Incorporating the Soil Gas Gradient Method and Functional Genes to Assess the Natural Source Zone Depletion at a Petroleum-Hydrocarbon-Contaminated Site of a Purification Plant in Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling, Gas Measurement, and Functional Gene Determination
2.3. Assessment of the Natural Source Zone Depletion
3. Results and Discussion
3.1. Soil Gas Profiles
3.2. Soil Gas Gradients
3.3. Estimating the NSZD Rates
3.4. Functional Genes Evidence
4. Discussion
4.1. Biogeochemical Process Process in NSZD
4.2. Environmental Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ITRC. Lnapl Site Management: Lcsm Evolution, Decision Process, and Remedial Technologies; Interstate Technology & Regulatory Council: Washington, DC, USA, 2018. [Google Scholar]
- Sun, L.; Wang, S.-w.; Guo, C.-j.; Shi, C.; Su, W.-c. Using pore-solid fractal dimension to estimate residual lnapls saturation in sandy aquifers: A column experiment. J. Groundw. Sci. Eng. 2022, 10, 87–98. [Google Scholar]
- Gao, F.; Liu, F.; Wang, H.-j. Numerical modelling of the dynamic process of oil displacement by water in sandstone reservoirs with random pore structures. J. Groundw. Sci. Eng. 2021, 9, 233. [Google Scholar]
- Verginelli, I.; Baciocchi, R. Refinement of the gradient method for the estimation of natural source zone depletion at petroleum contaminated sites. J. Contam. Hydrol. 2021, 241, 103807. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, M.; Guo, C.; Ning, Z.; Zhang, Y.; Qin, J.; Zhang, W. Review on the research progress of natural source zone depletion in non-aqueous phase liquid-contaminated sites. Rock Miner. Anal. 2022, 41(5), 704–716. [Google Scholar]
- Garg, S.; Newell, C.J.; Kulkarni, P.R.; King, D.C.; Adamson, D.T.; Renno, M.I.; Sale, T. Overview of natural source zone depletion: Processes, controlling factors, and composition change. Groundw. Monit. Remediat. 2017, 37, 62–81. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Zhang, C.-j.; Liu, P.-f.; Fu, L.; Laso-Pérez, R.; Yang, L.; Bai, L.-p.; Li, J.; Yang, M.; Lin, J.-z.; et al. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species. Nature 2022, 601, 257–262. [Google Scholar] [CrossRef]
- Rivett, M.; Sweeney, R. An Introduction to Natural Source Zone Depletion at Lnapl Sites. 2019. Available online: https://info.columbiatechnologies.com/hubfs/Claire%20TB20%20-%20NSZD-web.pdf?hsLang=en-us (accessed on 6 December 2022).
- Kulkarni, P.R.; Walker, K.L.; Newell, C.J.; Askarani, K.K.; Li, Y.; McHugh, T.E. Natural source zone depletion (nszd) insights from over 15 years of research and measurements: A multi-site study. Water Res. 2022, 225, 119170. [Google Scholar] [CrossRef]
- Johnson, P.; Lundegard, P.; Liu, Z. Source zone natural attenuation at petroleum hydrocarbon spill sites—I: Site-specific assessment approach. Groundw. Monit. Remediat. 2006, 26, 82–92. [Google Scholar] [CrossRef]
- Pishgar, R.; Hettiaratchi, J.P.; Chu, A. Natural source zone depletion (nszd) quantification techniques: Innovations and future directions. Sustainability 2022, 14, 7027. [Google Scholar] [CrossRef]
- Lundegard, P.D.; Johnson, P.C. Source zone natural attenuation at petroleum hydrocarbon spill sites—II: Application to a former oil field. Groundw. Monit. Remediat. 2006, 26, 93–106. [Google Scholar] [CrossRef]
- Eichert, J.; McAlexander, B.; Lyverse, M.; Michalski, P.; Sihota, N. Spatial and temporal variation in natural source zone depletion rates at a former oil refinery. Vadose Zone J. 2017, 16, 1–16. [Google Scholar] [CrossRef]
- CARE, C. Australian Case Studies of Light Non-Aqueous Phase Liquid (lnapl) Natural Source Zone Depletion Rates Compared with Conventional Active Recovery Efforts; CRC CARE Technical Report, 47; Cooperative Research Centre for Contamination: Boca Raton, FL, USA, 2020. [Google Scholar]
- Smith, J.J.; Benede, E.; Beuthe, B.; Marti, M.; Lopez, A.S.; Koons, B.W.; Kirkman, A.J.; Barreales, L.A.; Grosjean, T.; Hjort, M. A comparison of three methods to assess natural source zone depletion at paved fuel retail sites. Q. J. Eng. Geol. Hydrogeol. 2021, 54. [Google Scholar] [CrossRef]
- Smith, J.W.; Davis, G.B.; DeVaull, G.E.; Garg, S.; Newell, C.J.; Rivett, M.O. Natural source zone depletion (nszd): From process understanding to effective implementation at lnapl-impacted sites. Q. J. Eng. Geol. Hydrogeol. 2022, 55. [Google Scholar] [CrossRef]
- Ririe, G.T.; Sweeney, R.E. Rapid field approach to evaluating natural source zone depletion for a range of light non-aqueous phase liquid sites. Groundw. Monit. Remediat. 2022, 42, 67–77. [Google Scholar] [CrossRef]
- McCoy, K.M. Resolving Natural Losses of Lnapl Usingcarbon Dioxide Traps; Colorado State University: Fort Collins, CO, USA, 2012. [Google Scholar]
- ITRC. Evaluating Natural Source Zone Depletion at Sites with Lnapl; Interstate Technology & Regulatory Council: Washington, DC, USA, 2009. [Google Scholar]
- Cai, P.; Ning, Z.; Zhang, M.; Guo, C.; Niu, M.; Shi, J. Autotrophic metabolism considered to extend the applicability of the carbon balances model for assessing biodegradation in petroleum-hydrocarbon-contaminated aquifers with abnormally low dissolved inorganic carbon. J. Clean. Prod. 2020, 261, 120738. [Google Scholar] [CrossRef]
- Cai, P.; Ning, Z.; Liu, Y.; He, Z.; Shi, J.; Niu, M. Diagnosing bioremediation of crude oil-contaminated soil and related geochemical processes at the field scale through microbial community and functional genes. Ann. Microbiol. 2020, 70, 36. [Google Scholar] [CrossRef]
- Guo, H.; Gu, J.; Wang, X.; Song, Z.; Yu, J.; Lei, L. Microbial mechanisms related to the effects of bamboo charcoal and bamboo vinegar on the degradation of organic matter and methane emissions during composting. Environ. Pollut. 2021, 272, 116013. [Google Scholar] [CrossRef]
- He, Z.; Zhang, M.; Ning, Z.; Guo, C.; Zhang, C.; Du, J. Genetic quantitative techniques combined with continuous electromagnetic profiling to identify subtle oil and gas reservoirs. Geomicrobiol. J. 2019, 36, 705–714. [Google Scholar] [CrossRef]
- Moldrup, P.; Olesen, T.; Schjønning, P.; Yamaguchi, T.; Rolston, D. Predicting the gas diffusion coefficient in undisturbed soil from soil water characteristics. Soil Sci. Soc. Am. J. 2000, 64, 94–100. [Google Scholar] [CrossRef]
- Massman, W. A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP. Atmos. Environ. 1998, 32, 1111–1127. [Google Scholar] [CrossRef]
- Sheng, Y.; Tian, X.; Wang, G.; Hao, C.; Liu, F. Bacterial diversity and biogeochemical processes of oil-contaminated groundwater, baoding, north china. Geomicrobiol. J. 2016, 33, 537–551. [Google Scholar] [CrossRef]
- Chen, X.; Sheng, Y.; Wang, G.; Guo, L.; Zhang, H.; Zhang, F.; Yang, T.; Huang, D.; Han, X.; Zhou, L. Microbial compositional and functional traits of btex and salinity co-contaminated shallow groundwater by produced water. Water Res. 2022, 215, 118277. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Liu, J.; Sheng, Y.; Shi, J.; Dong, H. Disentangling microbial syntrophic mechanisms for hexavalent chromium reduction in autotrophic biosystems. Environ. Sci. Technol. 2021, 55, 6340–6351. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, G.; Qian, Y.; Zhang, F. Increased soil methane emissions and methanogenesis in oil contaminated areas. Land Degrad. Dev. 2018, 29, 563–571. [Google Scholar] [CrossRef]
- Lyu, Z.; Shao, N.; Akinyemi, T.; Whitman, W.B. Methanogenesis. Curr. Biol. 2018, 28, R727–R732. [Google Scholar] [CrossRef] [Green Version]
- Borrel, G.; Adam, P.S.; McKay, L.J.; Chen, L.-X.; Sierra-García, I.N.; Sieber, C.M.; Letourneur, Q.; Ghozlane, A.; Andersen, G.L.; Li, W.-J. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat. Microbiol. 2019, 4, 603–613. [Google Scholar] [CrossRef]
- Culpepper, M.A.; Cutsail III, G.E.; Hoffman, B.M.; Rosenzweig, A.C. Evidence for oxygen binding at the active site of particulate methane monooxygenase. J. Am. Chem. Soc. 2012, 134, 7640–7643. [Google Scholar] [CrossRef] [Green Version]
- Sihota, N.J.; Mayer, K.U.; Toso, M.A.; Atwater, J.F. Methane emissions and contaminant degradation rates at sites affected by accidental releases of denatured fuel-grade ethanol. J. Contam. Hydrol. 2013, 151, 1–15. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Cheon, J.-Y.; Lee, K.-K.; Lee, S.-Y.; Lee, M.-H. Factors affecting the distribution of hydrocarbon contaminants and hydrogeochemical parameters in a shallow sand aquifer. J. Contam. Hydrol. 2001, 50, 139–158. [Google Scholar] [CrossRef]
Soil-Gas | O2 | CO2 | CH4 | VOCs | CH4 | ||
---|---|---|---|---|---|---|---|
A | Depth (cm) | 0–50 | 0–50 | 0–50 | 0–50 | 50–90 | |
Gradient ((g/m3)/m) | Value | −199.6 | 149.1 | 8.0 | 8.4 × 10−4 | 62.4 | |
Standard error | 22.7 | 18.8 | 3.2 | 6.0 × 10−3 | 19.4 | ||
Adj. R2 | 0.959 | 0.948 | 0.583 | −0.311 | 0.757 | ||
B | Depth (cm) | 0–40 | 0–40 | 0–40 | 0–40 | 40–90 | |
Gradient ((g/m3)/m) | Value | −179.3 | 128.9 | 4.2 | 1.9 × 10−2 | 87.3 | |
Standard error | 36.4 | 21.5 | 2.2 | 6.2 × 10−3 | 22.6 | ||
Adj. R2 | 0.886 | 0.921 | 0.473 | 0.74 | 0.736 | ||
C | Depth (cm) | 0–30 | 0–30 | 0–30 | 0–30 | 30–60 | |
Gradient ((g/m3)/m) | Value | −633.4 | 153.9 | 3.0 | 1.9 × 10−3 | 1042.0 | |
Standard error | 22.0 | 16.1 | 0.4 | 3.3 × 10−3 | 16.0 | ||
Adj. R2 | 0.998 | 0.978 | 0.965 | −0.525 | 0.983 | ||
Background | Depth (cm) | 0–45 | 0–45 | 0–45 | 0–45 | ||
Gradient ((g/m3)/m) | Value | −6.3 | 4.1 | 0.0 | 0.0 | ||
Standard error | −1.4 | 0.0 | 0.0 | 0.0 | |||
Adj. R2 | 0.688 | 0.994 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, Z.; Sheng, Y.; Guo, C.; Wang, S.; Yang, S.; Zhang, M. Incorporating the Soil Gas Gradient Method and Functional Genes to Assess the Natural Source Zone Depletion at a Petroleum-Hydrocarbon-Contaminated Site of a Purification Plant in Northwest China. Life 2023, 13, 114. https://doi.org/10.3390/life13010114
Ning Z, Sheng Y, Guo C, Wang S, Yang S, Zhang M. Incorporating the Soil Gas Gradient Method and Functional Genes to Assess the Natural Source Zone Depletion at a Petroleum-Hydrocarbon-Contaminated Site of a Purification Plant in Northwest China. Life. 2023; 13(1):114. https://doi.org/10.3390/life13010114
Chicago/Turabian StyleNing, Zhuo, Yizhi Sheng, Caijuan Guo, Shuaiwei Wang, Shuai Yang, and Min Zhang. 2023. "Incorporating the Soil Gas Gradient Method and Functional Genes to Assess the Natural Source Zone Depletion at a Petroleum-Hydrocarbon-Contaminated Site of a Purification Plant in Northwest China" Life 13, no. 1: 114. https://doi.org/10.3390/life13010114
APA StyleNing, Z., Sheng, Y., Guo, C., Wang, S., Yang, S., & Zhang, M. (2023). Incorporating the Soil Gas Gradient Method and Functional Genes to Assess the Natural Source Zone Depletion at a Petroleum-Hydrocarbon-Contaminated Site of a Purification Plant in Northwest China. Life, 13(1), 114. https://doi.org/10.3390/life13010114