Ovarian Cancer Radiosensitivity: What Have We Understood So Far?
Abstract
:1. Background
2. Radiation-Induced Apoptosis, Cell Cycle Alteration, and DNA Damage as Predictors of Radiosensitivity
3. Genetic Alterations and Non-Coding RNA as Predictors of Radiosensitivity
4. Clinical Implication and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Durno, K.; Powell, M.E. The role of radiotherapy in ovarian cancer. Int. J. Gynecol. Cancer Off. J. Int. Gynecol. Cancer Soc. 2022, 32, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.; Schray, M.F.; Howes, A.E.; Bagshaw, M.A. Postoperative radiation therapy for epithelial ovarian cancer: The curative role based on a 24-year experience. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1985, 3, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Hoskins, P.; Tinker, A.; Brar, H.; Bowering, G.; Bahl, G. Adjuvant Treatment of Early Ovarian Clear Cell Carcinoma: A Population-Based Study of Whole Abdominal Versus Pelvic Nodal Radiotherapy. J. Natl. Compr. Cancer Netw. 2020, 19, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.J.; West, S.; Gard, G.; Renaud, C.; Nevell, D.; Roderick, S.; Le, A. Utility of adjuvant whole abdominal radiation therapy in ovarian clear cell cancer (OCCC): A pragmatic cohort study of women with classic immuno-phenotypic signature. Radiat. Oncol. 2021, 16, 29. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.; Milosevic, M.; Sturgeon, J.; Pintilie, M.; Fyles, A.; Levin, W.; Rosen, B.; Depetrillo, D.; Oza, A.; Manchul, L.; et al. Treatment of early epithelial ovarian cancer with chemotherapy and abdominopelvic radiotherapy: Results of a prospective treatment protocol. Int. J. Radiat. Oncol. Biol. Phys. 1999, 45, 657–665. [Google Scholar] [CrossRef]
- Kunos, C.A.; Sill, M.W.; Buekers, T.E.; Walker, J.L.; Schilder, J.M.; Yamada, S.D.; Waggoner, S.E.; Mohiuddin, M.; Fracasso, P.M. Low-dose abdominal radiation as a docetaxel chemosensitizer for recurrent epithelial ovarian cancer: A phase I study of the Gynecologic Oncology Group. Gynecol. Oncol. 2011, 120, 224–228. [Google Scholar] [CrossRef] [Green Version]
- De Meerleer, G.; Vandecasteele, K.; Ost, P.; Delrue, L.; Denys, H.; Makar, A.; Speleers, B.; Van Belle, S.; Van den Broecke, R.; Fonteyne, V.; et al. Whole abdominopelvic radiotherapy using intensity-modulated arc therapy in the palliative treatment of chemotherapy-resistant ovarian cancer with bulky peritoneal disease: A single-institution experience. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 775–781. [Google Scholar] [CrossRef]
- Lazzari, R.; Ronchi, S.; Gandini, S.; Surgo, A.; Volpe, S.; Piperno, G.; Comi, S.; Pansini, F.; Fodor, C.; Orecchia, R.; et al. Stereotactic Body Radiation Therapy for Oligometastatic Ovarian Cancer: A Step Toward a Drug Holiday. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 650–660. [Google Scholar] [CrossRef] [Green Version]
- Macchia, G.; Lazzari, R.; Colombo, N.; Laliscia, C.; Capelli, G.; D’Agostino, G.R.; Deodato, F.; Maranzano, E.; Ippolito, E.; Ronchi, S.; et al. A Large, Multicenter, Retrospective Study on Efficacy and Safety of Stereotactic Body Radiotherapy (SBRT) in Oligometastatic Ovarian Cancer (MITO RT1 Study): A Collaboration of MITO, AIRO GYN, and MaNGO Groups. Oncologist 2020, 25, e311–e320. [Google Scholar] [CrossRef]
- Moraru, I.C.; Tai, A.; Erickson, B.; Li, X.A. Radiation dose responses for chemoradiation therapy of pancreatic cancer: An analysis of compiled clinical data using biophysical models. Pract. Radiat. Oncol. 2014, 4, 13–19. [Google Scholar] [CrossRef]
- Shiue, K.; Cerra-Franco, A.; Shapiro, R.; Estabrook, N.; Mannina, E.M.; Deig, C.R.; Althouse, S.; Liu, S.; Wan, J.; Zang, Y.; et al. Histology, Tumor Volume, and Radiation Dose Predict Outcomes in NSCLC Patients After Stereotactic Ablative Radiotherapy. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2018, 13, 1549–1559. [Google Scholar] [CrossRef] [Green Version]
- Kowalchuk, R.O.; Waters, M.R.; Richardson, K.M.; Spencer, K.; Larner, J.M.; Irvin, W.P.; Kersh, C.R. Stereotactic body radiation therapy in the treatment of ovarian cancer. Radiat. Oncol. 2020, 15, 108. [Google Scholar] [CrossRef]
- Iftode, C.; D’Agostino, G.R.; Tozzi, A.; Comito, T.; Franzese, C.; De Rose, F.; Franceschini, D.; Di Brina, L.; Tomatis, S.; Scorsetti, M. Stereotactic Body Radiation Therapy in Oligometastatic Ovarian Cancer: A Promising Therapeutic Approach. Int. J. Gynecol. cancer Off. J. Int. Gynecol. Cancer Soc. 2018, 28, 1507–1513. [Google Scholar] [CrossRef]
- Brown, A.P.; Jhingran, A.; Klopp, A.H.; Schmeler, K.M.; Ramirez, P.T.; Eifel, P.J. Involved-field radiation therapy for locoregionally recurrent ovarian cancer. Gynecol. Oncol. 2013, 130, 300–305. [Google Scholar] [CrossRef] [Green Version]
- Boustani, J.; Grapin, M.; Laurent, P.-A.; Apetoh, L.; Mirjolet, C. The 6th R of Radiobiology: Reactivation of Anti-Tumor Immune Response. Cancers 2019, 11, 860. [Google Scholar] [CrossRef] [Green Version]
- Slotman, B.J.; Karim, A.B.; Rao, B.R. Ovarian cancer: Radiation sensitivity in vitro. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 1990, 19, 323–327. [Google Scholar] [CrossRef]
- Samouëlian, V.; Maugard, C.M.; Jolicoeur, M.; Bertrand, R.; Arcand, S.L.; Tonin, P.N.; Provencher, D.M.; Mes-Masson, A.-M. Chemosensitivity and radiosensitivity profiles of four new human epithelial ovarian cancer cell lines exhibiting genetic alterations in BRCA2, TGFbeta-RII, KRAS2, TP53 and/or CDNK2A. Cancer Chemother. Pharmacol. 2004, 54, 497–504. [Google Scholar] [CrossRef]
- Torres-Roca, J.F.; Eschrich, S.; Zhao, H.; Bloom, G.; Sung, J.; McCarthy, S.; Cantor, A.B.; Scuto, A.; Li, C.; Zhang, S.; et al. Prediction of radiation sensitivity using a gene expression classifier. Cancer Res. 2005, 65, 7169–7176. [Google Scholar] [CrossRef] [Green Version]
- Eschrich, S.A.; Pramana, J.; Zhang, H.; Zhao, H.; Boulware, D.; Lee, J.-H.; Bloom, G.; Rocha-Lima, C.; Kelley, S.; Calvin, D.P.; et al. A gene expression model of intrinsic tumor radiosensitivity: Prediction of response and prognosis after chemoradiation. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Eschrich, S.; Zhang, H.; Zhao, H.; Boulware, D.; Lee, J.-H.; Bloom, G.; Torres-Roca, J.F. Systems Biology Modeling of the Radiation Sensitivity Network: A Biomarker Discovery Platform. Int. J. Radiat. Oncol. 2009, 75, 497–505. [Google Scholar] [CrossRef]
- Scott, J.G.; Sedor, G.; Ellsworth, P.; Scarborough, J.A.; Ahmed, K.A.; Oliver, D.E.; Eschrich, S.A.; Kattan, M.W.; Torres-Roca, J.F. Pan-cancer prediction of radiotherapy benefit using genomic-adjusted radiation dose (GARD): A cohort-based pooled analysis. Lancet Oncol. 2021, 22, 1221–1229. [Google Scholar] [CrossRef]
- Busato, F.; El Khouzai, B.; Mognato, M. Biological Mechanisms to Reduce Radioresistance and Increase the Efficacy of Radiotherapy: State of the Art. Int. J. Mol. Sci. 2022, 23, 211. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, Y.; Roudkenar, M.H.; Urushihara, Y.; Saito, Y.; Tomita, K.; Roushandeh, A.M.; Sato, T.; Kurimasa, A.; Fukumoto, M. Clinically relevant radioresistant cell line: A simple model to understand cancer radioresistance. Med. Mol. Morphol. 2017, 50, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, Y.; Li, L.; Baba, T.; Nakagawa, H.; Shimura, T.; Yamamoto, Y.; Ohkubo, Y.; Fukumoto, M. Clinically relevant radioresistant cells efficiently repair DNA double-strand breaks induced by X-rays. Cancer Sci. 2009, 100, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Galeaz, C.; Totis, C.; Bisio, A. Radiation Resistance: A Matter of Transcription Factors. Front. Oncol. 2021, 11, 662840. [Google Scholar] [CrossRef]
- Sato, K.; Shimokawa, T.; Imai, T. Difference in Acquired Radioresistance Induction Between Repeated Photon and Particle Irradiation. Front. Oncol. 2019, 9, 1213. [Google Scholar] [CrossRef]
- Wang, J.; Li, T.; Wei, S.; Zhao, G.; Ye, C.; Ma, Q.; Ma, J.; Cheng, X. Identification of Novel Hypoxia Subtypes for Prognosis Based on Machine Learning Algorithms. J. Oncol. 2022, 2022, 1508113. [Google Scholar] [CrossRef]
- Chen, G.M.; Kannan, L.; Geistlinger, L.; Kofia, V.; Safikhani, Z.; Gendoo, D.M.A.; Parmigiani, G.; Birrer, M.; Haibe-Kains, B.; Waldron, L. Consensus on Molecular Subtypes of High-Grade Serous Ovarian Carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 5037–5047. [Google Scholar] [CrossRef] [Green Version]
- Tam, S.Y.; Wu, V.W.C.; Law, H.K.W. Hypoxia-Induced Epithelial-Mesenchymal Transition in Cancers: HIF-1α and Beyond. Front. Oncol. 2020, 10, 486. [Google Scholar] [CrossRef]
- smart.servier.com; Parts of the Figure Were Drawn by Using Pictures from Servier Medical Art. Servier Medical Art by Servier Is Licensed under a Creative Commons Attribution 3.0 Unported License. Available online: https://creativecommons.org/licenses/by/3.0/ (accessed on 7 November 2022).
- Hunáková, L.; Chorváth, M.; Duraj, J.; Bartosová, Z.; Sevcíková, L.; Suliková, M.; Chovancová, J.; Sedlák, J.; Chorváth, B.; Boljesíková, E. Radiation-induced apoptosis and cell cycle alterations in human carcinoma cell lines with different radiosensitivities. Neoplasma 2000, 47, 25–31. [Google Scholar]
- Barcellini, A.; Loap, P.; Murata, K.; Villa, R.; Kirova, Y.; Okonogi, N.; Orlandi, E. PARP Inhibitors in Combination with Radiotherapy: To Do or Not to Do? Cancers 2021, 13, 5380. [Google Scholar] [CrossRef]
- Angel, M.; Zarba, M.; Sade, J.P. PARP inhibitors as a radiosensitizer: A future promising approach in prostate cancer? Ecancermedicalscience 2021, 15, ed118. [Google Scholar] [CrossRef]
- Tinganelli, W.; Durante, M. Carbon Ion Radiobiology. Cancers 2020, 12, 22. [Google Scholar] [CrossRef]
- Keta, O.; Todorović, D.; Popović, N.; Korićanac, L.; Cuttone, G.; Petrović, I.; Ristić-Fira, A. Radiosensitivity of human ovarian carcinoma and melanoma cells to γ-rays and protons. Arch. Med. Sci. 2014, 10, 578–586. [Google Scholar] [CrossRef] [Green Version]
- Syljuåsen, R.G. Cell Cycle Effects in Radiation Oncology. In BT—Radiation Oncology; Wenz, F., Ed.; Springer International Publishing: Cham, Switzserland, 2019; pp. 1–8. ISBN 978-3-319-52619-5. [Google Scholar]
- Pestell, K.E.; Medlow, C.J.; Titley, J.C.; Kelland, L.R.; Walton, M.I. Characterisation of the p53 status, BCL-2 expression and radiation and platinum drug sensitivity of a panel of human ovarian cancer cell lines. Int. J. Cancer 1998, 77, 913–918. [Google Scholar] [CrossRef]
- Wang, L.; Lankhorst, L.; Bernards, R. Exploiting senescence for the treatment of cancer. Nat. Rev. Cancer 2022, 22, 340–355. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Xu, C. Cellular Senescence in the Treatment of Ovarian Cancer. Int. J. Gynecol. Cancer Off. J. Int. Gynecol. Cancer Soc. 2018, 28, 895–902. [Google Scholar] [CrossRef]
- Chen, Z.; Cao, K.; Xia, Y.; Li, Y.; Hou, Y.; Wang, L.; Li, L.; Chang, L.; Li, W. Cellular senescence in ionizing radiation (Review). Oncol. Rep. 2019, 42, 883–894. [Google Scholar] [CrossRef]
- Maekawa, T.; Liu, B.; Liu, Y.; Yoshida, K.; Muratani, M.; Chatton, B.; Ishii, S. Stress-induced and ATF7-dependent epigenetic change influences cellular senescence. Genes Cells 2019, 24, 627–635. [Google Scholar] [CrossRef]
- Huart, C.; Fransolet, M.; Demazy, C.; Le Calvé, B.; Lucas, S.; Michiels, C.; Wéra, A.-C. Taking Advantage of the Senescence-Promoting Effect of Olaparib after X-ray and Proton Irradiation Using the Senolytic Drug, ABT-263. Cancers 2022, 14, 1460. [Google Scholar] [CrossRef]
- Bacová, G.; Hunáková, L.E.; Chorváth, M.; Boljesíková, E.; Chorváth, B.; Sedlák, J.; Gábelová, A. Radiation-induced DNA damage and repair evaluated with “comet assay” in human ovarian carcinoma cell lines with different radiosensitivities. Neoplasma 2000, 47, 367–374. [Google Scholar] [PubMed]
- Petru, E.; Sevin, B.U.; Gottlieb, C. Radiosensitivity patterns of four human ovarian cancer cell lines in vitro. Gynecol. Oncol. 1997, 64, 490–492. [Google Scholar] [CrossRef] [PubMed]
- El-Nachef, L.; Al-Choboq, J.; Restier-Verlet, J.; Granzotto, A.; Berthel, E.; Sonzogni, L.; Ferlazzo, M.L.; Bouchet, A.; Leblond, P.; Combemale, P.; et al. Human Radiosensitivity and Radiosusceptibility: What Are the Differences? Int. J. Mol. Sci. 2021, 22, 7158. [Google Scholar] [CrossRef] [PubMed]
- Ceccaldi, R.; Rondinelli, B.; D’Andrea, A.D. Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol. 2016, 26, 52–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierce, L.J.; Levin, A.M.; Rebbeck, T.R.; Ben-David, M.A.; Friedman, E.; Solin, L.J.; Harris, E.E.; Gaffney, D.K.; Haffty, B.G.; Dawson, L.A.; et al. Ten-year multi-institutional results of breast-conserving surgery and radiotherapy in BRCA1/2-associated stage I/II breast cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 2437–2443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.H.; Kim, H.S.; Kim, S.-S.; Shim, H.S.; Yang, A.J.; Lee, J.J.B.; Yoon, H.I.; Ahn, J.B.; Chang, J.S. Increased Radiosensitivity of Solid Tumors Harboring ATM and BRCA1/2 Mutations. Cancer Res. Treat. 2022, 54, 54–64. [Google Scholar] [CrossRef]
- Concin, N.; Zeillinger, C.; Stimpfel, M.; Schiebel, I.; Tong, D.; Wolff, U.; Reiner, A.; Leodolter, S.; Zeillinger, R. p53-dependent radioresistance in ovarian carcinoma cell lines. Cancer Lett. 2000, 150, 191–199. [Google Scholar] [CrossRef]
- Langland, G.T.; Yannone, S.M.; Langland, R.A.; Nakao, A.; Guan, Y.; Long, S.B.T.; Vonguyen, L.; Chen, D.J.; Gray, J.W.; Chen, F. Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities. Oncol. Rep. 2010, 23, 1021–1026. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.; Kang, Y. Pleiotropic roles of AEG-1/MTDH/LYRIC in breast cancer. Adv. Cancer Res. 2013, 120, 113–134. [Google Scholar] [CrossRef]
- Chen, J.; Jia, Y.; Jia, Z.-H.; Zhu, Y.; Jin, Y.-M. Silencing the expression of MTDH increases the radiation sensitivity of SKOV3 ovarian cancer cells and reduces their proliferation and metastasis. Int. J. Oncol. 2018, 53, 2180–2190. [Google Scholar] [CrossRef] [Green Version]
- Pampalakis, G.; Obasuyi, O.; Papadodima, O.; Chatziioannou, A.; Zoumpourlis, V.; Sotiropoulou, G. The KLK5 protease suppresses breast cancer by repressing the mevalonate pathway. Oncotarget 2014, 5, 2390–2403. [Google Scholar] [CrossRef]
- Leusink, F.K.J.; van Diest, P.J.; Frank, M.H.; Broekhuizen, R.; Braunius, W.; van Hooff, S.R.; Willems, S.M.; Koole, R. The Co-Expression of Kallikrein 5 and Kallikrein 7 Associates with Poor Survival in Non-HPV Oral Squamous-Cell Carcinoma. Pathobiology 2015, 82, 58–67. [Google Scholar] [CrossRef]
- Dorn, J.; Magdolen, V.; Gkazepis, A.; Gerte, T.; Harlozinska, A.; Sedlaczek, P.; Diamandis, E.P.; Schuster, T.; Harbeck, N.; Kiechle, M.; et al. Circulating biomarker tissue kallikrein-related peptidase KLK5 impacts ovarian cancer patients’ survival. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2011, 22, 1783–1790. [Google Scholar] [CrossRef]
- Gong, W.; Liu, Y.; Seidl, C.; Diamandis, E.P.; Kiechle, M.; Drecoll, E.; Kotzsch, M.; Magdolen, V.; Dorn, J. Quantitative assessment and clinical relevance of kallikrein-related peptidase 5 mRNA expression in advanced high-grade serous ovarian cancer. BMC Cancer 2019, 19, 696. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Liu, S.; Tian, G.; Zhao, L.; Wang, H.; Li, Y.; Shen, Y.; Han, L. KLK5 is associated with the radioresistance, aggression, and progression of cervical cancer. Gynecol. Oncol. 2022, 166, 138–147. [Google Scholar] [CrossRef]
- Dou, Q.; Xu, Y.; Zhu, Y.; Hu, Y.; Yan, Y.; Yan, H. LncRNA FAM83H-AS1 contributes to the radioresistance, proliferation, and metastasis in ovarian cancer through stabilizing HuR protein. Eur. J. Pharmacol. 2019, 852, 134–141. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, S.; Wen, Y.; Zhong, L. Effect of MicroRNA-210 on the Growth of Ovarian Cancer Cells and the Efficacy of Radiotherapy. Gynecol. Obstet. Investig. 2021, 86, 71–80. [Google Scholar] [CrossRef]
- Zhou, M.; Yu, P.; Qu, X.; Liu, Y.; Zhang, J. Phase III trials of standard chemotherapy with or without bevacizumab for ovarian cancer: A meta-analysis. PLoS ONE 2013, 8, e81858. [Google Scholar] [CrossRef]
- Lin, Q.; Liu, W.; Xu, S.; Shang, H.; Li, J.; Guo, Y.; Tong, J. PARP inhibitors as maintenance therapy in newly diagnosed advanced ovarian cancer: A meta-analysis. BJOG 2021, 128, 485–493. [Google Scholar] [CrossRef]
- Bi, Y.; Verginadis, I.I.; Dey, S.; Lin, L.; Guo, L.; Zheng, Y.; Koumenis, C. Radiosensitization by the PARP inhibitor olaparib in BRCA1-proficient and deficient high-grade serous ovarian carcinomas. Gynecol. Oncol. 2018, 150, 534–544. [Google Scholar] [CrossRef]
- Vanpouille-Box, C.; Alard, A.; Aryankalayil, M.J.; Sarfraz, Y.; Diamond, J.M.; Schneider, R.J.; Inghirami, G.; Coleman, C.N.; Formenti, S.C.; Demaria, S. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 2017, 8, 15618. [Google Scholar] [CrossRef] [PubMed]
- Demaria, S.; Formenti, S.C. Can abscopal effects of local radiotherapy be predicted by modeling T cell trafficking? J. Immunother. Cancer 2016, 4, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golden, E.B.; Demaria, S.; Schiff, P.B.; Chachoua, A.; Formenti, S.C. An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol. Res. 2013, 1, 365–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formenti, S.C.; Demaria, S. Systemic effects of local radiotherapy. Lancet Oncol. 2009, 10, 718–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formenti, S.C.; Demaria, S. Local control by radiotherapy: Is that all there is? Breast Cancer Res. 2008, 10, 215. [Google Scholar] [CrossRef]
- Herrera, F.G.; Irving, M.; Kandalaft, L.E.; Coukos, G. Rational combinations of immunotherapy with radiotherapy in ovarian cancer. Lancet Oncol. 2019, 20, e417–e433. [Google Scholar] [CrossRef]
- Griffon, G.; Marchal, C.; Merlin, J.L.; Marchal, S.; Parache, R.M.; Bey, P. Radiosensitivity of multicellular tumour spheroids obtained from human ovarian cancers. Eur. J. Cancer 1995, 31, 85–91. [Google Scholar] [CrossRef]
- Reiss, K.A.; Herman, J.M.; Armstrong, D.; Zahurak, M.; Fyles, A.; Brade, A.; Milosevic, M.; Dawson, L.A.; Scardina, A.; Fischer, P.; et al. A final report of a phase I study of veliparib (ABT-888) in combination with low-dose fractionated whole abdominal radiation therapy (LDFWAR) in patients with advanced solid malignancies and peritoneal carcinomatosis with a dose escalation in ovarian and. Gynecol. Oncol. 2017, 144, 486–490. [Google Scholar] [CrossRef] [Green Version]
- Herrera, F.G.; Ronet, C.; Ochoa de Olza, M.; Barras, D.; Crespo, I.; Andreatta, M.; Corria-Osorio, J.; Spill, A.; Benedetti, F.; Genolet, R.; et al. Low-Dose Radiotherapy Reverses Tumor Immune Desertification and Resistance to Immunotherapy. Cancer Discov. 2022, 12, 108–133. [Google Scholar] [CrossRef]
- Davuluri, R.; Jiang, W.; Fang, P.; Xu, C.; Komaki, R.; Gomez, D.R.; Welsh, J.; Cox, J.D.; Crane, C.H.; Hsu, C.C.; et al. Lymphocyte Nadir and Esophageal Cancer Survival Outcomes After Chemoradiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 128–135. [Google Scholar] [CrossRef]
- Fang, P.; Shiraishi, Y.; Verma, V.; Jiang, W.; Song, J.; Hobbs, B.P.; Lin, S.H. Lymphocyte-Sparing Effect of Proton Therapy in Patients with Esophageal Cancer Treated with Definitive Chemoradiation. Int. J. Part. Ther. 2018, 4, 23–32. [Google Scholar] [CrossRef]
- Durante, M.; Formenti, S. Harnessing radiation to improve immunotherapy: Better with particles? Br. J. Radiol. 2020, 93, 20190224. [Google Scholar] [CrossRef]
- Darragh, L.B.; Gadwa, J.; Pham, T.T.; Van Court, B.; Neupert, B.; Olimpo, N.A.; Nguyen, K.; Nguyen, D.; Knitz, M.W.; Hoen, M.; et al. Elective nodal irradiation mitigates local and systemic immunity generated by combination radiation and immunotherapy in head and neck tumors. Nat. Commun. 2022, 13, 7015. [Google Scholar] [CrossRef]
- Hamanishi, J.; Mandai, M.; Ikeda, T.; Minami, M.; Kawaguchi, A.; Murayama, T.; Kanai, M.; Mori, Y.; Matsumoto, S.; Chikuma, S.; et al. Safety and Antitumor Activity of Anti-PD-1 Antibody, Nivolumab, in Patients With Platinum-Resistant Ovarian Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 4015–4022. [Google Scholar] [CrossRef]
- Sato, H.; Niimi, A.; Yasuhara, T.; Permata, T.B.M.; Hagiwara, Y.; Isono, M.; Nuryadi, E.; Sekine, R.; Oike, T.; Kakoti, S.; et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat. Commun. 2017, 8, 1751. [Google Scholar] [CrossRef] [Green Version]
- Iijima, M.; Okonogi, N.; Nakajima, N.I.; Morokoshi, Y.; Kanda, H.; Yamada, T.; Kobayashi, Y.; Banno, K.; Wakatsuki, M.; Yamada, S.; et al. Significance of PD-L1 expression in carbon-ion radiotherapy for uterine cervical adeno/adenosquamous carcinoma. J. Gynecol. Oncol. 2020, 31, e19. [Google Scholar] [CrossRef]
- Deng, L.; Liang, H.; Xu, M.; Yang, X.; Burnette, B.; Arina, A.; Li, X.D.; Mauceri, H.; Beckett, M.; Darga, T.; et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 2014, 41, 843–852. [Google Scholar] [CrossRef] [Green Version]
- Formenti, S.C.; Demaria, S. Radiation therapy to convert the tumor into an in situ vaccine. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 879–880. [Google Scholar] [CrossRef] [Green Version]
- Herrera, F.G.; Bourhis, J.; Coukos, G. Radiotherapy combination opportunities leveraging immunity for the next oncology practice. CA Cancer J. Clin. 2017, 67, 65–85. [Google Scholar] [CrossRef]
- Verma, V.; Cushman, T.R.; Selek, U.; Tang, C.; Welsh, J.W. Safety of Combined Immunotherapy and Thoracic Radiation Therapy: Analysis of 3 Single-Institutional Phase I/II Trials. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 1141–1148. [Google Scholar] [CrossRef]
- Cavalieri, S.; Ronchi, S.; Barcellini, A.; Bonora, M.; Vischioni, B.; Vitolo, V.; Villa, R.; Del Vecchio, M.; Licitra, L.; Orlandi, E. Toxicity of carbon ion radiotherapy and immune checkpoint inhibitors in advanced melanoma. Radiother. Oncol. 2021, 164, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ando, K.; Fujita, H.; Hosoi, A.; Ma, L.; Wakatsuki, M.; Seino, K.-I.; Kakimi, K.; Imai, T.; Shimokawa, T.; Nakano, T. Intravenous dendritic cell administration enhances suppression of lung metastasis induced by carbon-ion irradiation. J. Radiat. Res. 2017, 58, 446–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helm, A.; Tinganelli, W.; Simoniello, P.; Kurosawa, F.; Fournier, C.; Shimokawa, T.; Durante, M. Reduction of Lung Metastases in a Mouse Osteosarcoma Model Treated With Carbon Ions and Immune Checkpoint Inhibitors. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Yasui, T.; Minami, K.; Tamari, K.; Hayashi, K.; Otani, K.; Seo, Y.; Isohashi, F.; Koizumi, M.; Ogawa, K. Carbon ion irradiation enhances the antitumor efficacy of dual immune checkpoint blockade therapy both for local and distant sites in murine osteosarcoma. Oncotarget 2019, 10, 633–646. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barcellini, A.; Charalampopoulou, A.; De Cecco, L.; Fodor, A.; Rabaiotti, E.; Candotti, G.; Secondino, S.; Facoetti, A.; Locati, L.D.; Pignata, S.; et al. Ovarian Cancer Radiosensitivity: What Have We Understood So Far? Life 2023, 13, 6. https://doi.org/10.3390/life13010006
Barcellini A, Charalampopoulou A, De Cecco L, Fodor A, Rabaiotti E, Candotti G, Secondino S, Facoetti A, Locati LD, Pignata S, et al. Ovarian Cancer Radiosensitivity: What Have We Understood So Far? Life. 2023; 13(1):6. https://doi.org/10.3390/life13010006
Chicago/Turabian StyleBarcellini, Amelia, Alexandra Charalampopoulou, Loris De Cecco, Andrei Fodor, Emanuela Rabaiotti, Giorgio Candotti, Simona Secondino, Angelica Facoetti, Laura Deborah Locati, Sandro Pignata, and et al. 2023. "Ovarian Cancer Radiosensitivity: What Have We Understood So Far?" Life 13, no. 1: 6. https://doi.org/10.3390/life13010006
APA StyleBarcellini, A., Charalampopoulou, A., De Cecco, L., Fodor, A., Rabaiotti, E., Candotti, G., Secondino, S., Facoetti, A., Locati, L. D., Pignata, S., Orlandi, E., & Mangili, G. (2023). Ovarian Cancer Radiosensitivity: What Have We Understood So Far? Life, 13(1), 6. https://doi.org/10.3390/life13010006