseases: Current state of the issue. Atheroscler. Dyslipidemia 2011, 1, 6–18. (In Russian) [Google Scholar]
- Van Der Valk, F.M.; Bekkering, S.; Kroon, J.; Yeang, C.; Van den Bossche, J.; Van Buul, J.D.; Ravandi, A.; Nederveen, A.J.; Verberne, H.J.; Scipione, C.; et al. Oxidized Phospholipids on Lipoprotein(a) Elicit Arterial Wall Inflammation and an Inflammatory Monocyte Response in Humans. Circulation 2016, 134, 611–624. [Google Scholar] [CrossRef]
- Roy, P.; Orecchioni, M.; Ley, K. How the immune system shapes atherosclerosis: Roles of innate and adaptive immunity. Nat. Rev. Immunol. 2022, 22, 251–265. [Google Scholar] [CrossRef]
- Engelen, S.E.; Robinson, A.J.; Zurke, Y.X.; Monaco, C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: How to proceed? Nat. Rev. Cardiol. 2022, 19, 522–542. [Google Scholar] [CrossRef]
- Bouchareychas, L.; Duong, P.; Covarrubias, S.; Alsop, E.; Phu, T.A.; Chung, A.; Gomes, M.; Wong, D.; Meechoovet, B.; Capili, A.; et al. Macrophage Exosomes Resolve Atherosclerosis by Regulating Hematopoiesis and Inflammation via MicroRNA Cargo. Cell Rep. 2020, 32, 107881. [Google Scholar] [CrossRef] [PubMed]
- Jongstra-Bilen, J.; Haidari, M.; Zhu, S.N.; Chen, M.; Guha, D.; Cybulsky, M.I. Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J. Exp. Med. 2006, 203, 2073–2083. [Google Scholar] [CrossRef]
- Jebari-Benslaiman, S.; Galicia-García, U.; Larrea-Sebal, A.; Olaetxea, J.R.; Alloza, I.; Vandenbroeck, K.; Benito-Vicente, A.; Martín, C. Pathophysiology of Atherosclerosis. Int. J. Mol. Sci. 2022, 23, 3346. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, X.; Feng, Y.; Dong, G.; Wang, Y.; Yang, J. The Role of Matrix Metalloproteinase-9 in Atherosclerotic Plaque Instability. Mediat. Inflamm. 2020, 2020, 3872367. [Google Scholar] [CrossRef] [PubMed]
- Ingersoll, M.A.; Spanbroek, R.; Lottaz, C.; Gautier, E.L.; Frankenberger, M.; Hoffmann, R.; Lang, R.; Haniffa, M.; Collin, M.; Randolph, G.J.; et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 2010, 115, e10–e19. [Google Scholar] [CrossRef]
- Zouggari, Y.; Ait-Oufella, H.; Bonnin, P.; Simon, T.; Sage, A.P.; Guérin, C.; Vilar, J.; Caligiuri, G.; Tsiantoulas, D.; Laurans, L.; et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat. Med. 2013, 19, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Auffray, C.; Fogg, D.; Garfa, M.; Elain, G.; Join-Lambert, O.; Kayal, S.; Sarnacki, S.; Cumano, A.; Lauvau, G.; Geissmann, F. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007, 317, 666–670. [Google Scholar] [CrossRef]
- Rogacev, K.S.; Cremers, B.; Zawada, A.M.; Seiler, S.; Binder, N.; Ege, P.; Große-Dunker, G.; Heisel, I.; Hornof, F.; Heine, G.H.; et al. CD14++ CD16+ monocytes independently predict cardiovascular events: A cohort study of 951 patients referred for elective coronary angiography. J. Am. Coll. Cardiol. 2012, 60, 1512–1520. [Google Scholar] [CrossRef]
- Reiner, A.P.; Lange, E.M.; Jenny, N.S.; Chaves, P.H.; Ellis, J.; Li, J.; Walston, J.; Lange, L.A.; Cushman, M.; Tracy, R.P. Soluble CD14: Genomewide association analysis and relationship to cardiovascular risk and mortality in older adults. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 158–164. [Google Scholar] [CrossRef]
- Lee, S.; Bartlett, B.; Dwivedi, G. Adaptive Immune Responses in Human Atherosclerosis. Int. J. Mol. Sci. 2020, 21, 9322. [Google Scholar] [CrossRef]
- Boyle, J.J. Association of coronary plaque rupture and atherosclerotic inflammation. J. Pathol. 1997, 181, 93–99. [Google Scholar] [CrossRef]
- Zhou, X.; Stemme, S.; Hansson, G.K. Evidence for a local immune response in atherosclerosis. CD4+ T cells infiltrate lesions of apolipoprotein-E-deficient mice. Am. J. Pathol. 1996, 149, 359–366. [Google Scholar] [PubMed]
- Olofsson, P.S.; Soderstrom, L.A.; Wågsater, D.; Sheikine, Y.; Ocaya, P.; Lang, F.; Rabu, C.; Chen, L.; Rudling, M.; Aukrust, P.; et al. CD137 is expressed in human atherosclerosis and promotes development of plaque inflammation in hypercholesterolemic mice. Circulation 2008, 117, 1292–1301. [Google Scholar] [CrossRef]
- Robertson, A.K.; Hansson, G.K. T cells in atherogenesis: For better or for worse? Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2421–2432. [Google Scholar] [CrossRef]
- Shimokama, T.; Haraoka, S.; Watanabe, T. Immunohistochemical and ultrastructural demonstration of the lymphocytemacrophage interaction in human aortic intima. Mod. Pathol. 1991, 4, 101–107. [Google Scholar]
- Mallat, Z.; Taleb, S.; Ait-Oufella, H.; Tedgui, A. The role of adaptive T cell immunity in atherosclerosis. J. Lipid Res. 2009, 50, S364–S369. [Google Scholar] [CrossRef] [PubMed]
- Buono, C.; Binder, C.J.; Stavrakis, G.; Witztum, J.L.; Glimcher, L.H.; Lichtman, A.H. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc. Natl. Acad. Sci. USA 2005, 102, 1596–1601. [Google Scholar] [CrossRef]
- Gupta, S.; Pablo, A.M.; Jiang, X.; Wang, N.; Tall, A.R.; Schindler, C. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J. Clin. Investig. 1997, 99, 2752–2761. [Google Scholar] [CrossRef]
- Whitman, S.C.; Ravisankar, P.; Elam, H.; Daugherty, A. Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E−/− mice. Am. J. Pathol. 2000, 157, 1819–1824. [Google Scholar] [CrossRef]
- Bettelli, E.; Korn, T.; Oukka, M.; Kuchroo, V.K. Induction and effector functions of T(H)17 cells. Nature 2008, 453, 1051–1057. [Google Scholar] [CrossRef]
- Miossec, P.; Korn, T.; Kuchroo, V.K. Interleukin-17 and type 17 helper T cells. N. Engl. J. Med. 2009, 361, 888–898. [Google Scholar] [CrossRef] [PubMed]
- King, V.L.; Cassis, L.A.; Daugherty, A. Interleukin-4 does not influence development of hypercholesterolemia or angiotensin II-induced atherosclerotic lesions in mice. Am. J. Pathol. 2007, 171, 2040–2047. [Google Scholar] [CrossRef] [PubMed]
- King, V.L.; Szilvassy, S.J.; Daugherty, A. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 45661. [Google Scholar] [CrossRef] [PubMed]
- Mays, L.E.; Chen, Y.H. Maintaining immunological tolerance with Foxp3. Cell Res. 2007, 17, 904–918. [Google Scholar] [CrossRef]
- Zernecke, A.; Weber, C. Chemokines in atherosclerosis: Proceedings resumed. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 742–750. [Google Scholar] [CrossRef]
- Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol. 2013, 13, 709–721. [Google Scholar] [CrossRef]
- Poupel, L.; Boissonnas, A.; Hermand, P.; Dorgham, K.; Guyon, E.; Auvynet, C.; Charles, F.S.; Lesnik, P.; Deterre, P.; Combadiere, C. Pharmacological inhibition of the chemokine receptor, CX3CR1, reduces atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2297–2305. [Google Scholar] [CrossRef]
- Cai, W.; Tao, J.; Zhang, X.; Tian, X.; Liu, T.; Feng, X.; Bai, J.; Yan, C.; Han, Y. Contribution of homeostatic chemokines CCL19 and CCL21 and their receptor CCR7 to coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1933–1941. [Google Scholar] [CrossRef]
- Shih, D.M.; Xia, Y.R.; Wang, X.P.; Miller, E.; Castellani, L.W.; Subbanagounder, G.; Cheroutre, H.; Faull, K.F.; Berliner, J.B.; Lusis, A.J.; et al. Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis. J. Biol. Chem. 2000, 276, 17527–17535. [Google Scholar] [CrossRef]
- Gimbrone, M.A., Jr. Vascular endothelium, hemodynamic forces, and atherogenesis. Am. J. Pathol. 1999, 155, 1–5. [Google Scholar] [CrossRef]
- Glass, C.K.; Witztum, J.L. Atherosclerosis. The road ahead. Cell 2001, 104, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Willerson, J.T.; Kereiakes, D.J. Endothelial dysfunction. Circulation 2003, 108, 2060–2061. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.D.; Chu, Y.; Castaneda, L.E.; Serrano, K.M.; Brooks, R.M.; Heistad, D.D. Vascular function during prolonged progression and regression of atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 459–465. [Google Scholar] [CrossRef]
- Horio, E.; Kadomatsu, T.; Miyata, K.; Arai, Y.; Hosokawa, K.; Doi, Y.; Ninomiya, T.; Horiguchi, H.; Endo, M.; Tabata, M.; et al. Role of endothelial cell-derived angptl2 in vascular inflammation leading to endothelial dysfunction and atherosclerosis progression. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 790–800. [Google Scholar] [CrossRef]
- Jain, M.K.; Sangwung, P.; Hamik, A. Regulation of an inflammatory disease: Krüppel-like factors and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, S.; Vikram, A.; Hoffman, T.A.; Naqvi, A.; Lewarchik, C.M.; Kim, Y.R.; Irani, K. Histone and DNA methylation-mediated epigenetic downregulation of endothelial Kruppel-like factor 2 by low-density lipoprotein cholesterol. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1936–1942. [Google Scholar] [CrossRef]
- Abbas, A.; Imrie, H.; Viswambharan, H.; Sukumar, P.; Rajwani, A.; Cubbon, R.M.; Gage, M.; Smith, J.; Galloway, S.; Yuldeshava, N.; et al. The insulin-like growth factor-1 receptor is a negative regulator of nitric oxide bioavailability and insulin sensitivity in the endothelium. Diabetes 2011, 60, 2169–2178. [Google Scholar] [CrossRef]
- Yuldasheva, N.Y.; Rashid, S.T.; Haywood, N.J.; Cordell, P.; Mughal, R.; Viswambharan, H.; Imrie, H.; Sukumar, P.; Cubbon, R.M.; Aziz, A.; et al. Haploinsufficiency of the insulin-like growth factor-1 receptor enhances endothelial repair and favorably modifies angiogenic progenitor cell phenotype. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2051–2058. [Google Scholar] [CrossRef]
- Kim, C.W.; Song, H.; Kumar, S.; Nam, D.; Kwon, H.S.; Chang, K.H.; Son, D.J.; Kang, D.W.; Brodie, S.A.; Weiss, D.; et al. Anti-inflammatory and antiatherogenic role of BMP receptor II in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1350–1359. [Google Scholar] [CrossRef]
- Choi, B.J.; Matsuo, Y.; Aoki, T.; Kwon, T.G.; Prasad, A.; Gulati, R.; Lennon, R.J.; Lerman, L.O.; Lerman, A. Coronary endothelial dysfunction is associated with inflammation and vasa vasorum proliferation in patients with early atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2473–2477. [Google Scholar] [CrossRef]
- Mill, C.; Monk, B.A.; Williams, H.; Simmonds, S.J.; Jeremy, J.Y.; Johnson, J.L.; George, S.J. Wnt5a-induced Wnt1-inducible secreted protein-1 suppresses vascular smooth muscle cell apoptosis induced by oxidative stress. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2449–2456. [Google Scholar] [CrossRef]
- Lu, H.; Daugherty, A. Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 485–491, Erratum in Arterioscler. Thromb. Vasc. Biol. 2016, 36, e32. [Google Scholar] [CrossRef]
- McGill, H.C., Jr.; McMahan, C.A.; Herderick, E.E.; Malcom, G.T.; Tracy, R.E.; Strong, J.P. Origin of atherosclerosis in childhood and adolescence. Am. J. Clin. Nutr. 2000, 72 (Suppl. S5), 1307S–1315S. [Google Scholar] [CrossRef]
- Tokgozoglu, L.; Kayikcioglu, M. Familial Hypercholesterolemia: Global Burden and Approaches. Curr. Cardiol. Rep. 2021, 23, 151. [Google Scholar] [CrossRef]
- Tamminen, M.; Mottino, G.; Qiao, J.H.; Breslow, J.L.; Frank, J.S. Ultrastructure of early lipid accumulation in apoE-deficient mice. Arterioscl. Thromb. Vasc. Biol. 1999, 19, 847–853. [Google Scholar] [CrossRef]
- Hata, Y.; Hower, J.; Insull, W. Cholesteryl ester-rich inclusions from human aortic fatty streak and fibrous plaque lesions in atherosclerosis. Am. J. Pathol. 1974, 75, 423–456. [Google Scholar]
- Kovanen, P.T. Mast Cells as Potential Accelerators of Human Atherosclerosis—From Early to Late Lesions. Int. J. Mol. Sci. 2019, 20, 4479. [Google Scholar] [CrossRef]
- Guyton, J.R.; Klemp, K.F. Development of the atherosclerotic core region. Chemical and ultrastructural analysis of microdissected atherosclerotic lesions from human aorta. Arterioscler. Thromb. 1994, 14, 1305–1314. [Google Scholar] [CrossRef]
- Robertson, W.B.; Geer, J.C.; Strong, J.P.; McGill, H.C., Jr. The fate of the fatty streak. Exp. Mol. Pathol. 1963, 2, 28–39. [Google Scholar]
- Geer, J.C.; McGill, H.C., Jr.; Robertson, W.B.; Strong, J.P. Histologic characteristics of coronary artery fatty streaks. Lab. Investig. 1968, 18, 105–110. [Google Scholar]
- Schonbeck, U.; Sukhova, G.K.; Shimizu, K.; Mach, F.; Libby, P. Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. Proc. Natl. Acad. Sci. USA 2000, 97, 7458–7463. [Google Scholar] [CrossRef]
- Gerhard, G.T.; Duell, P.B. Homocysteine and atherosclerosis. Curr. Opin. Lipidol. 1999, 10, 417–429. [Google Scholar] [CrossRef]
- Negoro, N.; Kanayama, Y.; Haraguchi, M.; Umetani, N.; Nishimura, M.; Konishi, Y.; Iwai, J.; Okamura, M.; Inoue, T.; Takeda, T. Blood pressure regulates platelet-derived growth factor A-chain gene expression in vascular smooth muscle cells in vivo. An autocrine mechanism promoting hypertensive vascular hypertrophy. J. Clin. Investig. 1995, 95, 1140–1150. [Google Scholar] [CrossRef]
- Nathan, L.; Chaudhuri, G. Estrogens and atherosclerosis. Annu. Rev. Pharmacol. Toxicol. 1997, 37, 477–515. [Google Scholar] [CrossRef]
- Streblow, D.N.; Soderberg-Naucler, C.; Vieira, J.; Smith, P.; Wakabayashi, E.; Ruchti, F.; Mattison, K.; Altschuler, Y.; A Nelson, J. The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 1999, 99, 511–520. [Google Scholar] [CrossRef]
- Watson, A.D.; Leitinger, N.; Navab, M.; Faull, K.F.; Hörkkö, S.; Witztum, J.L.; Palinski, W.; Schwenke, D.; Salomon, R.G.; Sha, W.; et al. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J. Biol. Chem. 1997, 272, 13597–13607. [Google Scholar] [CrossRef]
- Collins, R.G.; Velji, R.; Guevara, N.V.; Hicks, M.J.; Chan, L.; Beaudet, A.L. P-selectin or intercellular adhesion molecule (ICAM-1) deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J. Exp. Med. 2000, 191, 189–194. [Google Scholar] [CrossRef]
- Libby, P. Changing concepts of atherogenesis. J. Intern. Med. 1999, 247, 349–358. [Google Scholar] [CrossRef]
- Kong, P.; Cui, Z.Y.; Huang, X.F.; Zhang, D.D.; Guo, R.J.; Han, M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther. 2022, 7, 131. [Google Scholar] [CrossRef]
- Kochanek, K.D.; Smith, B.L. Deaths: Preliminary data for 2002. Natl. Vital Stat. Rep. 2004, 52, 1–47. [Google Scholar]
- Rosamond, W.D.; Chambless, L.E.; Folsom, A.R.; Cooper, L.S.; Conwill, D.E.; Clegg, L.; Wang, C.H.; Heiss, G. Trends in the incidence of myocardial infarction and in mortality due to coronary heart disease, 1987 to 1994. N. Engl. J. Med. 1998, 339, 861–867. [Google Scholar] [CrossRef]
- Lusis, A.J.; Weinreb, A.; Drake, T.A. Textbook of Cardiovascular Medicine; Topol, E.J., Ed.; Lippincott-Raven: Philadelphia, PA, USA, 1998; pp. 2389–2413. [Google Scholar]
- Kavey, R.E.W.; Allada, V.; Daniels, S.R.; Hayman, L.L.; McCrindle, B.W.; Newburger, J.W.; Parekh, R.S.; Steinberger, J. Cardiovascular risk Reduction in high-risk pediatric patients: A scientific statement from the American Heart Association Expert Panel on Population and Prevention Science; the Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research: Endorsed by the American Academy of Pediatrics. Circulation 2006, 114, 2710–2738. [Google Scholar] [PubMed]
- American Academy of Pediatrics. Cardiovascular risk reduction in high-risk pediatric populations. Pediatrics 2007, 119, 618–621. [Google Scholar] [CrossRef] [PubMed]
- Wissler, R.W. USA multicenter study of the pathobiology of atherosclerosis in youth. Ann. N. Y. Acad. Sci. 1991, 623, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Cornhill, J.F.; Barrett, W.A.; Herderick, E.E.; Mahley, R.W.; Fry, D.L. Topographic study of sudanophilic lesions in cholesterol-fed minipigs by image analysis. Arteriosclerosis 1985, 5, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Cornhill, J.F.; Herderick, E.E.; Stary, H.C. Topography of human aortic sudanophilic lesions. Monogr. Atheroscler. 1990, 15, 13–19. [Google Scholar]
- Tejada, C.; Strong, J.P.; Montenegro, M.R.; Restrepo, C.; Solberg, L.A. Distribution of coronary and aortic atherosclerosis by geographic location, race, and sex. Lab. Investig. 1968, 18, 509–526. [Google Scholar]
- McGill, H.C., Jr. Fatty streaks in the coronary arteries and aorta. Lab. Investig. 1968, 18, 560–564. [Google Scholar]
- Strong, J.P.; McGill, H.C., Jr. The natural history of coronary atherosclerosis. Am. J. Pathol. 1962, 40, 37–49. [Google Scholar]
- Lloyd-Jones, D.M.; Nam, B.H.; D’Agostino Sr, R.B.; Levy, D.; Murabito, J.M.; Wang, T.J.; Wilson, P.; O’Donnell, C.J. Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: A prospective study of parents and offspring. JAMA 2004, 291, 2204–2211. [Google Scholar] [CrossRef]
- Allalou, A.; Peng, J.; Robinson, G.A.; Marruganti, C.; D’Aiuto, F.; Butler, G.; Jury, E.C.; Ciurtin, C. Impact of puberty, sex determinants and chronic inflammation on cardiovascular risk in young people. Front. Cardiovasc. Med. 2023, 10, 1191119. [Google Scholar] [CrossRef] [PubMed]
- McGill, H.C., Jr.; McMahan, C.A.; Tracy, R.E.; Oalmann, M.C.; Cornhill, J.F.; Herderick, E.E.; Strong, J.P. Relation of a post-mortem renal index of hypertension to atherosclerosis and coronary artery size in young men and women. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 1108–1118. [Google Scholar] [CrossRef] [PubMed]
- Altay, E.; Kıztanır, H.; Kösger, P.; Cetin, N.; Sulu, A.; Tufan, A.K.; Ozen, H.; Ucar, B. Evaluation of Arterial Stiffness and Carotid Intima-Media Thickness in Children with Primary and Renal Hypertension. Pediatr. Cardiol. 2023, 44, 54–66. [Google Scholar] [CrossRef] [PubMed]
- McMahan, C.A.; Gidding, S.S.; Fayad, Z.A.; Zieske, A.W.; Malcom, G.T.; Tracy, R.E.; Strong, J.P.; McGill, H.C. Risk Scores Predict Atherosclerotic Lesions in Young People. Arch. Intern. Med. 2005, 165, 883–890. [Google Scholar] [CrossRef]
- Suzuki, H.; Kurihara, Y.; Takeya, M.; Kamada, N.; Kataoka, M.; Jishage, K.; Ueda, O.; Sakaguchi, H.; Higashi, T.; Suzuki, T.; et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 1997, 386, 292–296. [Google Scholar] [CrossRef]
- Duceac, L.D.; Tarca, E.; Ciuhodaru, M.I.; Tantu, M.M.; Goroftei, R.E.B.; Banu, E.A.; Damir, D.; Glod, M.; Luca, A.C. Study on the Mechanism of Antibiotic Resistance. J. Chem. 2019, 70, 199–201. [Google Scholar] [CrossRef]
- Duceac, L.D.; Marcu, C.; Ichim, D.L.; Ciomaga, I.M.; Tarca, E.; Iordache, A.C.; Ciuhodaru, M.I.; Florescu, L.; Tutunaru, D.; Luca, A.C.; et al. Antibiotic Molecules Involved in Increasing Microbial Resistance. Rev. Chim. 2019, 70, 2622–2626. [Google Scholar] [CrossRef]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar]
- Ridker, P.M.; Bhatt, D.L.; Pradhan, A.D.; Glynn, R.J.; MacFadyen, J.G.; Nissen, S.E.; Prominent, Reduce-IT, and Strength Investigators. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: A collaborative analysis of three randomised trials. Lancet 2023, 401, 1293–1301. [Google Scholar] [CrossRef]
- Wolf, O.; Didier, R.; Chagué, F.; Bichat, F.; Rochette, L.; Zeller, M.; Fauchier, L.; Bonnotte, B.; Cottin, Y. Nephrotic syndrome and acute coronary syndrome in children, teenagers and young adults: Systematic literature review. Arch. Cardiovasc. Dis. 2023, 116, 282–290. [Google Scholar] [CrossRef]
- Talbott, E.O.; Guzick, D.S.; Sutton-Tyrrell, K.; McHugh-Pemu, K.P.; Zborowski, J.V.; Remsberg, K.E.; Kuller, L.H. Evidence for association between polycystic ovary syndrome and premature carotid atherosclerosis in middle-aged women. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 2414–2421. [Google Scholar] [CrossRef] [PubMed]
- Sergienko, I.V.; Ansheles, A.A.; Kukharchuk, V.V. Dyslipidemia, Atherosclerosis and Coronary Heart Disease: Genetics, Pathogenesis, Phenotypes, Diagnosis, Therapy, Comorbidity, 4th ed.; PatiSS: Moscow, Russia, 2020. (In Russian) [Google Scholar]
- Marks, D.; Thorogood, M.; Neil, H.A.W.; Humphries, S.E. A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis 2003, 168, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Howard, V.J.; McDonnell, M.N. Physical activity in primary stroke prevention: Just do it! Stroke 2015, 46, 1735–1739. [Google Scholar] [CrossRef]
- Peters, B.J.; Pett, H.; Klungel, O.H.; Stricker, B.H.C.; Psaty, B.M.; Glazer, N.L.; Wiggins, K.L.; Bis, J.C.; de Boer, A.; der Zee, A.-H.M.-V. Genetic variability within the cholesterol lowering pathway and the effectiveness of statins in reducing the risk of MI. Atherosclerosis 2011, 217, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Nordestgaard, B.G.; Chapman, M.J.; Humphries, S.E.; Ginsberg, H.N.; Masana, L.; Descamps, O.S.; Wiklund, O.; Hegele, R.A.; Raal, F.L.; European Atherosclerosis Society Consensus Panel. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: Guidance for clinicians to prevent coronary heart disease: Consensus statement of the European Atherosclerosis Society. Eur. Heart J. 2013, 34, 3478–3490. [Google Scholar] [CrossRef] [PubMed]
- Choumerianou, D.M.; Dedoussis, G.V.Z. Familial hypercholesterolemia and response to statin therapy according to LDLR genetic background. Clin. Chem. Lab. Med. 2005, 43, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Cuchel, M.; Bruckert, E.; Ginsberg, H.N.; Raal, F.J.; Santos, R.D.; Hegele, R.A.; Kuivenhoven, J.A.; Nordestgaard, B.G.; Descamps, O.S.; Wiklund, O.; et al. Homozygous familial hypercholesterolaemia: New insights and guidance for clinicians to improve detection and clinical management. a position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 2014, 35, 2146–2157. [Google Scholar] [CrossRef]
- Wiegman, A.; Gidding, S.S.; Watts, G.F.; Chapman, M.J.; Ginsberg, H.N.; Cuchel, M.; Ose, L.; Averna, M.; Boileau, C.; Borén, J.; et al. Familial hypercholesterolaemia in children and adolescents: Gaining decades of life by optimizing. Eur. Heart J. 2015, 36, 2425–2437. [Google Scholar] [CrossRef]
- France, M. Homozygous familial hypercholesterolaemia: Update on management. Paediatr. Int. Child Health 2016, 36, 243–247. [Google Scholar] [CrossRef]
- Koh, T.W. Aortic root involvement in homozygous familial hypercholesterolemia transesophageal echocardiographic appearances of supravalvular aortic stenosis. Echocardiography 2005, 22, 859–860. [Google Scholar] [CrossRef]
- Luca, A.-C.; Miron, I.C.; Mîndru, D.E.; Curpăn, A.; Stan, R.C.; Țarcă, E.; Luca, F.-A.; Pădureț, A.I. Optimal Nutrition Parameters for Neonates and Infants with Congenital Heart Disease. Nutrients 2022, 14, 1671. [Google Scholar] [CrossRef] [PubMed]
- Ţincu, I.F.; Păcurar, D.; Ţincu, R.C.; Becheanu, C. Influence of Protein Intake during Complementary Feeding on Body Size and IGF-I Levels in Twelve-month-old Infants. Balkan Med. J. 2019, 37, 54–55. [Google Scholar] [PubMed]
- Raal, F.J.; Santos, R.D. Homozygous familial hypercholesterolemia: Current perspectives on diagnosis and treatment. Atherosclerosis 2012, 223, 262–268. [Google Scholar] [CrossRef]
- Butnariu, L.I.; Florea, L.; Badescu, M.C.; Țarcă, E.; Costache, I.I.; Gorduza, E.V. Etiologic Puzzle of Coronary Artery Disease: How Important Is Genetic Component? Life 2022, 12, 865. [Google Scholar] [CrossRef]
- Kolansky, D.M.; Cuchel, M.; Clark, B.J.; Paridon, S.; McCrindle, B.W.; Wiegers, S.E.; Araujo, L.; Vohra, Y.; Defesche, J.C.; Wilson, J.M.; et al. Longitudinal Evaluation and Assessment of Cardiovascular Disease in Patients with Homozygous Familial Hypercholesterolemia. Am. J. Cardiol. 2008, 102, 1438–1443. [Google Scholar] [CrossRef]
- Casula, M.; Olmastroni, E.; Pirillo, A.; Catapano, A.L.; Arca, M.; Averna, M.; Bertolini, S.; Calandra, S.; Tarugi, P.; Pellegatta, F.; et al. Evaluation of the performance of Dutch Lipid Clinic Network score in an Italian FH population: The LIPIGEN study. Atherosclerosis 2018, 277, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Miserez, A.R.; Martin, F.J.; Spirk, D. Diagnosis and Management Of familial hypercholesterolemia in a Nationwide Design (DIAMOND-FH): Prevalence in Switzerland, clinical characteristics and the diagnostic value of clinical scores. Atherosclerosis 2018, 277, 282–288. [Google Scholar] [CrossRef]
- Zheng, S.; Ge, P.; Shi, Z.; Wang, J.; Li, Y.; Yu, T.; Zhang, J.; Zhang, H.; Zhang, D.; He, W. Clinical Significance of Ultrasound-Based Hemodynamic Assessment of Extracranial Internal Carotid Artery and Posterior Cerebral Artery in Symptomatic and Angiographic Evolution of Moyamoya Disease: A Preliminary Study. Front. Neurol. 2021, 12, 614749. [Google Scholar] [CrossRef]
- Pizzi, C.; Santarella, L.; Costa, M.G.; Manfrini, O.; Flacco, M.E.; Capasso, L.; Chiarini, S.; Di Baldassarre, A.; Manzoli, L. Pathophysiological mechanisms linking depression and atherosclerosis: An overview. J. Biol. Regul. Homeost. Agents 2012, 26, 775–782. [Google Scholar]
- McGill, H.C., Jr.; McMahan, C.A.; Zieske, A.W.; Malcom, G.T.; Tracy, R.E.; Strong, J.P. Effects of nonlipid risk factors on atherosclerosis in youth with a favorable lipoprotein profile. Circulation 2001, 103, 1546–1550. [Google Scholar] [CrossRef]
- Țarcă, V.; Țarcă, E.; Luca, F.A. The Impact of the Main Negative Socio-Economic Factors on Female Fertility. Healthcare 2022, 10, 734. [Google Scholar] [CrossRef] [PubMed]
- Luca, F.A.; Ioan, C.A.; Sasu, C.; Luca, A.C. The Impact of Public Health Care Services on the Patients’ Perception as Regards the Health Institutions Brand on the Background of the Health Reform in Romania. Rev. Res. Soc. Interv. 2015, 49, 80. [Google Scholar]
- Stătescu, L.; Trandafir, L.M.; Țarcă, E.; Moscalu, M.; Leon Constantin, M.M.; Butnariu, L.I.; Trandafirescu, M.F.; Tîrnovanu, M.C.; Heredea, R.; Pătrașcu, A.V.; et al. Advancing Cancer Research: Current Knowledge on Cutaneous Neoplasia. Int. J. Mol. Sci. 2023, 24, 11176. [Google Scholar] [CrossRef] [PubMed]
- Doll, R.; Peto, R.; Boreham, J.; Sutherland, I. Mortality in relation to smoking: 50 years’ observations on male British doctors. BMJ 2004, 328, 1519. [Google Scholar] [CrossRef]
- Ambrose, J.A.; Barua, R.S. The pathophysiology of cigarette smoking and cardiovascular disease: An update. J. Am. Coll. Cardiol. 2004, 43, 1731–1737. [Google Scholar] [CrossRef]
- Poisson, S.N.; Hills, N.K.; Sidney, S.; Fullerton, H.J. Prevalence of Atherosclerotic Risk Factors Among Children and Young Adults With Arterial Ischemic Stroke. JAMA Neurol. 2022, 79, 901–910. [Google Scholar] [CrossRef]
- Bevan, G.H.; Al-Kindi, S.G.; Brook, R.; Rajagopalan, S. Ambient Air Pollution and Atherosclerosis: Recent Updates. Curr. Atheroscler. Rep. 2021, 23, 63. [Google Scholar] [CrossRef]
- Botti, T.P.; Amin, H.; Hiltscher, L.; Wissler, R.W.; PDAY Research Group. A comparison of the quantitation of macrophage foam cell populations and the extent of apolipoprotein E deposition in developing atherosclerotic lesions in young people: High and low serum thiocyanate groups as an indication of smoking. Atherosclerosis 1996, 124, 191–202. [Google Scholar] [CrossRef]
- Vivante, A.; Golan, E.; Tzur, D.; Leiba, A.; Tirosh, A.; Skorecki, K.; CalderonMargalit, R. Body mass index in 1.2 million adolescents and risk for endstage renal disease. Arch. Intern. Med. 2012, 172, 1644–1650. [Google Scholar] [CrossRef]
- Wareham, N.J.; Brage, S. Commentary: Physical activity and obesity; scientific uncertainty and the art of public health messaging. Int. J. Epidemiol. 2013, 42, 1843–1845. [Google Scholar] [CrossRef]
- McGill, H.C., Jr.; McMahan, C.A.; Malcom, G.T.; Oalmann, M.C.; Strong, J.P.; Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Relation of glycohemoglobin and adiposity to atherosclerosis in youth. Arterioscler. Thromb. Vasc. Biol. 1995, 15, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Pinal-Fernandez, I.; Casal-Dominguez, M.; Mammen, A.L. Statins: Pros and cons. Med. Clin. 2018, 150, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Constantin, A.T.; Covacescu, S.M.; Kozma, A.; Gherghina, I.; Lazarescu, H. Statins treatment and oro-dental aspects in a case of hereditary hypercholesterolemia in a child under 6 years. Acta Endocrinol. 2019, 15, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Luca, A.-C.; Curpan, A.-S.; Braha, E.E.; Ţarcă, E.; Iordache, A.-C.; Luca, F.-A.; Adumitrachioaiei, H. Increasing Trends in Obesity-Related Cardiovascular Risk Factors in Romanian Children and Adolescents-Retrospective Study. Healthcare 2022, 10, 2452. [Google Scholar] [CrossRef]
Lipids | Levels of Complet Lipid Profile | |||
---|---|---|---|---|
Low | Normal | Borderline | Increased | |
Cholesterol total | - | <170 mg/dL | 170–199 mg/dL | ≥200 mg/dL |
LDL-cholesterol | - | <110 mg/dL | 110–129 md/dL | ≥130 mg/dL |
Non-HDL-cholesterol | - | <120 mg/dL | 120–144 mg/dL | ≥145 mg/dL |
HDL-cholesterol | <35 mg/dL | >45 mg/dL | 35–45 mg/dL | - |
Apoprotein A1 | <115 mg/dL | >120 mg/dL | 115–120 mg/dL | - |
Apoprotein B | - | <90 mg/dL | 90–109 mg/dL | ≥110 mg/dL |
Lipoprotein (a) | - | <30 mg/dL | - | ≥30 mg/dL |
Triglycerides | - | - | - | - |
From 0 to 9 years old | - | <75 mg/dL | 75–99 mg/dL | ≥100 mg/dL |
From 9 to 19 years old | - | <90 mg/dL | 90–129 mg/dL | ≥130 mg/dL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luca, A.C.; David, S.G.; David, A.G.; Țarcă, V.; Pădureț, I.-A.; Mîndru, D.E.; Roșu, S.T.; Roșu, E.V.; Adumitrăchioaiei, H.; Bernic, J.; et al. Atherosclerosis from Newborn to Adult—Epidemiology, Pathological Aspects, and Risk Factors. Life 2023, 13, 2056. https://doi.org/10.3390/life13102056
Luca AC, David SG, David AG, Țarcă V, Pădureț I-A, Mîndru DE, Roșu ST, Roșu EV, Adumitrăchioaiei H, Bernic J, et al. Atherosclerosis from Newborn to Adult—Epidemiology, Pathological Aspects, and Risk Factors. Life. 2023; 13(10):2056. https://doi.org/10.3390/life13102056
Chicago/Turabian StyleLuca, Alina Costina, Simona Georgiana David, Alexandru Gabriel David, Viorel Țarcă, Ioana-Alexandra Pădureț, Dana Elena Mîndru, Solange Tamara Roșu, Eduard Vasile Roșu, Heidrun Adumitrăchioaiei, Jana Bernic, and et al. 2023. "Atherosclerosis from Newborn to Adult—Epidemiology, Pathological Aspects, and Risk Factors" Life 13, no. 10: 2056. https://doi.org/10.3390/life13102056