Developing Community Resources for Nucleic Acid Structures
Abstract
:1. Introduction
2. Development of the Nucleic Acid Database
3. Features of the NDB
4. Research Enabled by the NDB
5. Current State of Nucleic Acid Structural Biology
6. Going Forward
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Watson, J.D.; Crick, F.H.C. A structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef] [PubMed]
- Franklin, R.E.; Gosling, R.G. Molecular configuration in sodium thymonucleate. Nature 1953, 171, 740–741. [Google Scholar] [CrossRef] [PubMed]
- Sussman, J.L.; Seeman, N.C.; Kim, S.-H.; Berman, H.M. The crystal structure of a naturally occurring dinucleotide phosphate uridylyl 3′,5′-adenosine phosphate. models for RNA chain folding. J. Mol. Biol. 1972, 66, 403–421. [Google Scholar] [CrossRef]
- Seeman, N.C.; Rosenberg, J.M.; Suddath, F.L.; Kim, J.J.P.; Rich, A. RNA double helical fragments at atomic resolution: I. The crystal and molecular structure of sodium adenylyl-3′-5′-uridine hexahydrate. J. Mol. Biol. 1976, 104, 109–144. [Google Scholar] [CrossRef]
- Rosenberg, J.M.; Seeman, N.C.; Day, R.O.; Rich, A. RNA double helical fragments at atomic resolution: II. The structure of sodium guanylyl-3′,5′-cytidine nonhydrate. J. Mol. Biol. 1976, 104, 145–167. [Google Scholar] [CrossRef]
- Allen, F.H.; Bellard, S.; Brice, M.D.; Cartright, B.A.; Doubleday, A.; Higgs, H.; Hummelink, T.; Hummelink-Peters, B.G.; Kennard, O.; Motherwell, W.D.S.; et al. The Cambridge Crystallographic Data Centre: Computer-based search, retrieval, analysis and display of information. Acta Crystallogr. 1979, B35, 2331–2339. [Google Scholar] [CrossRef]
- Robertus, J.D.; Ladner, J.E.; Finch, J.T.; Rhodes, D.; Brown, R.S.; Clark, B.F.C.; Klug, A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature 1974, 250, 546–551. [Google Scholar] [CrossRef]
- Suddath, F.; Quigley, G.; McPherson, A.; Sneden, D.; Kim, J.; Kim, S.; Rich, A. Three-dimensional structure of yeast phenylalanine transfer RNA at 3.0 Ångstroms resolution. Nature 1974, 248, 20–24. [Google Scholar] [CrossRef]
- Quigley, G.J.; Seeman, N.C.; Wang, A.H.; Suddath, F.L.; Rich, A. Yeast phenylalanine transfer RNA: Atomic coordinates and torsion angles. Nucleic Acids Res. 1975, 2, 2329–2341. [Google Scholar] [CrossRef][Green Version]
- Wang, A.H.-J.; Quigley, G.J.; Kolpak, F.J.; Crawford, J.L.; van Boom, J.H.; van der Marel, G.A.; Rich, A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 1979, 282, 680–686. [Google Scholar] [CrossRef]
- Drew, H.R.; Wing, R.M.; Takano, T.; Broka, C.; Tanaka, S.; Itakura, K.; Dickerson, R.E. Structure of a B-DNA dodecamer: Conformation and dynamics. Proc. Natl. Acad. Sci. USA 1981, 78, 2179–2183. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.; Meyer, E.F., Jr.; Brice, M.D.; Rodgers, J.R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The Protein Data Bank: A computer-based archival file for macromolecular structures. J. Mol. Biol. 1977, 112, 535–542. [Google Scholar] [CrossRef]
- Breslauer, K.J. A calorimetric determination of enthalpies and heat capacities of protonation. J. Chem. Thermodyn. 1979, 11, 527–530. [Google Scholar] [CrossRef]
- Breslauer, K.J. Methods for Obtaining Thermodynamic Data on Oligonucleotide Transitions. In Thermodynamic Data for Biochemistry and Biotechnology; Hinz, H., Ed.; Springer: New York, NY, USA, 1986; pp. 402–427. [Google Scholar]
- Breslauer, K.J. A thermodynamic perspective of DNA Bending. Curr. Biol. 1991, 1, 416–422. [Google Scholar] [CrossRef]
- Breslauer, K.J. Extracting Thermodynamic Data From Equilibrium Melting Curves for Oligonucleotide Order-Disorder Transitions. In Methods in Molecular Biology, Vol. 26: Protocols for Oligonucleotide Conjugates; Agrawal, S., Ed.; Humana Press: Totowa, NJ, USA, 1994; Chapter 14; pp. 347–372. [Google Scholar]
- Chalikian, T.V.; Breslauer, K.J. Thermodynamic analysis of biomolecules: A volumetric approach. Curr. Opin. Struct. Biol. 1998, 8, 657–664. [Google Scholar] [CrossRef]
- Chalikian, T.V.; Volker, J.; Plum, G.E.; Breslauer, K.J. A more unified picture for the thermodynamics of nucleic acid duplex melting: A characterization by calorimetric and volumetric techniques. Proc. Natl. Acad. Sci. USA 1999, 96, 7853–7858. [Google Scholar] [CrossRef][Green Version]
- Klump, H.H.; Volker, J.; Breslauer, K.J. Energy mapping of the genetic code and genomic domains: Implications for code evolution and molecular Darwinism. Q. Rev. Biophys. 2020, 53, e11. [Google Scholar] [CrossRef]
- Volker, J.; Klump, H.H.; Breslauer, K.J. DNA metastability and biological regulation: Conformational dynamics of metastable omega-DNA bulge loops. J. Am. Chem. Soc. 2007, 129, 5272–5280. [Google Scholar] [CrossRef]
- Jones, R. Preparation of protected deoxyribonucleosides. In Oligonucleotide Synthesis, a Practical Approach; Gait, M.J., Ed.; IRL Press: Washington, DC, USA, 1984; pp. 22–34. [Google Scholar]
- Manning, G. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. 1978, 11, 179–246. [Google Scholar] [CrossRef]
- Volker, J.; Klump, H.H.; Manning, G.S.; Breslauer, K.J. Counterion association with native and denatured nucleic acids: An experimental approach. J. Mol. Biol. 2001, 310, 1011–1025. [Google Scholar] [CrossRef]
- Erie, D.; Sinha, N.; Olson, W.; Jones, R.; Breslauer, K. A dumbbell-shaped, double-hairpin structure of DNA: A thermodynamic investigation. Biochemistry 1987, 26, 7150–7159. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Olson, W.K.; Beveridge, D.L.; Westbrook, J.; Gelbin, A.; Demeny, T.; Hsieh, S.H.; Srinivasan, A.R.; Schneider, B. The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 1992, 63, 751–759. [Google Scholar] [CrossRef][Green Version]
- Kitakami, H.; Tateno, Y.; Gojobori, T. Toward unification of taxonomy databases in a distributed computer environment. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1994, 2, 227–235. [Google Scholar] [PubMed]
- Bilofsky, H.S.; Burks, C.; Fickett, J.W.; Goad, W.B.; Lewitter, F.I.; Rindone, W.P.; Swindell, C.D.; Tung, C.S. The GenBank genetic sequence databank. Nucleic Acids Res. 1986, 14, 1861–1863. [Google Scholar] [CrossRef][Green Version]
- Benson, D.A.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Rapp, B.A.; Wheeler, D.L. GenBank. Nucleic Acids Res. 2000, 28, 15–18. [Google Scholar] [CrossRef][Green Version]
- Parker, M. Biological data access through Gopher. Trends Biochem. Sci. 1993, 18, 485–486. [Google Scholar] [CrossRef]
- Fitzgerald, P.M.D.; Westbrook, J.D.; Bourne, P.E.; McMahon, B.; Watenpaugh, K.D.; Berman, H.M. 4.5 Macromolecular dictionary (mmCIF). In International Tables for Crystallography G. Definition and Exchange of Crystallographic Data; Hall, S.R., McMahon, B., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 295–443. [Google Scholar]
- Clowney, L.; Jain, S.C.; Srinivasan, A.R.; Westbrook, J.; Olson, W.K.; Berman, H.M. Geometric Parameters in Nucleic Acids: Nitrogenous Bases. J. Am. Chem. Soc. 1996, 118, 509–518. [Google Scholar] [CrossRef]
- Gelbin, A.; Schneider, B.; Clowney, L.; Hsieh, S.-H.; Olson, W.K.; Berman, H.M. Geometric parameters in nucleic acids: Sugar and phosphate constituents. J. Am. Chem. Soc. 1996, 118, 519–528. [Google Scholar] [CrossRef]
- Parkinson, G.; Vojtechovsky, J.; Clowney, L.; Brunger, A.T.; Berman, H.M. New parameters for the refinement of nucleic acid-containing structures. Acta Cryst. D Biol. Cryst. 1996, 52 Pt 1, 57–64. [Google Scholar] [CrossRef]
- Olson, W.K.; Bansal, M.; Burley, S.K.; Dickerson, R.E.; Gerstein, M.; Harvey, S.C.; Heinemann, U.; Lu, X.J.; Neidle, S.; Shakked, Z.; et al. A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 2001, 313, 229–237. [Google Scholar] [CrossRef][Green Version]
- Leontis, N.B.; Westhof, E. Geometric nomenclature and classification of RNA base pairs. RNA 2001, 7, 499–512. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Schneider, B.; de la Cruz, J.; Feng, Z.; Chen, L.; Dutta, S.; Persikova, I.; Westbrook, J.; Yang, H.; Young, J.; Zardecki, C.; et al. The Nucleic Acid Database. In Structural Bioinformatics, 2nd ed.; Gu, J., Bourne, P.E., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2009; pp. 305–319. [Google Scholar]
- Coimbatore Narayanan, B.; Westbrook, J.; Ghosh, S.; Petrov, A.I.; Sweeney, B.; Zirbel, C.L.; Leontis, N.B.; Berman, H.M. The Nucleic Acid Database: New features and capabilities. Nucleic Acids Res. 2014, 42, D114–D122. [Google Scholar] [CrossRef][Green Version]
- Srinivasan, A.R.; Olson, W.K. Yeast tRNAPhe conformation wheels: A novel probe of the monoclinic and orthorhombic models. Nucleic Acids Res. 1980, 8, 2307–2329. [Google Scholar] [CrossRef][Green Version]
- Dans, P.D.; Perez, A.; Faustino, I.; Lavery, R.; Orozco, M. Exploring polymorphisms in B-DNA helical conformations. Nucleic Acids Res. 2012, 40, 10668–10678. [Google Scholar] [CrossRef][Green Version]
- Gupta, A.; Kulkarni, M.; Mukherjee, A. Accurate prediction of B-form/A-form DNA conformation propensity from primary sequence: A machine learning and free energy handshake. Patterns 2021, 2, 100329. [Google Scholar] [CrossRef] [PubMed]
- Bayrak, C.S.; Kim, N.; Schlick, T. Using sequence signatures and kink-turn motifs in knowledge-based statistical potentials for RNA structure prediction. Nucleic Acids Res. 2017, 45, 5414–5422. [Google Scholar] [CrossRef]
- Corsi, F.; Lavery, R.; Laine, E.; Carbone, A. Multiple protein-DNA interfaces unravelled by evolutionary information, physico-chemical and geometrical properties. PLoS Comput. Biol. 2020, 16, e1007624. [Google Scholar] [CrossRef]
- Srivastava, A.; Ahmad, S.; Gromiha, M.M. Deciphering RNA-Recognition Patterns of Intrinsically Disordered Proteins. Int. J. Mol. Sci. 2018, 19, 1595. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sagendorf, J.M.; Markarian, N.; Berman, H.M.; Rohs, R. DNAproDB: An expanded database and web-based tool for structural analysis of DNA-protein complexes. Nucleic Acids Res. 2020, 48, D277–D287. [Google Scholar] [CrossRef]
- Schneider, B.; Berman, H.M. Hydration of the DNA bases is local. Biophys. J. 1995, 69, 2661–2669. [Google Scholar] [CrossRef][Green Version]
- Schneider, B.; Neidle, S.; Berman, H.M. Conformations of the sugar-phosphate backbone in helical DNA crystal structures. Biopolymers 1997, 42, 113–124. [Google Scholar] [CrossRef]
- Kim, S.-H.; Berman, H.M.; Seeman, N.C.; Newton, M.D. Seven basic conformations of nucleic acid structural units. Acta Crystallogr. Sect. B 1973, 29, 703–710. [Google Scholar] [CrossRef]
- Richardson, J.S.; Schneider, B.; Murray, L.W.; Kapral, G.J.; Immormino, R.M.; Headd, J.J.; Richardson, D.C.; Ham, D.; Hershkovits, E.; Williams, L.D.; et al. RNA backbone: Consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution). RNA 2008, 14, 465–481. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Schneider, B.; Bozikova, P.; Cech, P.; Svozil, D.; Cerny, J. A DNA Structural Alphabet Distinguishes Structural Features of DNA Bound to Regulatory Proteins and in the Nucleosome Core Particle. Genes 2017, 8, 278. [Google Scholar] [CrossRef]
- Cerny, J.; Bozikova, P.; Svoboda, J.; Schneider, B. A unified dinucleotide alphabet describing both RNA and DNA structures. Nucleic Acids Res. 2020, 48, 6367–6381. [Google Scholar] [CrossRef]
- Gouge, J.; Satia, K.; Guthertz, N.; Widya, M.; Thompson, A.J.; Cousin, P.; Dergai, O.; Hernandez, N.; Vannini, A. Redox Signaling by the RNA Polymerase III TFIIB-Related Factor Brf2. Cell 2015, 163, 1375–1387. [Google Scholar] [CrossRef][Green Version]
- Frouws, T.D.; Duda, S.C.; Richmond, T.J. X-ray structure of the MMTV-A nucleosome core. Proc. Natl. Acad. Sci. USA 2016, 113, 1214–1219. [Google Scholar] [CrossRef][Green Version]
- Olson, W.K. Configurational statistics of polynucleotide chains. An updated virtual bond model to treat effects of base stacking. Macromolecules 1980, 13, 721–728. [Google Scholar] [CrossRef]
- Wadley, L.M.; Keating, K.S.; Duarte, C.M.; Pyle, A.M. Evaluating and learning from RNA pseudotorsional space: Quantitative validation of a reduced representation for RNA structure. J. Mol. Biol. 2007, 372, 942–957. [Google Scholar] [CrossRef][Green Version]
- Vander Zanden, C.M.; Rowe, R.K.; Broad, A.J.; Robertson, A.B.; Ho, P.S. Effect of Hydroxymethylcytosine on the Structure and Stability of Holliday Junctions. Biochemistry 2016, 55, 5781–5789. [Google Scholar] [CrossRef][Green Version]
- Wang, Y.; Patel, D.J. Solution structure of a parallel-stranded G-quadruplex DNA. J. Mol. Biol. 1993, 234, 1171–1183. [Google Scholar] [CrossRef] [PubMed]
- Davey, C.A.; Sargent, D.F.; Luger, K.; Maeder, A.W.; Richmond, T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol. 2002, 319, 1097–1113. [Google Scholar] [CrossRef]
- Lawson, C.L.; Carey, J. Tandem binding in crystals of a trp repressor/operator half-site complex. Nature 1993, 366, 178–182. [Google Scholar] [CrossRef]
- Weaver, T.M.; Cortez, L.M.; Khoang, T.H.; Washington, M.T.; Agarwal, P.K.; Freudenthal, B.D. Visualizing Rev1 catalyze protein-template DNA synthesis. Proc. Natl. Acad. Sci. USA 2020, 117, 25494–25504. [Google Scholar] [CrossRef]
- Jang, S.B.; Hung, L.W.; Chi, Y.I.; Holbrook, E.L.; Carter, R.J.; Holbrook, S.R. Structure of an RNA internal loop consisting of tandem C-A+ base pairs. Biochemistry 1998, 37, 11726–11731. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.W.; Badong, D.; Rajan, R.; Mondragon, A. Crystal structures of an unmodified bacterial tRNA reveal intrinsic structural flexibility and plasticity as general properties of unbound tRNAs. RNA 2020, 26, 278–289. [Google Scholar] [CrossRef]
- Huang, L.; Wang, J.; Watkins, A.M.; Das, R.; Lilley, D.M.J. Structure and ligand binding of the glutamine-II riboswitch. Nucleic Acids Res. 2019, 47, 7666–7675. [Google Scholar] [CrossRef] [PubMed]
- Noeske, J.; Wasserman, M.R.; Terry, D.S.; Altman, R.B.; Blanchard, S.C.; Cate, J.H. High-resolution structure of the Escherichia coli ribosome. Nat. Struct. Mol. Biol. 2015, 22, 336–341. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Zhang, L.; Issaian, A.; Hill, R.C.; Espinosa, S.; Shi, S.; Cui, Y.; Kappel, K.; Das, R.; et al. A unified mechanism for intron and exon definition and back-splicing. Nature 2019, 573, 375–380. [Google Scholar] [CrossRef]
- Landeras-Bueno, S.; Wasserman, H.; Oliveira, G.; VanAernum, Z.L.; Busch, F.; Salie, Z.L.; Wysocki, V.H.; Andersen, K.; Saphire, E.O. Cellular mRNA triggers structural transformation of Ebola virus matrix protein VP40 to its essential regulatory form. Cell Rep. 2021, 35, 108986. [Google Scholar] [CrossRef]
- Lu, X.J. DSSR-enabled innovative schematics of 3D nucleic acid structures with PyMOL. Nucleic Acids Res. 2020, 48, e74. [Google Scholar] [CrossRef]
- Schneider, B.; Bozikova, P.; Necasova, I.; Cech, P.; Svozil, D.; Cerny, J. A DNA structural alphabet provides new insight into DNA flexibility. Acta Cryst. D Struct. Biol. 2018, 74 Pt 1, 52–64. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Appasamy, S.D.; Hamdani, H.Y.; Ramlan, E.I.; Firdaus-Raih, M. InterRNA: A database of base interactions in RNA structures. Nucleic Acids Res. 2016, 44, D266–D471. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Boccaletto, P.; Machnicka, M.A.; Purta, E.; Piatkowski, P.; Baginski, B.; Wirecki, T.K.; de Crecy-Lagard, V.; Ross, R.; Limbach, P.A.; Kotter, A.; et al. MODOMICS: A database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018, 46, D303–D307. [Google Scholar] [CrossRef] [PubMed]
- Chojnowski, G.; Walen, T.; Bujnicki, J.M. RNA Bricks—A database of RNA 3D motifs and their interactions. Nucleic Acids Res. 2014, 42, D123–D131. [Google Scholar] [CrossRef][Green Version]
- Zok, T.; Antczak, M.; Zurkowski, M.; Popenda, M.; Blazewicz, J.; Adamiak, R.W.; Szachniuk, M. RNApdbee 2.0: Multifunctional tool for RNA structure annotation. Nucleic Acids Res. 2018, 46, W30–W35. [Google Scholar] [CrossRef][Green Version]
- The RNAcentral Consortium; Petrov, A.I.; Kay, S.J.E.; Kalvari, I.; Howe, K.L.; Gray, K.A.; Bruford, E.A.; Kersey, P.J.; Cochrane, G.; Finn, R.D. RNAcentral: A comprehensive database of non-coding RNA sequences. Nucleic Acids Res. 2017, 45, D128–D134. [Google Scholar]
- Bernier, C.R.; Petrov, A.S.; Waterbury, C.C.; Jett, J.; Li, F.; Freil, L.E.; Xiong, X.; Wang, L.; Migliozzi, B.L.; Hershkovits, E.; et al. RiboVision suite for visualization and analysis of ribosomes. Faraday Discuss. 2014, 169, 195–207. [Google Scholar] [CrossRef]
- Sagendorf, J.M.; Berman, H.M.; Rohs, R. DNAproDB: An interactive tool for structural analysis of DNA-protein complexes. Nucleic Acids Res. 2017, 45, W89–W97. [Google Scholar] [CrossRef]
- Petrov, A.I.; Zirbel, C.L.; Leontis, N.B. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas. RNA 2013, 19, 1327–1340. [Google Scholar] [CrossRef][Green Version]
- Zirbel, C.; Leontis, N. Nonredundant 3D Structure Datasets for RNA Knowledge Extraction and Benchmarking. In RNA 3D Structure Analysis and Prediction; Leontis, N., Westhof, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 27, pp. 281–298. [Google Scholar]
- Dana, J.M.; Gutmanas, A.; Tyagi, N.; Qi, G.; O’Donovan, C.; Martin, M.; Velankar, S. SIFTS: Updated Structure Integration with Function, Taxonomy and Sequences resource allows 40-fold increase in coverage of structure-based annotations for proteins. Nucleic Acids Res. 2019, 47, D482–D489. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.J.; Bussemaker, H.J.; Olson, W.K. DSSR: An integrated software tool for dissecting the spatial structure of RNA. Nucleic Acids Res. 2015, 43, e142. [Google Scholar] [CrossRef] [PubMed][Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berman, H.M.; Lawson, C.L.; Schneider, B. Developing Community Resources for Nucleic Acid Structures. Life 2022, 12, 540. https://doi.org/10.3390/life12040540
Berman HM, Lawson CL, Schneider B. Developing Community Resources for Nucleic Acid Structures. Life. 2022; 12(4):540. https://doi.org/10.3390/life12040540
Chicago/Turabian StyleBerman, Helen M., Catherine L. Lawson, and Bohdan Schneider. 2022. "Developing Community Resources for Nucleic Acid Structures" Life 12, no. 4: 540. https://doi.org/10.3390/life12040540