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Abstract: Intrinsically disordered regions (IDRs) and protein (IDPs) are highly flexible owing to their
lack of well-defined structures. A subset of such proteins interacts with various substrates; including
RNA; frequently adopting regular structures in the final complex. In this work; we have analysed a
dataset of protein–RNA complexes undergoing disorder-to-order transition (DOT) upon binding. We
found that DOT regions are generally small in size (less than 3 residues) for RNA binding proteins.
Like structured proteins; positively charged residues are found to interact with RNA molecules;
indicating the dominance of electrostatic and cation-π interactions. However, a comparison of binding
frequency shows that interface hydrophobic and aromatic residues have more interactions in only
DOT regions than in a protein. Further; DOT regions have significantly higher exposure to water than
their structured counterparts. Interactions of DOT regions with RNA increase the sheet formation
with minor changes in helix forming residues. We have computed the interaction energy for amino
acids–nucleotide pairs; which showed the preference of His–G; Asn–U and Ser–U at for the interface
of DOT regions. This study provides insights to understand protein–RNA interactions and the results
could also be used for developing a tool for identifying DOT regions in RNA binding proteins.

Keywords: intrinsically disorder proteins; disorder-to-order regions; protein–RNA interactions;
unstructured proteins

1. Introduction

Intrinsically disordered proteins lack stable three-dimensional structures under physiological
conditions and are known to perform important roles in several processes including signalling,
enzymatic activity, and gene regulation [1,2]. To perform these functions, disordered regions interact
with protein, RNA, DNA, and other small molecules to gain ordered structures [3,4]. Experimentally,
interactions mediated by IDRs can be observed using NMR and X-ray crystallography. However,
because of poor resolution, problems in crystallization, and high time and resource consumption,
computational methods are necessary to identify disorder-mediated interactions [5,6].

Several methods have been developed for understanding the disorderness of proteins using
sequence or structural information [7–10]. In addition, the transition of disorder-to-order regions
in protein–protein interactions (PPI) is well studied experimentally and computationally [8–12].
For example, LMO4, a putative breast oncoprotein, interacts with various tandem LIM-domain
containing proteins mediated by disordered regions [13]. BRCA1, a tumour suppressor protein, helps
in binding with multiple protein and DNA partners by its central disorder region of ~1500 amino
acids [14]. Recently, Papadakos et al. [15] showed that inducing intrinsic disorder in high-affinity
protein–protein interactions reduces the affinity of binding.
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Many proteins contain disordered regions and some of the regions attained ordered structures
after binding to their cognate substrates, which are also known as MoRF (Molecular Recognition
Features) segments [16,17]. Sugase et al. [18] have shown that folding and binding of IDPs or
IDRs are coupled processes. Furthermore, binding partners are also shown to influence affinity
and kinetics of binding. The flexibility of IDPs helps them to bind with multiple partners and
have co-operative interactions [19]. Although induced fit and conformational selection processes are
proposed explanations for the coupling of folding and binding, the exact model which is preferred by
IDPs is not known [11,20].

The dynamics of the RNA molecule makes it more amenable to interact with disorder-mediated
protein–RNA interactions [21]. The recognition of the protein–RNA complex has been experimentally
studied using EMSA, yeast-3-hybrid assay, pull-down assay and CLIP [22,23]. On the other hand,
plenty of tools have been developed to identify binding sites in RNA-binding proteins [24–32]. All these
methods use the information in their sequence to compute the feature and/or evaluate the performance.
Recently, Peng and Kurgan [33] developed a webserver for prediction of disorder-mediated interactions
in RNA, DNA and protein–protein complexes. However, the knowledge for understanding the
mechanisms or factors responsible for binding of disordered region with RNA has not yet been
completely explored.

In this work, we constructed a dataset for protein–RNA complexes (provided in supplementary
information), which are involved in disorder-to-order transitions. Utilizing the dataset, we analyzed
the number and size of DOT regions in protein–RNA complexes, preference of residues involved in
binding in DOT regions, secondary structure, solvent accessibility, pair preference at the interface,
preference in different secondary structures of RNA, and interaction energy between protein and RNA
DOT and non-DOT regions at the interface.

2. Results and Discussion

Our dataset contains a total of 23,452 and 2412 residues in non-ribosomal and ribosomal
protein–RNA complexes. Among them, 1175 (5%) and 155 (6.4%) residues are found to be in DOT
regions in non-ribosomal and ribosomal complexes, respectively. The residues binding with RNA are
obtained by using 3.5 and 6 Å distance cut-offs and similar trends are obtained. Therefore, we have
presented the results with 3.5 Å and those for 6 Å are shown in supplementary material.

2.1. Number of DOT Regions in Protein–RNA Complexes and Length of DOT Regions

The variation in the number of DOT regions in non-ribosomal and ribosomal complexes is shown
in Figure 1. We observed that most of the complexes have less than three DOT regions (88% in
non-ribosomal and 100% in ribosomal complexes). Most non-ribosomal proteins have one DOT region,
whereas ribosomal proteins have mostly two or more DOT regions. In addition, at most eight DOT
regions per complex are found in our dataset.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  3 of 15 
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Figure 1. Percentage of protein–RNA complexes containing different number of DOT regions.



Int. J. Mol. Sci. 2018, 19, 1595 3 of 16

Further, we analysed the length of each DOT region in non-ribosomal and ribosomal protein–RNA
complexes, which shows that most DOT regions are short, as shown in Figure 2. In both non-ribosomal
and ribosomal complexes, more than 70% of DOT regions have three to 10 residues and very few
(only 5) regions have a length of more than 50 residues. This leads to a speculation that only a
small conformational change might be required for bringing shape complementarity in protein–RNA
complexes and these small DOT regions help in obtaining the same.
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Figure 2. Length distribution of DOT regions in protein–RNA complexes in (a) non-ribosomal
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2.2. Binding Frequency of Residues at DOT Regions

The binding frequencies of residues in DOT regions using 3.5 Å (NR3.5 and RB3.5) and 6 Å (NR6
and RB6) distance cut-offs are shown in Figure 3 and Figure S2, respectively. We observed that among
all positively charged residues (Arg, Lys and His), Arg and Lys have high preference for binding
in both NR3.5 (Figure 3a) and NR6 (Figure S2a) datasets. Interestingly, only eight and 13 among
20 residues are observed in binding DOT regions at RB3.5 (Figure 3b) and RB6 (Figure S2b) datasets,
and Arg has the highest frequency of binding. Cys, Met, and Trp in DOT regions are not involved
in binding with RNA, whereas in ordered complexes 0.97%, 4.52%, and 5.54% of Cys, Met, and Trp
are involved in binding, respectively. The comparison of binding site residues in DOT regions and
the whole protein showed an expected presence of 1.5% and 2.7% of Met and Trp, respectively, in
the interface of the DOT region. These results showed that the non-occurrence of Met and Trp at the
interface of the DOT regions is statistically significant.
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Figure 3. Amino acid frequency of binding in the DOT region for (a) non-ribosomal and (b) ribosomal
protein–RNA complexes.

We have computed the preference of binding of residues in DOT regions by dividing the number
of residues in DOT regions with the total number of binding residues, and the results are presented
in Figure 4 and Figure S3 for 3.5 Å (NR3.5 and RB3.5 datasets) and 6 Å (NR6 and RB6 datasets),
respectively. In Figure 4a, high frequency of Arg, Gly, Lys, and Ser (z-score > 1) is observed for the
NR3.5 dataset, which suggests that these residues are more probable to contact DOT regions with
respect to all residues in contact with RNA. However, for the NR6 dataset (Figure S3a), the result is only
consistent for Lys, and two other residues (Glu and Pro) show high binding frequency. In ribosomal
protein complexes with 3.5 Å and 6 Å, Ala & Glu, and Glu & Tyr have high frequencies, respectively
(Figure 4b and Figure S3b).
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2.3. Binding Propensity of Residues at DOT Region

Propensity is calculated by normalizing the binding frequency of residues in DOT regions with
the overall frequency of the respective residues to be in a protein, using Equation (3). This can measure
the bias in binding of residues in DOT regions, independent of their count in DOT regions. We have
calculated the propensity of amino acids to be in DOT regions using distance cut-offs of 3.5 Å and 6 Å
and the results are shown in Figure 5 and Figure S4, respectively. In the NR3.5 (Figure 5a) dataset,
His, Arg, Asn, Gln, Phe, and Tyr have high propensity of binding, whereas in ribosomal proteins
(RB3.5 dataset; Figure 5b), only His showed a high propensity. In the NR6 (Figure S4a), His has high
propensity, whereas Asn, His and Tyr have high propensity in the RB6 (Figure S4b) dataset. Similarly,
high propensity for binding is observed for positively charged residues along with Tyr and Phe in
protein–RNA complexes [34]. On the other hand, among all charged residues only Arg has high
tendency to bind with DOT regions in protein–protein complexes [35]. Furthermore, non-specific
interactions occurred frequently in protein–protein complexes, which is not a common trend in the
binding residues of DOT regions in protein–RNA complexes. Therefore, we can infer that the preferred
residues at DOT regions are specific in protein–RNA complexes and, especially, charged interactions
are important in DOT regions for binding with RNA.
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2.4. Comparison of Frequency of Binding in the DOT Region and Other Residues of a Protein

To estimate the difference between binding in DOT regions and other part of proteins, we
calculated the binding frequency of amino acids in these regions, as shown in Figure 6 and Figure S5.
Amino acids significantly differ in their binding with RNA in DOT regions and in the complete protein
(p-value for the mean is less than 0.01). In non-ribosomal proteins, when the 3.5 Å cut-off is considered,
nonpolar and aromatic residues mostly have high frequency values in the DOT regions than in the
overall protein. All the frequencies are observed to be significant when statistical analysis is performed
for the bootstrapped sample of the frequencies (p-value is less than 0.01). Residues such as His, Phe,
and Leu are found to have a more than 3-fold increase in the frequency of binding in the DOT regions
than in other parts of the proteins. A similar trend is observed in the NR6 dataset (Figure S5).
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2.5. Amino Acid Contact Frequency with Nucleotides

We have also analysed amino acid contacts with each nucleotide in non-ribosomal complexes
using 3.5 Å and 6 Å distance cut-offs for contacting residues and the results are shown in Figure 7 and
Figure S6. In the 3.5 Å distance criterion, Arg and Lys have a high frequency to bind with nucleotides.
Arg and Lys are observed to have the most and least binding frequencies with Guanine and Uracil,
respectively. Whereas in the 6 Å criterion, almost the same frequency of binding is observed for Arg
and Lys with Adenine, Guanine and Cytosine nucleotides; least binding was observed in the Uracil
nucleotide. When compared with the results presented for ordered protein–DNA and protein–RNA
complexes in our earlier works, Arg, Lys, Trp, and Tyr were favoured by RNA and Arg was selected
by DNA-binding proteins together with Guanine in DNA and Uracil in RNA–protein complexes [36].
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2.6. Secondary Structure of DOT and RNA-Interacting DOT Residues

The secondary structures of DOT residues are quantified to study the bias of residues to have a
specific secondary structure in binding and non-binding regions and data are presented in Table 1 and
Table S1 for NR3.5 and NR6 datasets, respectively. In the NR3.5 dataset, all the DOT residues have
lower and higher preference in sheet (15%) and other structure class (8%), respectively. Interestingly, in
DOT residues, binding with RNA molecules, strand-forming residues have a higher preference (15.2%)
as compared to helical (8.6%) and other regions (8.9%).

Table 1. Secondary structure of all DOT residues and residues binding with RNA in DOT regions in
the NR3.5 dataset.

Secondary Structure Number of Binding Residues in
DOT Regions (Nidt)

Number of Residues in
DOT Region (Nd)

Relative Binding in
DOT Regions (%)

Helix 25 (22.12) 288 (24.51) 8.6
Sheet 22 (19.47) 145 (12.34) 15.2

Others (coil, turn, bend) 66 (58.41) 742 (63.15) 8.9

Percentage is mentioned in the parenthesis. Relative binding in DOT regions are calculated by Nidt/Nd × 100.

2.7. Relative Solvent Accessibility of DOT Residues

The spatial arrangement of DOT residues is further explored by solvent accessibility calculation
and the result is shown in Table 2. Comparison of RASA of DOT regions and complete protein–RNA
complex revealed that in DOT regions, solvent accessibility of every amino acid is more than that of
other amino acids of a protein. As expected, charged residues have low fold difference (1.18 to 1.28) in
RASA in DOT regions and the complete protein. However, most hydrophobic residues (Ala, Cys, Ile,
Leu, Met, Phe, Tyr, and Val) have about 1.8 to 2 folds higher RASA in DOT regions than the complete
protein, Met has the highest difference. On the other hand, the mean solvent accessibility of DOT
regions of proteins is 44 Å2, which is similar to the average RASA of binding DOT regions (43 Å2) of
protein–protein complexes [17].

Table 2. Relative average solvent accessibility (RASA) of DOT residues and all residues in non-ribosomal
protein–RNA complexes.

Amino Acids RASA in DOT Regions RASA in Complete Protein Fold Difference

Ala 44.743 23.305 1.920
Arg 52.168 40.822 1.278
Asn 63.583 42.721 1.488
Asp 56.552 43.811 1.291
Cys 22.32 11.426 1.953
Gln 47.805 38.988 1.226
Glu 53.688 47.838 1.122
Gly 51.599 35.272 1.463
His 43.229 35.372 1.222
Ile 26.618 14.692 1.812

Leu 32.007 16.374 1.955
Lys 58.529 49.520 1.182
Met 41.13 20.391 2.017
Phe 32.481 17.519 1.854
Pro 56.463 38.230 1.477
Ser 54.574 34.622 1.576
Thr 49.852 31.074 1.604
Trp 21.571 19.029 1.134
Tyr 44.579 24.752 1.801
Val 31.433 17.405 1.806
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2.8. Number of Residues in Contact with Nucleotides in the DOT Region and in Entire Protein

Among 1175 residues in DOT regions in our dataset, only 96 (8.17%) and 268 (22.81%) are in
contact with nucleotides in the NR3.5 and the NR6 dataset, respectively. Almost all the residues have a
similar tendency of binding with nucleotides in proteins, ranging between 20% to 29%, as shown in
Table 3 and Table S2. However, the number of nucleotides interacting with DOT residues is somewhat
different, that is, the range of interaction is 18 to 33%. The DOT residues are more likely to bind with
Guanine (20.4%), followed by Cytosine and Uracil, than to binding with Adenine (13.1%).

Table 3. Number of interaction of nucleotides with DOT residues and with complete protein at 3.5 Å.

Nucleotides
Number of Nucleotide
in Contact with DOT

Regions (Nidt)

Number of Nucleotides in
Contact with Any Residue of

Proteins (Nprot)

Relative Contact in
DOT Regions (%)

A 18 (18.75) 137 (25.66) 13.1
C 26 (27.08) 131 (24.53) 19.8
G 32 (33.33) 157 (29.40) 20.4
U 20 (20.83) 109 (20.41) 18.3

Percentage is mentioned in the parenthesis. Relative contact in DOT regions are calculated by Nidt/Nprot × 100.

2.9. Secondary Structure of Nucleotides Interacting with DOT Residues

Further, we have classified the nucleotides based on location and contacts with DOT residues and
preference of amino acids in a protein and the results are presented in Table 4 and Table S3. Among
all secondary structures formed by nucleotides, unpaired bases are most likely to bind with DOT
residues. Specifically, we observed that A and U in unpaired regions prefer to interact with DOT
residues, whereas C and G in unpaired and base-paired positions interact with DOT residues with
a similar preference. G and C also interact with DOT residues in pseudoknot secondary structure,
whereas A and U are least likely to exist in pseudoknot form when bound to DOT regions.

Table 4. Preference of nucleotides in different secondary structures to bind with DOT residues.

Nucleotides Secondary
Structure

Number of Nucleotide in
Contact with DOT

Regions (Nidt)

Number of Nucleotides in
Contact with Any Residue of

Proteins (Nprot)

Relative Contact in
DOT Regions (%)

A Unpaired 12 (12.50) 106 (19.56) 11.01
A Basepaired 6 (6.25) 30 (5.54) 20.00
A Pseudoknot 0 (0) 0 (0) 0
C Unpaired 8 (8.33) 70 (12.92) 11.42
C Basepaired 17 (17.71) 59 (10.89) 28.81
C Pseudoknot 1 (1.04) 5 (0.92) 20.00
G Unpaired 16 (16.67) 87 (16.05) 18.39
G Basepaired 15 (15.63) 71 (13.10) 21.13
G Pseudoknot 1 (1.04) 4 (0.74) 25.00
U Unpaired 15 (15.63) 81 (14.94) 18.51
U Basepaired 5 (5.21) 29 (5.35) 17.24
U Pseudoknot 0 (0) 0 (0) 0

All Unpaired 51 (53.13) 344 (63.47) 14.83
All Basepaired 43 (44.79) 189 (34.87) 22.75
All Pseudoknot 2 (2.08) 9 (1.66) 22.22

Percentage is mentioned in parenthesis. Relative contacts in DOT regions are calculated by Nidt/Nprot × 100.

2.10. Interaction Energy of DOT Residues with Nucleotides

We have computed the interaction energy between amino acids and nucleotides in DOT and
ordered regions at the binding interface and the results are presented in Table 5. Most of the amino
acids have stronger interactions with nucleotides in ordered regions than DOT regions. However,
we noticed that some combinations of amino acid–nucleotide pairs have favourable energy when
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interacting with DOT regions. For example, Arg, His, Ile, Leu, Val, and Phe interact with G, His, Ser,
and Val with C, and Asn, Asp, Gly, Ile, Leu, and Ser with U. In addition, hydrophobic residues Ile, Leu,
and Val have more favourable interactions with G at DOT regions than others. Since Arg and Lys are
important for protein–RNA complex formation through electrostatic interactions these residues have
stronger energies in ordered regions than DOT regions. On the other hand, His in the DOT region has
favourable energy with G and C. These differences in energy could be important to understand the
interactions between DOT regions and the RNA molecule, which might also be used to distinguish the
RNA binding residues of proteins in DOT and other regions.

Table 5. Interaction energy between amino acids and nucleotides in DOT regions.

Amino Acids A G C U

Ala −0.62 (−0.55) −0.34 (−0.57) −0.49 (−0.53) −0.55 (−0.64)
Arg −0.36 (−1.23) −1.15 (−0.83) −0.89 (−0.95) −1.06 (−0.98)
Asn −0.45 (−0.68) −0.59 (−0.73) −0.48 (−0.83) −1.85 (−0.82)
Asp −0.75 (−0.74) −0.39 (−0.79) −0.19 (−0.56) −1.40 (−0.92)
Cys 0.00 (−0.87) −0.01 (−0.03) −0.03 (−1.10) −0.63 (−1.13)
Gln −0.15 (−0.87) −0.57 (−0.74) −0.08 (−0.84) −0.36 (−0.71)
Glu −0.72 (−0.80) −0.41 (−0.64) −0.43 (−0.62) −0.68 (−0.59)
Gly −0.28 (−0.47) −0.37 (−0.69) −0.58 (−0.57) −1.07 (−0.79)
His −0.81 (−1.17) −2.13 (−1.41) −1.53 (−1.21) −0.70 (−1.01)
Ile −0.60 (−0.64) −1.63 (−0.80) −0.54 (−0.50) −1.33 (−0.76)

Leu −0.35 (−0.75) −1.19 (−0.50) −0.42 (−0.49) −0.54 (−0.41)
Lys −0.74 (−0.76) −0.86 (−0.83) −0.66 (−0.90) −0.83 (−0.83)
Met −0.64 (−1.05) −0.07 (−0.75) −0.16 (−1.03) −0.83 (−1.19)
Phe −0.81 (−1.03) −1.12 (−0.89) −0.54 (−1.32) −0.24 (−1.42)
Pro −0.88 (−0.83) −0.60 (−0.88) −0.62 (−0.91) −0.69 (−1.00)
Ser −0.79 (−0.77) −0.29 (−0.56) −1.24 (−0.71) −1.41 (−0.68)
Thr −0.39 (−0.68) −0.66 (−0.56) −0.67 (−0.64) −0.53 (−1.00)
Trp −1.15 (−1.10) 0.00 (−1.64) 0.00 (−0.99) 0.00 (−1.34)
Tyr −1.53 (−1.36) −1.11 (−1.42) −0.63 (−1.05) −0.16 (−1.09)
Val −0.38 (−0.70) −0.66 (−0.53) −0.64 (−0.53) −0.52 (−0.76)

Interaction energy for non-DOT residues is mentioned in the parenthesis. Amino acid–nucleotide pairs with
favourable interaction energies in DOT regions are shown in bold.

We have compared the interaction energy of amino acid–nucleotide pairs in the interface of
DOT and other regions and two typical examples are shown in Figure 8. We noticed a wide range of
interactions such as stacking, cation-π, electrostatic, and van der Waals interactions at the interface.
Most favourable energy is observed for Asn and His with U (−3.26 kcal/mol) and G (−5.44 kcal/mol),
respectively, in DOT regions (Figure 8a). On the other hand, Arg and Phe have favourable energy with
A (−8.49 kcal/mol) and C (−4.88 kcal/mol), respectively, in non-DOT regions.
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3. Materials and Methods

We adopted the following protocol to obtain a set of protein–RNA complexes with disorder-to-order
transition (DOT) regions: (i) Downloaded the protein–RNA complexes from PDB and NDB databases
(www.rcsb.org) [37–39]; (ii) Clustered all the protein–RNA complexes with 30% sequence identity
cut-off using CD-Hit suite [40]; (iii) Performed BLAST search (using 99% identity cut-off) of protein
sequences to obtain free proteins corresponding to each protein–RNA complex [41,42]. The free
proteins have the same sequences as the protein part of protein–RNA complexes but crystallized
without RNA. Note that free proteins contain unique PDB IDs, which is distinct from the protein–RNA
complex; (iv) Disordered residues are obtained from missing residues information in the protein–RNA
complex and free protein pairs by locating “REMARK 465” statement in the protein structure file;
(v) DOT residues are isolated by comparing the disorder residues of free and protein–RNA complex
pairs such that the residue is ordered in the protein–RNA complex but disordered in free protein. Note
that only the regions having 3 or more continuous DOT residues are considered. The final dataset
contains 101 DOT regions in 52 proteins and complete data are given in supplementary information.
The representation of DOT and ordered region in a typical protein–RNA complex (PDB ID: 4H4K) is
shown in Figure 9.

www.rcsb.org
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Figure 9. Representation of disorder-to-order mediated interactions. Free protein, RNA, and complex
(CRISPR-Cas RNA Silencing Cmr Complex) are shown in cyan, orange and green, respectively. The PDB
IDs are 4H4K:A (free protein), 3XIL:I (RNA of protein–RNA complex) and 3XIL:B (RNA-bound protein).
The disorder-to-order transition (DOT) region can be clearly seen in green with a missing overlapping
region of free protein.

3.1. Number of DOT Regions and Their Lengths

The number of DOT regions and their lengths are obtained by counting the number of non-consecutive
and consecutive residues, respectively, using custom build python scripts.

3.2. DOT Residues in Contact with RNA

The residues in contact with RNA molecules are obtained by using distance cut-offs mentioned
in literature, that is, 3.5 Å and 6 Å [43–45]. Binding residues in DOT regions are obtained by taking
common residues in the DOT dataset and RNA contacting residues. We have classified protein–RNA
complexes in non-ribosomal and ribosomal classes because of the difference in their interaction pattern,
number of interacting amino acids, and residue bias in them [46]. Therefore, using the type of complex
and distance cut-off for interacting residues, we divided protein–RNA complexes into four different
datasets: (1) NR3.5: non-ribosomal complex with a contact distance of 3.5 Å; (2) RB3.5: ribosomal
complex with a contact distance of 3.5 Å; (3) NR6: non-ribosomal complex with a contact distance of
6 Å; and (4) RB6: ribosomal complex with a contact distance of 6 Å.

We computed the frequency of each DOT residue involved in binding using the Equation (1).

Frequency of binding residues in DOT region =
Nib
Nid

(1)

where Nib: number of ith residues binding in the DOT region and Nid: number of ith residues in DOT.
Moreover, the differences in the frequency of binding residues in DOT regions and in the protein

complexes are obtained.
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3.3. Frequency of Binding in DOT and Other Residues

We also computed the frequency of residues binding in DOT regions over all the binding residues
by using Equation (2), an error bar is plotted using the bootstrap method by randomly re-sampling an
equal sized data with a replacement 1000 times.

Frequency of binding by contact residues =
Nibd
Nib

(2)

where Nibd: number of ith residues binding in DOT region; Nib is number of ith residues binding with
RNA in complete protein.

3.4. Propensity of Binding Residues in DOT Region

The normalization of frequency of residues present in DOT regions by individual residue
frequency provides the tendency of a residue in DOT regions. Accordingly, propensity values are
calculated using the following equation:

Propensity(I) =
Nibd/Nid
Nip/Np

(3)

where Propensity (I): propensity of ith residue; Nibd: number of ith residue binding in DOT region; Nid:
number of ith residue in DOT regions; Nip: number of ith residue in protein; Np: number of residues
in protein.

3.5. Boot Strap Sampling

To obtain the standard error in frequency and propensity calculations, bootstrap sampling is
performed. In this technique all the protein–RNA complexes are sampled randomly and each sample
contains complexes equal to the number of protein–RNA complexes. Therefore, each sample will
have redundancy of some complexes and will be devoid of some complexes. In this manner, we have
created 1000 samples on which the calculations are performed.

3.6. Relative Average Solvent Accessibility (RASA)

The DOT residues buriedness is analysed by the NACCESS [47] program and the RASA of each
residue is calculated by using Equation (4).

RASA =
Aibd

∑n
i=1(Aibd)

(4)

where Aibd: RASA of ith residue binding with RNA in DOT region; n: number of DOT residues in a
protein–RNA complex.

3.7. Secondary Structure of Protein and RNA

Secondary structure of both proteins and RNA molecules are analysed by DSSP and DSSR
programs, respectively [48,49]. The DSSR program gives dot bracket notation of secondary structure
of RNA as shown in Figure S1, in which “.” represents unpaired nucleotide, “(” or “)” represent paired
bases, and “{” or “}” or “[” or “]” or “<” or “>” represent pseudoknot bases.

3.8. Binding Preference of Nucleotides for Amino Acids

The binding preference of nucleotide with DOT residues has been calculated by counting the
occurrence of nucleotides–amino acid interacting pairs under the distance of 3.5 Å.
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3.9. Interaction Energy between Amino Acids and Nucleotides at Binding Interface

The interaction energy of amino acids with nucleotides is computed using van der Waals and
coulombs potential using AMBER force field [50]. It is given by

Energy = ∑ [

(
Aij

rij
12 −

Bij

rij
6

)
+

qiqj

εrij
] (5)

where, Aij = εij* (Rij*)12 and Bij = 2 εij* (Rij*)6; Rij* = (Ri* + Rj*); and εij* = (εi* εj*)1/2; R* and ε* van der
Waals radius and well depth, respectively, and these parameters are obtained from Gromiha et al. [51];
qi and qj is the charge on atom i and j, respectively and Rij is the distance separating atom i and j.

4. Conclusions

The analysis of DOT regions in protein–RNA complexes revealed that in each complex these regions
are generally small in size. Electrostatic interactions are found to be important, with the involvement of
positively charged residues (Arg, Lys and His) in DOT regions. Among nucleotide–amino acid pairs,
guanine–Arg and uracil–Lys pairs are identified to be the most and the least preferred ones at the
interface, respectively. Generally, nucleotides prefer to bind DOT regions than other regions of protein.
Further, DOT regions are significantly more exposed to solvent than other residues of protein–RNA
complexes. Specifically, hydrophobic residues have higher difference in RASA of DOT regions and
complete proteins. DOT regions are preferred to form coils, turns, and bends than regular secondary
structures such as helices and strands. On the RNA side, DOT residues prefer to bind unpaired A
and U and paired regions of C and G. In pseudoknot condition, mostly C and G interact with DOT
residues. The interaction energy calculations revealed the types of interactions and preferred amino
acid-nucleotide pairs at the interface based on energy.

The frequencies and propensities obtained in the present study could be used for discriminating
DOT binding residues from other residues. Further, the location of DOT binding residues based on
solvent accessibility and secondary structure of protein and RNA along with energy calculations may
help to understand the recognition mechanism.

We obtained the DOT regions by comparing 3D coordinates of the missing residues in
protein–RNA complexes and their respective free proteins. This might be an under representation
of DOT regions since the structures solved by crystallization often stabilize the residues and reduce
the native disorder. Hence, the disordered residues having 3D coordinates in free proteins are
not considered. The current study can further be refined with the availability of more numbers
of protein–RNA complexes and the improvements in structure determination techniques. In addition,
development of disorder specific databases for protein–nucleic acid complexes with large datasets
could enhance the confidence level of the result reported in the present study.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/6/1595/
s1.
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