Amino Acids Supplementation Affects Sustainability of Productive and Meat Quality, Survivability and Nitrogen Pollution of Broiler Chickens during the Early Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Animal Husbandry
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.H.; Patterson, P.H.; Kim, W.K. Impact of dietary crude protein, synthetic amino acid and keto acid formulation on nitrogen excretion. Int. J. Poult. Sci. 2014, 13, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Aletor, V.A.; Hamid, I.I.; Niess, E.; Pfeffer, E. Low-protein amino acids-supplemented diets in broiler-chickens: Effects on performance, carcass characteristics whole-body –composition and efficiencies of nutrient utilization. J. Sci. Food Agric. 2000, 80, 547–554. [Google Scholar] [CrossRef]
- Attia, Y.A.; Bovera, F.; Al-Harthi, M.A.; Wang, J.; Kim, W.K. Multiple amino acid supplementations to low dietary protein diets: Effect on performance, carcass yield, meat quality and nitrogen excretion of finishing broilers under hot climate conditions. Animals 2020, 10, 973. [Google Scholar] [CrossRef] [PubMed]
- Soares, K.R.; Lara, L.J.C.; Martins, N.R.S.; Silva, R.R.; Pereira, L.F.P.; Cardeal, P.C.; Teixeira, M.P.F. Protein diets for growing broilers created under a thermoneutral environment or heat stress. Anim. Feed Sci. Technol. 2020, 259, 114332. [Google Scholar] [CrossRef]
- Abreu, A.R.C.; Araújo, I.C.S.; Vaz, D.P.; Saldanha, M.M.; Fontes, D.O.; Leão, P.A.; Ecco, R.; Lara, L.J.C. Performance, nutrient digestibility, and muscular evaluation of female broiler chickens fed different dietary protein levels and slaughtered at 38 or 46 days. Rev. Bras. Zootec. 2022, 51, e20210151. [Google Scholar] [CrossRef]
- Aderibigbe, A.; Cowieson, A.J.; Sorbara, J.O.; Pappenberger, G.; Adeola, O. Growth performance and amino acid digestibility responses of broiler chickens fed diets containing purified soybean trypsin inhibitor and supplemented with a monocomponent protease. Poult. Sci. 2020, 99, 5007–5017. [Google Scholar] [CrossRef]
- Wang, J.; Kong, F.; Kim, W.K. Effect of almond hulls on the performance, egg quality, nutrient digestibility, and body composition of laying hens. Poult. Sci. 2021, 100, 101286. [Google Scholar] [CrossRef]
- Koerkamp, P.G.; Metz, J.H.M.; Uenk, G.H.; Phillips, V.R.; Holden, M.R.; Sneath, R.W.; Short, J.L.; White, R.P.P.; Hartung, J.; Seedorf, J.; et al. Concentrations and emissions of ammonia in livestock buildings in Northern Europe. J. Agric. Eng. Res. 1998, 70, 79–95. [Google Scholar] [CrossRef]
- Ritz, C.W.; Fairchild, B.D.; Lacy, M.P. Implications of ammonia production and emissions from commercial poultry facilities: A review. J. Appl. Poult. Res. 2004, 13, 684–692. [Google Scholar] [CrossRef]
- Chalova, V.I.; Kim, J.H.; Patterson, P.H.; Ricke, S.C.; Kim, W.K. Reduction of nitrogen excretion and emissions from poultry: A review for conventional poultry. World’s Poult. Sci. J. 2016, 72, 509–520. [Google Scholar] [CrossRef]
- Van Emous, R.A.; Winkel, A.; Aarnink, A.J.A. Effects of dietary crude protein levels on ammonia emission, litter and manure composition, N losses, and water intake in broiler breeders. Poult. Sci. 2019, 98, 6618–6625. [Google Scholar] [CrossRef] [PubMed]
- Drew, M.D.; Syed, N.A.; Goldade, B.G.; Laarveld, B.; Van Kessel, A.G. Effects of dietary protein source and level on intestinal populations of Clostridium perfringens in broiler chickens. Poult. Sci. 2004, 83, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Wang, J.; Gu, K.; Deng, Q.; Wang, J. Effects of dietary protein levels and multienzyme supplementation on growth performance and markers of gut health of broilers fed a miscellaneous meal based diet. J. Anim. Feed. Sci. Technol. 2017, 234, 110–117. [Google Scholar] [CrossRef]
- Baker, D.M. Problems and pitfalls in animal experiments designed to establish dietary requirements for essential nutrients. J. Nutr. 1986, 116, 2339–2349. [Google Scholar] [CrossRef]
- Leclercq, B. Broiler quality: Considering the trio of genotype, quality and dietary amino acids. Arch. Geflügelkd. 1995, 10, 37–40. [Google Scholar]
- Aletor, V.A.; Roth, F.X.; Paulicks, B.R.; Roth-Maier, D.A. Growth, body-fat deposition, nitrogen excretion and efficiencies of nutrients utilization in broiler-chicks fed low-protein diets supplemented with amino acids, conjugated linoleic acid or an—Glucosidase inhibitor. Arch. Geflügelk. 2001, 66, 21–30. [Google Scholar]
- Aletor, V.A.; Ede, K.; Becker, K.; Paulicks, B.R.; Roth, F.X.; Roth-Maier, D.A. The effects of conjugated linoleic acids or an alpha-glucosidase inhibitor on tissue lipid concentrations and fatty acid composition of broiler chicks fed a low-protein diet. Poult. Sci. 2003, 82, 796–804. [Google Scholar] [CrossRef]
- Attia, Y.A.; Bovera, F.; Abd-El-Hamid, A.E.; Tag EL-Din, A.E.; Al-Harthi, M.A.; Nizza, A.; Elharidy, R.M. Effect of dietary protein concentrations, amino acids and conjugated linoleic acid supplementations on productive performance and lipid metabolism of broiler chicks. Ital. J. Anim. Sci. 2017, 16, 563–572. [Google Scholar] [CrossRef]
- Abd El-Rahman, S.A.; Attia, Y.A. Response of Norfa white egg breeders to amino acid supplementation to low protein diets. Archiv. Geflügelk. 2022, 66, 35–42. [Google Scholar]
- Corzo, A.; Schilling, M.W.; Loar, R.E.; Mejia, L.; Barbosa, L.C.G.S.; Kidd, M.T. Responses of Cobb × Cobb 500 Broilers To Dietary Amino acid density regimens. J. Appl. Poult. Res. 2010, 19, 227–236. [Google Scholar] [CrossRef]
- Attia, Y.A.; Hassan, R.A.; Tag El-Din, A.E.; Abou- Shehema, B.M. Effect of ascorbic acid or increasing metabolizable energy level with or without supplementation of some essential amino acids on productive and physiological traits of slow-growing chicks exposed to chronic heat stress. J. Anim. Physiol. Anim. Nutr. 2011, 95, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Lilly, R.A.; Schilling, M.W.; Silva, J.L.; Martin, J.M.; Corzo, A. The effects of dietary amino acid density in broiler feed on carcass characteristics and meat quality. J. Appl. Poult. Res. 2011, 20, 56–67. [Google Scholar] [CrossRef]
- Hafez, M.H.; Attia, Y.A. Challenges to the poultry industry: Current perspectives and strategic future after the COVID-19 outbreak. Front. Vet. Sci. 2020, 7, 00516. [Google Scholar] [CrossRef] [PubMed]
- Hafez, M.H.; Attia, Y.A.; Bovera, F.; Khafaga, A.F.; Abd El-Hack, M.E.; de Olviera, M.C. SARS-CoV-2 impact on the poultry industry and environment. Environ. Sci. Pollut. Res. 2021, 28, 44833–44844. [Google Scholar] [CrossRef] [PubMed]
- Kamran, Z.; Sarwar, M.; Nisa, M.; Nadeem, M.A.; Mahmood, S.; Babar, M.E.; Ahmed, S. Effect of Low-Protein Diets Having Constant Energy-to-Protein Ratio on Performance and Carcass Characteristics of Broiler Chickens from One to Thirty-Five Days of Age. Poult. Sci. 2008, 87, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Namroud, N.F.; Shivazad, M.; Zaghari, M. Effects of Fortifying Low Crude Protein Diet with Crystalline Amino Acids on Performance, Blood Ammonia Level, and Excreta Characteristics of Broiler Chicks. Poult. Sci. 2008, 87, 2250–2258. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Rojas, I.C.; Murakami, A.E.; Moreira, I.; Picoli, K.P.; Rodrigueiro, R.J.B.; Furlan, A.C. Dietary glycine+serine responses of male broilers given low-protein diets with different concentrations of threonine. Br. Poult. Sci. 2013, 54, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Waldroup, P.W.; Mitchell, R.J.; Payne, J.R.; Hazen, K.R. Performance of chicks fed diets formulated to minimize excess levels essential amino acids. Poult. Sci. 1976, 55, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Parr, J.F.; Summers, J.D. The effect of minimizing amino acid excesses in broiler diets. Poult. Sci. 1991, 70, 1540–1549. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Suzuki, H.; Parsons, C.M.; Baker, D.H. Amino acid fortification of a low-protein corn and soybean meal diet for chicks. Poult. Sci. 1992, 71, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Dean, D.W.; Bidner, T.D.; Southern, L.L. Glycine Supplementation to Low Protein, Amino Acid-Supplemented Diets Supports Optimal Performance of Broiler Chicks1. Poult. Sci. 2006, 85, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Hilliar, M.; Hargreave, G.; Girish, C.K.; Barekatain, R.; Wu, S.B.; Swick, R.A. Using crystalline amino acids to supplement broiler chicken requirements in reduced protein diets. Poult. Sci. 2020, 99, 1551–1563. [Google Scholar] [CrossRef] [PubMed]
- Aviagen. Arbor Acers Broiler Management Handbook. 2018. Available online: https://eu.aviagen.com/assets/Tech_Center/AA_Broiler/AA-BroilerHandbook2018-EN.pdf (accessed on 20 March 2022).
- National Research Council, NRC. Nutrient Requirements of Poultry, 9th ed.; National Academy of Sciences; National Research Council: Washington, DC, USA, 1994.
- Association Official Analytical Chemistry. AOAC Official Methods of Analysis, 19th ed.; Association Official Analytical Chemistry: Washington, DC, USA, 2007. [Google Scholar]
- SAS Institute. SAS® User’s Guide: Statistics; Version 6 Edition; SAS Institute Inc.: Cary, NC, USA, 1996. [Google Scholar]
- Jensen, L.S.; Mendonca, C.X., Jr. Amino acid nutrition of broilers during the grower period. In Georgia Nutrition Conference for the Feed Industry; University of Georgia: Athens, GA, USA, 1988; pp. 76–83. [Google Scholar]
- Cuca, M.; Jensen, L.S. Arginine requirements of starting chicks. Poult. Sci. 1990, 69, 1377–1382. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Utterback, P.L.; Parsons, C.M. Comparison of amino acid digestibility coefficients for soybean meal, canola meal, fish meal, and meat and bone meal among 3 different bioassays. Poult. Sci. 2012, 91, 1350–1355. [Google Scholar] [CrossRef] [PubMed]
- Barua, M.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Girish, C.K.; Ravindran, V. Standardized ileal amino acid digestibility of protein sources for broiler chickens is influenced by the feed form. Poult. Sci. 2020, 99, 6925–6934. [Google Scholar] [CrossRef]
- Ravindran, V.; Hew, L.I.; Ravindran, G.; Bryden, W.L. Apparent ileal digestibility of amino acids in dietary ingredients for broiler chickens. Anim. Sci. 2005, 81, 85–97. [Google Scholar] [CrossRef]
- Smith, R.E. Assessment of the availability of the amino acid in fish meal, soybean meal and feather meal by chick growth assay. Poult. Sci. 1968, 47, 1624. [Google Scholar] [CrossRef]
- Miller, D.; Kifer, R.R. Factors affecting protein evaluation of fish meal by chick bioassay. Poult. Sci. 1970, 49, 999–1004. [Google Scholar] [CrossRef]
- Boorman, K.N.; Burgess, A.D. Responses to amino acids. In Nutrient Requirements of Poultry and Nutritional Research; Poultry Science Symposium No 19; Fishere, C., Boorman, C.N., Eds.; Butterworths: Edinburgh, UK, 1986; pp. 99–123. [Google Scholar]
- Griminger, P.; Scott, H.M.; Forbes, R.M. The effect of protein level on the tryptophan requirement of the growing chick. J. Nutr. 1956, 59, 67–76. [Google Scholar] [CrossRef]
- Rogers, S.R.; Pesti, G.M. The influence of dietary tryptophan on broiler chick growth and lipid metabolism as mediated by dietary protein levels. Poult. Sci. 1990, 69, 746–756. [Google Scholar] [CrossRef]
- Maynard, C.W.; Kidd, M.T.; Chrystal, P.V.; McQuade, L.R.; McInerney, B.V.; Selle, P.H.; Liu, S.Y. Assessment of limiting dietary amino acids in broiler chickens offered reduced crude protein diets. Anim. Nutr. 2022, 10, 1–11. [Google Scholar] [CrossRef]
- D’Mello, J.P.F. Amino acid imbalances, antagonisms and toxixities. In Amino Acid in Farm Animal Nutrition; D’Mello, J.P.F., Ed.; CAB International: Wallingford, UK, 1994; pp. 63–98. [Google Scholar]
- Lipstein, B.; Bornstein, S.; Bartov, I. The replacement of some of the soybean meal by the first limiting amino acids in practical broiler diets. 3. Effects of protein concentration and amino acid supplementation in broiler finisher diets on fat deposition on the carcass. Br. Poult. Sci. 1975, 16, 627–635. [Google Scholar] [CrossRef]
- Moran, E.T., Jr.; Bushong, R.D.; Bilgili, S.F. Reducing dietary crude protein for broilers while satisfying amino acid requirements by least-cost formulation: Live performance, litter composition, and yield of fast-food carcass cute of six weeks. Poult. Sci. 1992, 71, 1687–1694. [Google Scholar] [CrossRef]
- Jacob, J.; Blair, R.; Ibrahim, S.; Scott, T.; Newberry, R. Using reduced protein diets to minimize nitrogen excretion of broilers. Poult. Sci. 1995, 74 (Suppl. S1), 127. [Google Scholar]
- Teekel, R.A.; Richardson, C.E.; Watts, A.B. Dietary protein effects on urinary nitrogen components of the hen. Poult. Sci. 1968, 47, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Jirjis, F.F.; Waibel, P.E.; Duke, G.E. Effects of dietary protein, methionine and lysine on urinary amino acid excretion in turkeys. Br. Poult. Sci. 1997, 38, 518–523. [Google Scholar]
- Alfonso-Avila, A.R.; Cirot, O.; Lambert, W.; Létourneau-Montminy, M.P. Effect of low-protein corn and soybean meal-based diets on nitrogen utilization, litter quality, and water consumption in broiler chicken production: Insight from meta-analysis. Animal 2022, 16, 100458. [Google Scholar] [CrossRef]
- Van Harn, J.; Dijkslag, M.A.; Van Krimpen, M.M. Effect of low protein diets supplemented with free amino acids on growth performance, slaughter yield, litter quality, and footpad lesions of male broilers. Poult. Sci. 2019, 98, 4868–4877. [Google Scholar] [CrossRef]
- Abdel-Raheem, G.S.E.; Ibrahim, N.S.K.; Sayed, A.N.; Amen, O.A.; Mickdam, E. Impact of dietary supplementation of organic acids on the growth performance and immunity in broilers fed low protein diets. SVU Int. J. Vet. Sci. 2022, 5, 31–44. [Google Scholar]
- Liu, S.Y.; Macelline, S.P.; Chrystal, P.V.; Selle, P.H. Progress towards reduced-crude protein diets for broiler chickens and sustainable chicken-meat production. J. Anim. Sci. Biotechnol. 2021, 12, 20. [Google Scholar] [CrossRef]
- Fisher, C. Use of amino acids to improve carcass quality of broilers. Feed Mix 1994, 24, 17–20. [Google Scholar]
- Neto, M.G.; Pesti, G.M.; Bakilli, R.I. Effects of betaine and methionine levels in broilers chickens fed different levels of energy and protein. Poult. Sci. 1998, 77 (Suppl. S1), 84. [Google Scholar]
- Leclercq, B.; Chagneau, A.M.; Cochard, T.; Khoury, J. Comparative responses of genetically lean and fat chickens to lysine, arginine and non-essential amino acid supply. I. Growth and body composition. Br. Poult. Sci. 1994, 35, 687–696. [Google Scholar] [CrossRef]
- Bunchasak, C.; Santoso, U.; Tanaka, K.; Ohtani, S.; Collado, C.M. The effect of supplementing methionine plus cystine to a low-protein diet on the growth performance and fat accumulation of growing broiler chicks. Asian-Austral. J. Anim. Sci. 1997, 10, 185–191. [Google Scholar] [CrossRef]
Experiment 1 | Experiment 2 | ||||
---|---|---|---|---|---|
Ingredients, % | PC | NC | PC | NC | NCV |
Yellow corn | 53.00 | 66.60 | 57.45 | 66.77 | 62.14 |
Soybean meal 48% CP | 36.30 | 22.30 | 33.20 | 24.80 | 31.20 |
Fish meal | 2.00 | 2.00 | 2.00 | 2.00 | 0.00 |
Meat meal | 2.00 | 2.00 | 2.00 | 2.00 | 0.00 |
Soybean oil | 3.50 | 1.88 | 2.70 | 1.32 | 2.60 |
Dicalcium phosphate | 1.00 | 1.10 | 1.00 | 1.10 | 1.80 |
Limestone | 0.86 | 0.87 | 0.85 | 0.87 | 1.10 |
Premix 1 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
NaCl | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
DL-methionine | 0.16 | 0.29 | 0.19 | 0.26 | 0.28 |
L-lysine | 0.03 | 0.47 | 0.06 | 0.33 | 0.33 |
L-isoleucine | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Sand | 0.60 | 1.94 | 0.00 | 0.00 | 0.00 |
Chemical-nutritional characteristics | |||||
ME kcal/ kg 2 | 3001 | 3004 | 3000 | 3005 | 3005 |
Crude protein, % 3 | 22.50 | 18.29 | 22.50 | 18.29 | 18.36 |
Methionine, % 3 | 0.54 | 0.61 | 0.56 | 0.60 | 0.58 |
TSAA, % 3 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
Lysine, % 3 | 1.31 | 1.31 | 1.25 | 1.25 | 1.25 |
Threonine 3 | 0.96 | 0.77 | 0.93 | 0.81 | 0.82 |
Arginine, % 3 | 1.34 | 1.03 | 1.33 | 1.09 | 1.14 |
Valine, % 3 | 1.06 | 0.84 | 1.02 | 0.88 | 0.86 |
Isoleucine, % 3 | 0.91 | 0.72 | 0.87 | 0.80 | 0.74 |
Tryptophan, % 2 | 0.33 | 0.23 | 0.31 | 0.25 | 0.27 |
Ca, % 2 | 0.90 | 0.90 | 1.00 | 0.90 | 0.90 |
Available p, % 2 | 0.46 | 0.46 | 0.50 | 0.46 | 0.46 |
Experiment 1 | Experiment 2 | ||||
---|---|---|---|---|---|
PC | NC | PC | NC | NCV | |
Crude protein, % | 22.50 | 18.3 | 22.5 | 18.3 | 18.4 |
L-Threonine, % | 0.00 | 0.20 | 0.00 | 0.12 | 0.12 |
L-Arginine, % | 0.00 | 0.39 | 0.00 | 0.23 | 0.20 |
L-Valine, % | 0.00 | 0.23 | 0.00 | 0.14 | 0.14 |
L-Isoleucine, % | 0.00 | 0.23 | 0.00 | 0.15 | 0.13 |
L-Tryptophan, % | 0.00 | 0.00 | 0.00 | 0.05 | 0.03 |
L-Glycine, % | 0.00 | 0.00 | 0.00 | 1.00 | 1.00 |
PC | NC | NC+Thr | NC+Arg | NC+Val | NC+Ile | NC+AAs+Gly | SEM | p Value | |
---|---|---|---|---|---|---|---|---|---|
IBW, g | 42.3 | 41.7 | 41.9 | 43.6 | 42.6 | 43.4 | 43.8 | 1.18 | 0.77 |
BWG, g | 1207 a | 1057 c | 1117 bc | 1143 b | 1184 ab | 1078 c | 1187 ab | 18.9 | 0.001 |
FI, g | 2240 | 2242 | 2278 | 2221 | 2329 | 2342 | 2417 | 80.0 | 0.16 |
PI, g | 515 a | 404 c | 410 c | 400 c | 419 c | 422 c | 435 b | 15.1 | 0.001 |
FCR, g/g | 1.86 | 2.13 | 2.04 | 1.94 | 1.97 | 2.17 | 2.04 | 0.081 | 0.07 |
PCR, g/g | 0.427 a | 0.382 bc | 0.367 bc | 0.349 c | 0.353 bc | 0.391 ab | 0.366 bc | 0.014 | 0.03 |
SR, % | 97.1 | 97.1 | 97.1 | 97.1 | 97.1 | 97.1 | 100.0 | 2.43 | 0.572 |
EPEV | 225.1 a | 172.1 c | 189.9 bc | 204.3 b | 208.4 ab | 172.3 c | 207.8 ab | 8.21 | 0.001 |
PC | NC | NC+Thr | NC+Arg | NC+Val | NC+Trp | NC+AAs+Gly | SEM | p value | |
---|---|---|---|---|---|---|---|---|---|
NC | |||||||||
IBW, g | 41.0 | 44.4 | 45.4 | 43.9 | 44.1 | 42.3 | 42.8 | 1.31 | 0.50 |
BWG, g | 813 a | 741 c | 760 bc | 775 b | 815 a | 773 bc | 790 ab | 8.9 | 0.001 |
FI, g | 1412 | 1345 | 1365 | 1409 | 1436 | 1446 | 1376 | 60.3 | 0.85 |
PI, g | 318 a | 246 b | 250 b | 258 b | 263 b | 265 b | 252 b | 11.4 | 0.001 |
FCR, g | 1.74 | 1.82 | 1.80 | 1.81 | 1.77 | 1.86 | 1.76 | 0.07 | 0.29 |
EN, % | 4.04 | 3.50 | 3.41 | 3.49 | 3.34 | 3.22 | 3.62 | 0.34 | 0.432 |
PCR, g/g | 0.391 a | 0.331 b | 0.328 b | 0.333 b | 0.323 b | 0.343 b | 0.319 b | 0.013 | 0.001 |
SR, % | 100.0 | 97.1 | 97.1 | 97.1 | 97.1 | 100.0 | 97.1 | 3.53 | 0.684 |
EPEV | 222.5 a | 188.3 c | 195.2 bc | 198.1 b | 212.9 a | 197.9 bc | 207.5 ab | 4.87 | 0.001 |
NCV | |||||||||
IBW, g | 41.0 | 41.6 | 41.7 | 41.8 | 43.4 | 43.3 | 44.2 | 1.03 | 0.24 |
BWG, g | 813 a | 632 c | 657 b | 673 b | 698 b | 672 b | 688 b | 7.9 | 0.001 |
FI, g | 1412 | 1313 | 1323 | 1202 | 1270 | 1291 | 1283 | 53.4 | 0.22 |
PI, g | 318 a | 241 b | 243 b | 221 b | 233 b | 237 b | 236 b | 9.8 | 0.001 |
FCR, g | 1.74 | 2.08 | 2.01 | 1.80 | 1.90 | 1.92 | 1.87 | 0.09 | 0.17 |
EN, % | 4.04 | 3.34 | 3.25 | 3.49 | 3.50 | 3.22 | 3.62 | 0.62 | 0.568 |
PCR, g/g | 0.391 a | 0.381 a | 0.370 ab | 0.328 c | 0.334 c | 0.353 c | 0.343 bc | 0.001 | 0.001 |
SR, % | 100.0 | 100.0 | 97.1 | 97.1 | 97.1 | 97.1 | 97.1 | 2.43 | 0.735 |
EPEV | 222.5 a | 144.7 c | 151.1 b | 172.9 b | 169.9 b | 161.8 b | 170.1 b | 10.4 | 0.001 |
PC | NC | NC+Thr | NC+Arg | NC+Val | NC+Ile | NC+AAs+Gly | SEM | p Value | |
---|---|---|---|---|---|---|---|---|---|
Dressing 1 | 61.9 | 61.4 | 62.1 | 61.9 | 61.4 | 61.7 | 61.9 | 1.43 | 0.99 |
Breast + wings, % | 23.0 | 22.0 | 22.4 | 22.1 | 21.9 | 22.6 | 22.5 | 0.57 | 0.76 |
Thigh + legs, % | 25.5 | 24.9 | 25.3 | 25.2 | 25.2 | 25.9 | 25.7 | 0.66 | 0.87 |
Liver, % | 2.36 | 2.13 | 2.37 | 2.02 | 2.23 | 2.32 | 2.18 | 0.11 | 0.34 |
AF, % | 1.31 | 1.57 | 1.53 | 1.47 | 1.56 | 1.37 | 1.33 | 0.14 | 0.64 |
Parameter | PC | NC | NC+Thr | NC+Arg | NC+Val | NC+Trp | NC+AAs+Gly | SEM | p Value |
---|---|---|---|---|---|---|---|---|---|
NC | |||||||||
Carcass traits | |||||||||
Dressing 1, % | 62.4 b | 61.3 b | 62.6 b | 63.3 ab | 59.5 b | 63.2 ab | 63.8 a | 1.06 | 0.02 |
Breast + wings, % | 21.5 | 22.5 | 22.8 | 22.6 | 22.2 | 22.9 | 23.4 | 0.56 | 041 |
Thigh + legs, % | 25.0 | 24.3 | 24.6 | 23.7 | 24.0 | 25.0 | 24.8 | 0.77 | 0.19 |
AF, % | 1.38 | 0.77 | 0.75 | 1.65 | 1.39 | 1.63 | 1.41 | 0.20 | 0.13 |
Liver, % | 2.75 | 2.73 | 2.68 | 2.33 | 2.64 | 2.49 | 2.57 | 0.13 | 0.36 |
Spleen, % | 0.10 | 0.12 | 0.13 | 0.15 | 0.12 | 0.12 | 0.14 | 0.013 | 0.32 |
Meat chemical composition 2 | |||||||||
Dry matter, % | 24.4 | 24.9 | 24.6 | 25.1 | 24.8 | 24.7 | 24.2 | 0.81 | 0.43 |
Crude protein, % | 84.8 | 85.3 | 84.0 | 81.0 | 85.4 | 84.4 | 82.9 | 1.56 | 0.78 |
Ether extract, % | 15.1 | 13.7 | 16.2 | 18.8 | 14.3 | 15.1 | 16.8 | 0.74 | 0.34 |
Ash, % | 3.51 | 3.71 | 3.32 | 3.42 | 3.56 | 3.48 | 3.68 | 0.24 | 0.53 |
NCV | |||||||||
Carcass traits | |||||||||
Dressing 1, % | 61.4 | 61.5 | 61.7 | 61.1 | 61.6 | 59.4 | 62.4 | 1.25 | 0.35 |
Breast + wings, % | 21.5 | 22.1 | 22.5 | 22.0 | 21.2 | 22.4 | 21.2 | 0.84 | 0.92 |
Thigh + legs, % | 25.0 | 25.0 | 25.8 | 24.4 | 25.2 | 25.3 | 25.2 | 1.14 | 0.78 |
AF, % | 1.38 | 1.23 | 1.33 | 1.06 | 0.96 | 1.27 | 0.96 | 0.17 | 0.52 |
Liver, % | 2.75 | 2.78 | 2.75 | 2.84 | 2.55 | 2.61 | 2.59 | 0.13 | 0.61 |
Spleen, % | 0.10 c | 0.16 a | 0.17 a | 0.17 a | 0.14 ab | 0.12 bc | 0.14 ab | 0.011 | 0.01 |
Meat chemical composition 2 | |||||||||
Moisture, % | 24.4 | 25.1 | 24.7 | 24.8 | 24.4 | 24.6 | 24.2 | 0.87 | 0.56 |
Crude protein, % | 84.8 | 83.2 | 82.6 | 83.9 | 85.1 | 83.6 | 82.7 | 1.56 | 0.73 |
Ether extract, % | 15.1 | 15.7 | 15.9 | 15.7 | 14.6 | 16.2 | 17.1 | 0.74 | 0.29 |
Ash, % | 3.48 | 3.74 | 3.38 | 3.62 | 3.49 | 3.52 | 3.28 | 0.34 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attia, Y.A.; Al-Harthi, M.A.; Shafi, M.E.; Abdulsalam, N.M.; Nagadi, S.A.; Wang, J.; Kim, W.K. Amino Acids Supplementation Affects Sustainability of Productive and Meat Quality, Survivability and Nitrogen Pollution of Broiler Chickens during the Early Life. Life 2022, 12, 2100. https://doi.org/10.3390/life12122100
Attia YA, Al-Harthi MA, Shafi ME, Abdulsalam NM, Nagadi SA, Wang J, Kim WK. Amino Acids Supplementation Affects Sustainability of Productive and Meat Quality, Survivability and Nitrogen Pollution of Broiler Chickens during the Early Life. Life. 2022; 12(12):2100. https://doi.org/10.3390/life12122100
Chicago/Turabian StyleAttia, Youssef A., Mohammed A. Al-Harthi, Manal E. Shafi, Nisreen M. Abdulsalam, Sameer A. Nagadi, Jinquan Wang, and Woo K. Kim. 2022. "Amino Acids Supplementation Affects Sustainability of Productive and Meat Quality, Survivability and Nitrogen Pollution of Broiler Chickens during the Early Life" Life 12, no. 12: 2100. https://doi.org/10.3390/life12122100
APA StyleAttia, Y. A., Al-Harthi, M. A., Shafi, M. E., Abdulsalam, N. M., Nagadi, S. A., Wang, J., & Kim, W. K. (2022). Amino Acids Supplementation Affects Sustainability of Productive and Meat Quality, Survivability and Nitrogen Pollution of Broiler Chickens during the Early Life. Life, 12(12), 2100. https://doi.org/10.3390/life12122100