Associations between Cord Blood Leptin Levels and Childhood Adiposity Differ by Sex and Age at Adiposity Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort Selection
2.2. Exposure–Cord Blood Leptin
2.3. Outcomes–Offspring Adiposity Measurements at 3 and 5 Years of Age
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Global Database on Child Growth and Malnutrition Overweight among Children under 5 Years of Age (Number in Millions) (JME). Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/gho-jme-overweight-numbers-(in-millions) (accessed on 14 December 2021).
- World Health Organization. Report of the Commission on Ending Childhood Obesity; World Health Organization: Geneva, Switzerland, 2016.
- Pandit, R.; Beerens, S.; Adan, R.A.H. Role of Leptin in Energy Expenditure: The Hypothalamic Perspective. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R938–R947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouret, S.; Simerly, R. Developmental Programming of Hypothalamic Feeding Circuits. Clin. Genet. 2006, 70, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Andreoli, M.F.; Donato, J.; Cakir, I.; Perello, M. Leptin Resensitisation: A Reversion of Leptin-Resistant States. J. Endocrinol. 2019, 241, R81–R96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeDuc, C.A.; Skowronski, A.A.; Rosenbaum, M. The Role of Leptin in the Development of Energy Homeostatic Systems and the Maintenance of Body Weight. Front. Physiol. 2021, 12, 789519. [Google Scholar] [CrossRef] [PubMed]
- Coppari, R.; Bjørbæk, C. Leptin Revisited: Its Mechanism of Action and Potential for Treating Diabetes. Nat. Rev. Drug Discov. 2012, 11, 692–708. [Google Scholar] [CrossRef] [Green Version]
- Mantzoros, C.S.; Magkos, F.; Brinkoetter, M.; Sienkiewicz, E.; Dardeno, T.A.; Kim, S.-Y.; Hamnvik, O.-P.R.; Koniaris, A. Leptin in Human Physiology and Pathophysiology. Am. J. Physiol.-Endocrinol. Metab. 2011, 301, E567–E584. [Google Scholar] [CrossRef]
- Ahima, R.; Prabakaran, D.; Flier, J. Postnatal Leptin Surge and Regulation of Circadian Rhythm of Leptin by Feeding. Implications for Energy Homeostasis and Neuroendocrine Function. J. Clin. Investig. 1998, 101, 1020–1027. [Google Scholar] [CrossRef] [Green Version]
- Bouret, S.G.; Draper, S.J.; Simerly, R.B. Trophic Action of Leptin on Hypothalamic Neurons That Regulate Feeding. Science 2004, 304, 108–110. [Google Scholar] [CrossRef] [Green Version]
- Bagias, C.; Sukumar, N.; Weldeselassie, Y.; Oyebode, O.; Saravanan, P. Cord Blood Adipocytokines and Body Composition in Early Childhood: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public. Health 2021, 18, 1897. [Google Scholar] [CrossRef]
- Brunner, S.; Schmid, D.; Hüttinger, K.; Much, D.; Brüderl, M.; Sedlmeier, E.; Kratzsch, J.; Amann-Gassner1, U.; Bader, B.L.; Hauner, H. Effect of Reducing the N-6/N-3 Fatty Acid Ratio on the Maternal and Fetal Leptin Axis in Relation to Infant Body Composition. Obesity 2014, 22, 217–224. [Google Scholar] [CrossRef]
- Simpson, J.; Smith, A.D.A.C.; Fraser, A.; Sattar, N.; Lindsay, R.S.; Ring, S.M.; Tilling, K.; Davey Smith, G.; Lawlor, D.A.; Nelson, S.M. Programming of Adiposity in Childhood and Adolescence: Associations With Birth Weight and Cord Blood Adipokines. J. Clin. Endocrinol. Metab. 2017, 102, 499–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakosta, P.; Chatzi, L.; Plana, E.; Margioris, A.; Castanas, E.; Kogevinas, M. Leptin Levels in Cord Blood and Anthropometric Measures at Birth: A Systematic Review and Meta-Analysis. Paediatr. Perinat. Epidemiol. 2011, 25, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Ashley-Martin, J.; Karaceper, M.; Dodds, L.; Arbuckle, T.E.; Ettinger, A.S.; Fraser, W.D.; Muckle, G.; Monnier, P.; Fisher, M.; Kuhle, S. An Examination of Sex Differences in Associations between Cord Blood Adipokines and Childhood Adiposity. Pediatr. Obes. 2020, 15, e12587. [Google Scholar] [CrossRef]
- Mantzoros, C.S.; Rifas-Shiman, S.L.; Williams, C.J.; Fargnoli, J.L.; Kelesidis, T.; Gillman, M.W. Cord Blood Leptin and Adiponectin as Predictors of Adiposity in Children at 3 Years of Age: A Prospective Cohort Study. Pediatrics 2009, 123, 682–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakosta, P.; Roumeliotaki, T.; Chalkiadaki, G.; Sarri, K.; Vassilaki, M.; Venihaki, M.; Malliaraki, N.; Kampa, M.; Castanas, E.; Kogevinas, M.; et al. Cord Blood Leptin Levels in Relation to Child Growth Trajectories. Metabolism 2016, 65, 874–882. [Google Scholar] [CrossRef]
- Meyer, D.M.; Brei, C.; Stecher, L.; Much, D.; Brunner, S.; Hauner, H. Leptin in Maternal Plasma and Cord Blood as a Predictor of Offspring Adiposity at 5 Years: A Follow-up Study: Maternal/Cord Blood Leptin and Childhood Obesity. Obesity 2018, 26, 279–283. [Google Scholar] [CrossRef]
- West, J.; Santorelli, G.; Collings, P.; Bingham, D.; Whincup, P.; Sattar, N.; Norris, T.; Wright, J.; Lawlor, D.A. Associations of Cord Leptin and Cord Insulin with Adiposity and Blood Pressure in White British and Pakistani Children Aged 4/5 Years. Wellcome Open Res. 2019, 4, 157. [Google Scholar] [CrossRef] [Green Version]
- Boeke, C.E.; Mantzoros, C.S.; Hughes, M.D.; Rifas-Shiman, S.L.; Villamor, E.; Zera, C.A.; Gillman, M.W. Differential Associations of Leptin with Adiposity across Early Childhood: Leptin and Adiposity Across Early Childhood. Obesity 2013, 21, 1430–1437. [Google Scholar] [CrossRef] [Green Version]
- Li, L.-J.; Rifas-Shiman, S.L.; Aris, I.M.; Young, J.G.; Mantzoros, C.; Hivert, M.-F.; Oken, E. Associations of Maternal and Cord Blood Adipokines with Offspring Adiposity in Project Viva: Is There an Interaction with Child Age? Int. J. Obes. 2018, 42, 608–617. [Google Scholar] [CrossRef]
- Matsuda, J.; Yokota, I.; Iida, M.; Murakami, T.; Naito, E.; Ito, M.; Shima, K.; Kuroda, Y. Serum Leptin Concentration in Cord Blood: Relationship to Birth Weight and Gender. J. Clin. Endocrinol. Metab. 1997, 82, 1642–1644. [Google Scholar] [CrossRef]
- Helland, I.B.; Reseland, J.E.; Saugstad, O.D.; Drevon, C.A. Leptin Levels in Pregnant Women and Newborn Infants: Gender Differences and Reduction During the Neonatal Period. Pediatrics 1998, 101, e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, K.K.; Ahmed, M.L.; Sherriff, A.; Woods, K.A.; Watts, A.; Golding, J.; Dunger, D.B. Cord Blood Leptin Is Associated with Size at Birth and Predicts Infancy Weight Gain in Humans. ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood. J. Clin. Endocrinol. Metab. 1999, 84, 1145–1148. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.W.; Kim, S.Y. The Relationship of the Levels of Leptin, Insulin-like Growth Factor-I and Insulin in Cord Blood with Birth Size, Ponderal Index, and Gender Difference. J. Pediatr. Endocrinol. Metab. JPEM 2000, 13, 289–296. [Google Scholar] [CrossRef]
- Guillemette, L.; Allard, C.; Lacroix, M.; Patenaude, J.; Battista, M.-C.; Doyon, M.; Moreau, J.; Ménard, J.; Bouchard, L.; Ardilouze, J.-L.; et al. Genetics of Glucose Regulation in Gestation and Growth (Gen3G): A Prospective Prebirth Cohort of Mother–Child Pairs in Sherbrooke, Canada. BMJ Open 2016, 6, e010031. [Google Scholar] [CrossRef]
- Guillemette, L.; Lacroix, M.; Allard, C.; Patenaude, J.; Battista, M.-C.; Doyon, M.; Moreau, J.; Ménard, J.; Ardilouze, J.-L.; Perron, P.; et al. Preeclampsia Is Associated with an Increased Pro-Inflammatory Profile in Newborns. J. Reprod. Immunol. 2015, 112, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Fenton, T.R.; Kim, J.H. A Systematic Review and Meta-Analysis to Revise the Fenton Growth Chart for Preterm Infants. BMC Pediatr. 2013, 13, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmelzle, H.R.; Fusch, C. Body Fat in Neonates and Young Infants: Validation of Skinfold Thickness versus Dual-Energy X-Ray Absorptiometry. Am. J. Clin. Nutr. 2002, 76, 1096–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allard, C.; Desgagné, V.; Patenaude, J.; Lacroix, M.; Guillemette, L.; Battista, M.; Doyon, M.; Ménard, J.; Ardilouze, J.; Perron, P.; et al. Mendelian Randomization Supports Causality between Maternal Hyperglycemia and Epigenetic Regulation of Leptin Gene in Newborns. Epigenetics 2015, 10, 342–351. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Anthro Survey Analyser and Other Tools. Available online: https://www.who.int/tools/child-growth-standards/software (accessed on 12 January 2022).
- World Health Organization. Growth Reference 5–19 Years—Application Tools. Available online: https://www.who.int/tools/growth-reference-data-for-5to19-years/application-tools (accessed on 12 January 2022).
- Blais, K.; Arguin, M.; Allard, C.; Doyon, M.; Dolinsky, V.W.; Bouchard, L.; Hivert, M.; Perron, P. Maternal Glucose in Pregnancy Is Associated with Child’s Adiposity and Leptin at 5 Years of Age. Pediatr. Obes. 2021, 16, e12788. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org (accessed on 14 November 2022).
- Vickers, M.H.; Gluckman, P.D.; Coveny, A.H.; Hofman, P.L.; Cutfield, W.S.; Gertler, A.; Breier, B.H.; Harris, M. Neonatal Leptin Treatment Reverses Developmental Programming. Endocrinology 2005, 146, 4211–4216. [Google Scholar] [CrossRef]
- Dearden, L.; Ozanne, S.E. Early Life Origins of Metabolic Disease: Developmental Programming of Hypothalamic Pathways Controlling Energy Homeostasis. Front. Neuroendocrinol. 2015, 39, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Koutcherov, Y.; Mai, J.K.; Paxinos, G. Hypothalamus of the Human Fetus. J. Chem. Neuroanat. 2003, 26, 253–270. [Google Scholar] [CrossRef] [PubMed]
- Bouret, S.G. Nutritional Programming of Hypothalamic Development: Critical Periods and Windows of Opportunity. Int. J. Obes. Suppl. 2012, 2, S19–S24. [Google Scholar] [CrossRef] [PubMed]
- Skowronski, A.A.; Shaulson, E.D.; Leibel, R.L.; LeDuc, C.A. The Postnatal Leptin Surge in Mice Is Variable in Both Time and Intensity and Reflects Nutritional Status. Int. J. Obes. 2022, 46, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Delahaye, F.; Breton, C.; Risold, P.-Y.; Enache, M.; Dutriez-Casteloot, I.; Laborie, C.; Lesage, J.; Vieau, D. Maternal Perinatal Undernutrition Drastically Reduces Postnatal Leptin Surge and Affects the Development of Arcuate Nucleus Proopiomelanocortin Neurons in Neonatal Male Rat Pups. Endocrinology 2008, 149, 470–475. [Google Scholar] [CrossRef]
- Coupé, B.; Amarger, V.; Grit, I.; Benani, A.; Parnet, P. Nutritional Programming Affects Hypothalamic Organization and Early Response to Leptin. Endocrinology 2010, 151, 702–713. [Google Scholar] [CrossRef]
- Myers, M.G.; Patti, M.E.; Leshan, R.L. Hitting the Target: Leptin and Perinatal Nutrition in the Predisposition to Obesity. Endocrinology 2005, 146, 4209–4210. [Google Scholar] [CrossRef] [Green Version]
- Jaquet, D.; Leger, J.; Levy-Marchal, C.; Oury, J.F.; Czernichow, P. Ontogeny of Leptin in Human Fetuses and Newborns: Effect of Intrauterine Growth Retardation on Serum Leptin Concentrations. J. Clin. Endocrinol. Metab. 1998, 83, 1243–1246. [Google Scholar] [CrossRef]
- Tan, K.; Tint, M.T.; Michael, N.; Yap, F.; Chong, Y.S.; Tan, K.H.; Godfrey, K.M.; Larbi, A.; Lee, Y.S.; Chan, S.-Y.; et al. Determinants of Cord Blood Adipokines and Association with Neonatal Abdominal Adipose Tissue Distribution. Int. J. Obes. 2022, 46, 637–645. [Google Scholar] [CrossRef]
- Javaid, M.K.; Godfrey, K.M.; Taylor, P.; Robinson, S.M.; Crozier, S.R.; Dennison, E.M.; Robinson, J.S.; Breier, B.R.; Arden, N.K.; Cooper, C. Umbilical Cord Leptin Predicts Neonatal Bone Mass. Calcif. Tissue Int. 2005, 76, 341–347. [Google Scholar] [CrossRef]
- Euclydes, V.L.V.; Castro, N.P.; Lima, L.R.; Brito, C.; Ribeiro, L.; Simões, F.A.; Requena, G.; Luzia, L.A.; Rondó, P.H. Cord Blood Concentrations of Leptin, Zinc-A2-Glycoprotein, and Adiponectin, and Adiposity Gain during the First 3 Mo of Life. Nutrition 2018, 54, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Strader, A.D.; Sorrell, J.E.; Chambers, J.B.; Woods, S.C.; Seeley, R.J. Sexually Different Actions of Leptin in Proopiomelanocortin Neurons to Regulate Glucose Homeostasis. Am. J. Physiol.-Endocrinol. Metab. 2008, 294, E630–E639. [Google Scholar] [CrossRef] [PubMed]
All | Girls (46.9%) | Boys (53.1%) | p * | ||||
---|---|---|---|---|---|---|---|
Mean ± SD or median [Q1; Q3] or N (%) | |||||||
Maternal characteristics during pregnancy | |||||||
Age, years | 520 | 28.3 ± 4.3 | 244 | 28.4 ± 4.5 | 276 | 28.3 ± 4.1 | 0.62 |
Gravidity, primigravid | 520 | 173 (33.3%) | 244 | 79 (32.4%) | 276 | 94 (34.1%) | 0.75 ᵇ |
Parity, primipara | 520 | 251 (48.3%) | 244 | 115 (47.1%) | 276 | 136 (49.3%) | 0.69 ᵇ |
GDM cases | 520 | 47 (9.0%) | 244 | 24 (9.8%) | 276 | 23 (8.3%) | 0.66 ᵇ |
Smoked during pregnancy | 514 | 49 (9.5%) | 242 | 22 (9.1%) | 272 | 27 (9.9%) | 0.86 ᵇ |
Hypertensive Disorders of Pregnancy | 516 | 38 (7.4%) | 244 | 20 (8.2%) | 272 | 18 (6.6%) | 0.60 ᵇ |
BMI at V1, kg/m2 | 520 | 24.1 [21.6; 28.3] | 244 | 24.0 [21.8; 27.5] | 276 | 24.1 [21.6; 29.3] | 0.28 ᵃ |
Maternal Obesity at V1 | 520 | 106 (20.4%) | 244 | 43 (17.6%) | 276 | 63 (22.8%) | 0.17 ᵇ |
Gestational weight gain, kg | 519 | 12.0 ± 4.7 | 244 | 12.3 ± 5.0 | 275 | 11.7 ± 4.4 | 0.16 |
Child characteristics | |||||||
At birth | |||||||
Gestational age, weeks | 520 | 39.3 ± 1.3 | 244 | 39.3 ± 1.3 | 276 | 39.3 ± 1.3 | 0.89 |
Ethnicity self-reported, European descent | 478 | 451 (94.4%) | 223 | 208 (93.3%) | 255 | 243 (95.3%) | 0.45 ᵇ |
Birthweight, g | 520 | 3408 ± 468 | 244 | 3346 ± 452 | 276 | 3463 ± 477 | 0.004 |
BW/GA z-score | 520 | 0.07 ± 0.86 | 244 | 0.06 ± 0.77 | 276 | 0.08 ± 0.93 | 0.75 |
Triceps SFT, mm | 212 | 5.0 ± 1.1 | 97 | 5.2 ± 1.0 | 115 | 4.9 ± 1.1 | 0.06 |
Biceps SFT, mm | 212 | 3.8 ± 0.8 | 97 | 3.8 ± 0.7 | 115 | 3.8 ± 0.9 | 0.99 |
Subscapular SFT, mm | 212 | 4.8 ± 1.1 | 97 | 5.0 ± 1.1 | 115 | 4.7 ± 1.1 | 0.04 |
Suprailiac SFT, mm | 212 | 4.2 ± 1.1 | 97 | 4.4 ± 1.1 | 115 | 4.1 ± 1.1 | 0.01 |
Sum of SFT, mm | 212 | 17.8 ± 3.3 | 97 | 18.4 ± 3.2 | 115 | 17.4 ± 3.4 | 0.03 |
Cord blood leptin, ng/mL | 520 | 11.6 [6.0; 19.1] | 244 | 15.5 [8.9; 25.6] | 276 | 8.6 [4.9; 15.0] | <0.0001 ᵃ |
At 3 years post-delivery follow-up | |||||||
Age, months | 400 | 40.2 [38.4; 42.4] | 185 | 40.2 [38.3; 42.1] | 215 | 40.2 [38.5; 42.5] | 0.49 ᵃ |
BMI, kg/m2 | 387 | 16.2 ± 1.2 | 179 | 16.0 ± 1.1 | 208 | 16.3 ± 1.3 | 0.01 |
BMI z-score | 387 | 0.53 ± 0.88 | 179 | 0.45 ± 0.79 | 208 | 0.60 ± 0.95 | 0.08 |
Triceps SFT, mm | 374 | 11.2 [9.8; 12.7] | 173 | 11.5 [10.0; 12.8] | 201 | 11.0 [9.5; 12.5] | 0.48 |
Biceps SFT, mm | 377 | 6.5 [5.2; 8.0] | 174 | 7.0 [5.8; 8.7] | 203 | 6.0 [5.0; 7.8] | <0.0001 ᵃ |
Subscapular SFT, mm | 373 | 6.0 [5.0; 7.2] | 173 | 6.5 [5.5; 7.8] | 200 | 5.8 [5.0; 7.0] | <0.0001 ᵃ |
Suprailiac SFT, mm | 366 | 5.5 [4.5; 7.0] | 171 | 6.2 [5.0; 7.4] | 195 | 5.0 [4.0; 6.0] | <0.0001 ᵃ |
Sum of SFT, mm | 366 | 29.5 [25.5; 34.5] | 171 | 31.2 [27.5; 35.5] | 195 | 28.0 [24.8; 32.2] | <0.0001 ᵃ |
At 5 years post-delivery follow-up | |||||||
Age, months | 441 | 64.0 [61.6; 66.5] | 208 | 64.0 [61.5; 66.7] | 233 | 63.9 [61.8; 66.5] | 0.84 ᵃ |
BMI, kg/m2 | 433 | 15.6 [14.8; 16.4] | 204 | 15.7 [14.8; 16.4] | 229 | 15.6 [14.8; 16.4] | 0.76 ᵃ |
BMI z-score | 433 | 0.23 ± 0.97 | 204 | 0.23 ± 0.85 | 229 | 0.23 ± 1.07 | 0.95 |
Triceps SFT, mm | 365 | 11.0 [9.2; 13.0] | 172 | 11.7 [10.0; 13.5] | 193 | 10.2 [8.2; 12.0] | <0.0001 ᵃ |
Biceps SFT, mm | 366 | 6.6 [5.0; 8.1] | 172 | 7.2 [6.0; 9.0] | 194 | 5.7 [4.6; 7.0] | <0.0001 ᵃ |
Subscapular SFT, mm | 364 | 5.7 [4.9; 6.8] | 171 | 6.3 [5.3; 7.8] | 193 | 5.1 [4.5; 6.0] | <0.0001 ᵃ |
Suprailiac SFT, mm | 365 | 6.2 [5.0; 8.2] | 172 | 7.2 [5.8; 9.4] | 193 | 5.7 [4.5; 7.0] | <0.0001 ᵃ |
Sum of SFT, mm | 364 | 29.6 [25.1; 35.1] | 171 | 31.8 [28.1; 38.7] | 193 | 26.8 [23.1; 32.1] | <0.0001 ᵃ |
DXA trunk fat, % | 331 | 25.5 [22.8; 29.0] | 160 | 27.9 [25.1; 31.2] | 171 | 23.6 [21.5; 26.0] | <0.0001 ᵃ |
DXA total fat, % | 331 | 29.9 [27.4; 33.6] | 160 | 32.8 [30.0; 35.3] | 171 | 28.1 [26.1; 29.9] | <0.0001 ᵃ |
DXA FMI, kg/m2 | 331 | 4.6 [4.0; 5.2] | 160 | 4.9 [4.4; 5.5] | 171 | 4.2 [3.9; 4.7] | <0.0001 ᵃ |
All | Girls | Boys | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
n | r | p | n | r | p | n | r | p | ||
Maternal BMI at V1 (log) | 520 | 0.11 | 0.01 | 244 | 0.13 | 0.05 | 276 | 0.13 | 0.03 | |
GWG | 519 | 0.17 | 0.0001 | 244 | 0.15 | 0.02 | 275 | 0.16 | 0.008 | |
At birth | Birthweight | 520 | 0.45 | <0.0001 | 244 | 0.57 | <0.0001 | 276 | 0.48 | <0.0001 |
BW/GA z−score | 520 | 0.38 | <0.0001 | 244 | 0.51 | <0.0001 | 276 | 0.34 | <0.0001 | |
Triceps SFT | 212 | 0.38 | <0.0001 | 97 | 0.41 | <0.0001 | 115 | 0.33 | 0.0004 | |
Biceps SFT | 212 | 0.29 | <0.0001 | 97 | 0.34 | 0.001 | 115 | 0.30 | 0.001 | |
Subscapular SFT | 212 | 0.46 | <0.0001 | 97 | 0.44 | <0.0001 | 115 | 0.44 | <0.0001 | |
Suprailiac SFT | 212 | 0.38 | <0.0001 | 97 | 0.35 | 0.0004 | 115 | 0.34 | 0.0002 | |
Sum of SFT | 212 | 0.47 | <0.0001 | 97 | 0.47 | <0.0001 | 115 | 0.44 | <0.0001 | |
At 3 years | BMI (log) | 387 | −0.06 | 0.27 | 179 | 0.00 | 0.96 | 208 | −0.03 | 0.67 |
BMI z−score | 387 | −0.05 | 0.38 | 179 | 0.00 | 0.99 | 208 | −0.03 | 0.68 | |
Triceps SFT | 374 | −0.01 | 0.82 | 173 | −0.05 | 0.52 | 201 | −0.01 | 0.89 | |
Biceps SFT (log) | 377 | −0.04 | 0.46 | 174 | 0.01 | 0.89 | 203 | −0.22 | 0.002 | |
Subscapular SFT (log) | 373 | 0.07 | 0.20 | 173 | 0.05 | 0.52 | 200 | −0.05 | 0.48 | |
Suprailiac SFT (log) | 366 | 0.00 | 0.97 | 171 | 0.00 | 0.99 | 195 | −0.18 | 0.01 | |
Sum of SFT (log) | 366 | 0.00 | 0.94 | 171 | 0.00 | 0.97 | 195 | −0.12 | 0.09 | |
At 5 years | BMI (log) | 433 | 0.07 | 0.16 | 204 | 0.14 | 0.05 | 229 | 0.01 | 0.84 |
BMI z−score | 433 | 0.06 | 0.21 | 204 | 0.15 | 0.04 | 229 | 0.01 | 0.85 | |
Triceps SFT (log) | 365 | 0.12 | 0.03 | 172 | 0.08 | 0.29 | 193 | 0.00 | 0.95 | |
Biceps SFT (log) | 366 | 0.13 | 0.01 | 172 | 0.12 | 0.11 | 194 | −0.04 | 0.55 | |
Subscapular SFT (log) | 364 | 0.14 | 0.006 | 171 | 0.10 | 0.19 | 193 | −0.02 | 0.82 | |
Suprailiac SFT (log) | 365 | 0.12 | 0.02 | 172 | 0.03 | 0.66 | 193 | 0.00 | 0.95 | |
Sum of SFT (log) | 364 | 0.15 | 0.005 | 171 | 0.09 | 0.22 | 193 | 0.00 | 0.96 | |
DXA % Trunk fat (log) | 331 | 0.16 | 0.003 | 160 | 0.01 | 0.94 | 171 | 0.00 | 0.96 | |
DXA % Total fat (log) | 331 | 0.20 | 0.0003 | 160 | 0.04 | 0.58 | 171 | 0.06 | 0.40 | |
DXA FMI (log) | 331 | 0.17 | 0.003 | 160 | 0.08 | 0.30 | 171 | 0.03 | 0.67 |
Cord Blood Leptin (log), pg/mL | Triceps SFT mm | Biceps SFT (log), mm | Subscapular SFT (log), mm | Suprailiac SFT (log), mm | Sum of SFT (log), mm | BMI z-Score ᵃ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p | ||
All [n = 387] | n = 374 | n = 377 | n = 373 | n = 366 | n = 366 | n = 387 | |||||||
M1 * | −0.05 ± 0.16 | 0.77 | −0.04 ± 0.02 | 0.03 | −0.002 ± 0.016 | 0.89 | −0.04 ± 0.02 | 0.07 | −0.02 ± 0.01 | 0.21 | −0.04 ± 0.05 | 0.38 | |
M2 | −0.07 ± 0.16 | 0.66 | −0.04 ± 0.02 | 0.03 | −0.01 ± 0.02 | 0.71 | −0.04 ± 0.02 | 0.05 | −0.02 ± 0.01 | 0.15 | −0.07 ± 0.05 | 0.15 | |
M3 | −0.02 ± 0.18 | 0.93 | −0.05 ± 0.02 | 0.01 | −0.01 ± 0.02 | 0.52 | −0.07 ± 0.02 | 0.01 | −0.02 ± 0.02 | 0.12 | −0.19 ± 0.06 | 0.001 | |
Interaction sex × leptin | 0.94 | 0.03 | 0.33 | 0.08 | 0.20 | 0.78 | |||||||
Girls [n = 179] (46.3%) | n = 173 | n = 174 | n = 173 | n = 171 | n = 171 | n = 179 | |||||||
M1 | −0.10 ± 0.23 | 0.66 | 0.01 ± 0.03 | 0.82 | 0.02 ± 0.02 | 0.48 | 0.004 ± 0.034 | 0.90 | 0.003 ± 0.020 | 0.89 | −0.001 ± 0.072 | 0.99 | |
M2 | −0.16 ± 0.23 | 0.50 | 0.002 ± 0.030 | 0.95 | 0.02 ± 0.02 | 0.46 | −0.01 ± 0.03 | 0.87 | −0.003 ± 0.020 | 0.89 | −0.02 ± 0.07 | 0.76 | |
M3 | 0.15 ± 0.27 | 0.58 | 0.01 ± 0.04 | 0.72 | 0.01 ± 0.03 | 0.81 | −0.02 ± 0.04 | 0.60 | 0.01 ± 0.02 | 0.76 | −0.11 ± 0.09 | 0.21 | |
Boys [n = 208] (53.7%) | n = 201 | n = 203 | n = 200 | n = 195 | n = 195 | n = 208 | |||||||
M1 | −0.04 ± 0.22 | 0.87 | −0.07 ± 0.02 | 0.002 | −0.01 ± 0.02 | 0.48 | −0.07 ± 0.03 | 0.01 | −0.03 ± 0.02 | 0.09 | −0.03 ± 0.08 | 0.68 | |
M2 | −0.10 ± 0.22 | 0.67 | −0.07 ± 0.02 | 0.002 | −0.02 ± 0.02 | 0.32 | −0.07 ± 0.03 | 0.01 | −0.03 ± 0.02 | 0.06 | −0.09 ± 0.08 | 0.24 | |
M3 | −0.16 ± 0.25 | 0.52 | −0.09 ± 0.02 | 0.0005 | −0.03 ± 0.02 | 0.27 | −0.10 ± 0.03 | 0.002 | −0.05 ± 0.02 | 0.03 | −0.22 ± 0.08 | 0.01 |
Cord Blood Leptin (log), pg/mL | DXA Trunk Fat (log), % | DXA Total Fat (log), % | DXA FMI (log), kg/m² | Sum of SFT (log), mm | BMI z-Score ᵃ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p | ||
All [n = 433] | n = 331 | n = 331 | n = 331 | n = 364 | n = 433 | ||||||
M1 * | 0.000 ± 0.009 | 1.00 | 0.01 ± 0.01 | 0.33 | 0.01 ± 0.01 | 0.31 | 0.01 ± 0.02 | 0.45 | 0.06 ± 0.05 | 0.21 | |
M2 | 0.000 ± 0.009 | 0.97 | 0.01 ± 0.01 | 0.41 | 0.01 ± 0.01 | 0.51 | 0.01 ± 0.02 | 0.74 | 0.04 ± 0.05 | 0.47 | |
M3 | −0.002 ± 0.010 | 0.88 | 0.002 ± 0.009 | 0.86 | −0.01 ± 0.01 | 0.53 | −0.01 ± 0.02 | 0.46 | −0.09 ± 0.06 | 0.12 | |
Interaction sex × leptin | 1.00 | 0.93 | 0.58 | 0.35 | 0.22 | ||||||
Girls [n = 204](47.1%) | n = 160 | n = 160 | n = 160 | n = 171 | n = 204 | ||||||
M1 | 0.001 ± 0.016 | 0.96 | 0.01 ± 0.01 | 0.57 | 0.02 ± 0.02 | 0.29 | 0.03 ± 0.03 | 0.23 | 0.15 ± 0.07 | 0.04 | |
M2 | −0.003 ± 0.016 | 0.83 | 0.001 ± 0.013 | 0.91 | 0.01 ± 0.02 | 0.59 | 0.02 ± 0.03 | 0.52 | 0.09 ± 0.07 | 0.22 | |
M3 | −0.002 ± 0.019 | 0.90 | −0.004 ± 0.016 | 0.79 | −0.004 ± 0.024 | 0.87 | 0.01 ± 0.03 | 0.66 | −0.01 ± 0.09 | 0.93 | |
Boys [n = 229](52.9%) | n = 171 | n = 171 | n = 171 | n = 193 | n = 229 | ||||||
M1 | 0.000 ± 0.011 | 0.98 | 0.01 ± 0.01 | 0.37 | 0.01 ± 0.01 | 0.63 | 0.000 ± 0.020 | 0.98 | 0.01 ± 0.08 | 0.85 | |
M2 | 0.003 ± 0.011 | 0.75 | 0.01 ± 0.01 | 0.30 | 0.01 ± 0.01 | 0.55 | 0.000 ± 0.021 | 0.98 | −0.004 ± 0.082 | 0.96 | |
M3 | −0.002 ± 0.012 | 0.86 | 0.003 ± 0.011 | 0.75 | −0.01 ± 0.02 | 0.53 | −0.03 ± 0.02 | 0.24 | −0.17 ± 0.09 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blais, K.; Doyon, M.; Arguin, M.; Bouchard, L.; Perron, P.; Hivert, M.-F. Associations between Cord Blood Leptin Levels and Childhood Adiposity Differ by Sex and Age at Adiposity Assessment. Life 2022, 12, 2060. https://doi.org/10.3390/life12122060
Blais K, Doyon M, Arguin M, Bouchard L, Perron P, Hivert M-F. Associations between Cord Blood Leptin Levels and Childhood Adiposity Differ by Sex and Age at Adiposity Assessment. Life. 2022; 12(12):2060. https://doi.org/10.3390/life12122060
Chicago/Turabian StyleBlais, Kasandra, Myriam Doyon, Mélina Arguin, Luigi Bouchard, Patrice Perron, and Marie-France Hivert. 2022. "Associations between Cord Blood Leptin Levels and Childhood Adiposity Differ by Sex and Age at Adiposity Assessment" Life 12, no. 12: 2060. https://doi.org/10.3390/life12122060
APA StyleBlais, K., Doyon, M., Arguin, M., Bouchard, L., Perron, P., & Hivert, M.-F. (2022). Associations between Cord Blood Leptin Levels and Childhood Adiposity Differ by Sex and Age at Adiposity Assessment. Life, 12(12), 2060. https://doi.org/10.3390/life12122060