An Up-to-Date Literature Review on Ventricular Assist Devices Experience in Pediatric Hearts
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Berlin Heart Excor
Author, Year | Patients, No. | Age, Mean/Median ± SD | Weight, kg | Type of VAD | Results |
---|---|---|---|---|---|
Almond, 2013 [9] | 204 | 1.6 (0.5–5.4) years | 10.0 (6.5–16.6) | Berlin Heart EXCOR (bridge to heart transplantation) | 12 month survival was 75% (including 64% heart transplant recipients) Biventricular device support was associated with early mortality. |
Jordan, 2015 [10] | 204 | 18.6 (6.3–64.9) months | 10.0 (6.5 to 16.6) | Berlin Heart EXCOR (bridge to heart transplantation) | Adverse neurological events were recorded in 59 patients (28.95%) and were linked to increased mortality (42% vs. 18% in those without neurological events). |
Morales, 2017 [13] | 204 | 1.7 (0.3–4.7)—in CHD patients | 8.5 (5.2–16.3)—in CHD patients | Berlin Heart EXCOR (bridge to heart transplantation) | CHD patients with VAD had a higher mortality rate than non-CHD patients with VAD (50.9% versus 16.6%, p < 0.001). |
Fraser, 2012 [14] | 48 | 11.7 (2.6–45.6) months in the VAD cohort | 9.2 (3.6–13.6)—in the VAD cohort | Berlin Heart EXCOR (bridge to heart transplantation) | Compared to ECMO patients, those who received VAD had a significantly higher survival rate (10 days vs. 144 days, p < 0.001). Key adverse events in the VAD cohort were major bleeding (50%), infection (50%), and stroke (29%). |
Reinhartz, 2003 [15] | 19 | 10 (7–14) | 31 (17–41) | Thoratec paracorporeal pneumatic VAD | The survival rate was significantly higher in children with cardiomyopathies/myocarditis compared to those with CHD (72% vs. 14%). |
Konertz, 1997 [11] | 6 | 5–8 years | 3.1–20.5 | MEDOS HIA (bridge to transplantation and recovery from cardiac surgery) | Two children died, two children were weaned from VAD, and two children underwent heart transplantation |
3.2. Medos HIA
3.3. Thoratec
3.4. HeartMate III
3.5. Impella
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reller, M.D.; Strickland, M.J.; Riehle-Colarusso, T.; Mahle, W.T.; Correa, A. Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J. Pediatr. 2008, 153, 807–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moisa, S.M.; Burlacu, A.; Brinza, C.; Țarcă, E.; Butnariu, L.I.; Trandafir, L.M. An Up-to-Date Narrative Review on Congenital Heart Disease Percutaneous Treatment in Children Using Contemporary Devices. Diagnostics 2022, 12, 1189. [Google Scholar] [CrossRef]
- Burki, S.; Adachi, I. Pediatric ventricular assist devices: Current challenges and future prospects. Vasc. Health Risk Manag. 2017, 13, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- (TTX), I.T.O.T. International Thoracic Organ Transplant (TTX) Registry Data Slides. 2019. Available online: https://ishltregistries.org/registries/slides.asp?yearToDisplay=2019 (accessed on 21 May 2022).
- Rossano, J.W.; Kim, J.J.; Decker, J.A.; Price, J.F.; Zafar, F.; Graves, D.E.; Morales, D.L.; Heinle, J.S.; Bozkurt, B.; Towbin, J.A. Prevalence, morbidity, and mortality of heart failure–related hospitalizations in children in the United States: A population-based study. J. Card. Fail. 2012, 18, 459–470. [Google Scholar] [CrossRef]
- Adachi, I. Continuous-flow ventricular assist device support in children: A paradigm change. J. Thorac. Cardiovasc. Surg. 2017, 154, 1358–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafar, F.; Jefferies, J.L.; Tjossem, C.J.; Bryant, R., 3rd; Jaquiss, R.D.; Wearden, P.D.; Rosenthal, D.N.; Cabrera, A.G.; Rossano, J.W.; Humpl, T.; et al. Biventricular Berlin Heart EXCOR pediatric use across the united states. Ann. Thorac. Surg. 2015, 99, 1328–1334. [Google Scholar] [CrossRef] [PubMed]
- Dimas, V.V.; Morray, B.H.; Kim, D.W.; Almond, C.S.; Shahanavaz, S.; Tume, S.C.; Peng, L.F.; McElhinney, D.B.; Justino, H. A multicenter study of the impella device for mechanical support of the systemic circulation in pediatric and adolescent patients. Catheter. Cardiovasc. Interv. 2017, 90, 124–129. [Google Scholar] [CrossRef]
- Almond, C.S.; Morales, D.L.; Blackstone, E.H.; Turrentine, M.W.; Imamura, M.; Massicotte, M.P.; Jordan, L.C.; Devaney, E.J.; Ravishankar, C.; Kanter, K.R.; et al. Berlin Heart EXCOR pediatric ventricular assist device for bridge to heart transplantation in US children. Circulation 2013, 127, 1702–1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, L.C.; Ichord, R.N.; Reinhartz, O.; Humpl, T.; Pruthi, S.; Tjossem, C.; Rosenthal, D.N. Neurological complications and outcomes in the Berlin Heart EXCOR® pediatric investigational device exemption trial. J. Am. Heart Assoc. 2015, 4, e001429. [Google Scholar] [CrossRef] [Green Version]
- Konertz, W.; Hotz, H.; Schneider, M.; Redlin, M.; Reul, H. Clinical experience with the MEDOS HIA-VAD system in infants and children: A preliminary report. Ann. Thorac. Surg. 1997, 63, 1138–1144. [Google Scholar] [CrossRef]
- Javier Delmo, E.M.; Javier, M.; Hetzer, R. The role of ventricular assist device in children. Cardiovasc. Diagn. Ther. 2021, 11, 193–201. [Google Scholar] [CrossRef]
- Morales, D.L.; Zafar, F.; Almond, C.S.; Canter, C.; Fynn-Thompson, F.; Conway, J.; Adachi, I.; Lorts, A. Berlin Heart EXCOR use in patients with congenital heart disease. J. Heart Lung Transplant. 2017, 36, 1209–1216. [Google Scholar] [CrossRef]
- Fraser, C.D., Jr.; Jaquiss, R.D.; Rosenthal, D.N.; Humpl, T.; Canter, C.E.; Blackstone, E.H.; Naftel, D.C.; Ichord, R.N.; Bomgaars, L.; Tweddell, J.S.; et al. Prospective trial of a pediatric ventricular assist device. N. Engl. J. Med. 2012, 367, 532–541. [Google Scholar] [CrossRef] [Green Version]
- Reinhartz, O.; Keith, F.M.; El-Banayosy, A.; McBride, L.R.; Robbins, R.C.; Copeland, J.G.; Farrar, D.J. Multicenter experience with the thoratec ventricular assist device in children and adolescents. J. Heart Lung Transplant. 2001, 20, 439–448. [Google Scholar] [CrossRef]
- Kakuta, T.; Hoashi, T.; Sakaguchi, H.; Kagisaki, K.; Negishi, J.; Shimada, M.; Tsuda, E.; Shiraishi, I.; Fukushima, N.; Ichikawa, H. Early Single Institutional Experience of Berlin Heart EXCOR(®) Pediatric Ventricular Assist Device in Japan. Circ. J. Off. J. Jpn. Circ. Soc. 2016, 80, 2552–2554. [Google Scholar] [CrossRef] [Green Version]
- Sakaguchi, H.; Miyazaki, A.; Yamada, O.; Kagisaki, K.; Hoashi, T.; Ichikawa, H.; Ohuchi, H. Cardiac resynchronization therapy for various systemic ventricular morphologies in patients with congenital heart disease. Circ. J. 2015, 79, 649–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuda, E.; Negishi, J.; Noritake, K.; Iwasa, T.; Abe, T. Left ventricular reverse remodeling with infantile dilated cardiomyopathy and pitfalls of carvedilol therapy. J. Cardiol. 2016, 67, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Mangat, J.; Lunnon-Wood, T.; Rees, P.; Elliott, M.; Burch, M. Successful cardiac transplantation in Barth syndrome—Single-centre experience of four patients. Pediatr. Transplant. 2007, 11, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Hanke, S.P.; Gardner, A.B.; Lombardi, J.P.; Manning, P.B.; Nelson, D.P.; Towbin, J.A.; Jefferies, J.L.; Lorts, A. Left ventricular noncompaction cardiomyopathy in Barth syndrome: An example of an undulating cardiac phenotype necessitating mechanical circulatory support as a bridge to transplantation. Pediatr. Cardiol. 2012, 33, 1430–1434. [Google Scholar] [CrossRef] [PubMed]
- Rohde, S.; Antonides, C.F.J.; Muslem, R.; de Woestijne, P.C.V.; der Meulen, M.H.V.; Kraemer, U.S.; Dalinghaus, M.; Bogers, A. Pediatric Ventricular Assist Device Support in the Netherlands. World J. Pediatr. Congenit. Heart Surg. 2020, 11, 275–283. [Google Scholar] [CrossRef]
- Schmid, C.; Debus, V.; Gogarten, W.; Löher, A.; Drees, G.; Scheld, H.H.; Tjan, T.D. Pediatric assist with the Medos and Excor systems in small children. ASAIO J. 2006, 52, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Fleck, T.; Benk, C.; Klemm, R.; Kroll, J.; Siepe, M.; Grohmann, J.; Höhn, R.; Humburger, F.; Beyersdorf, F.; Stiller, B. First serial in vivo results of mechanical circulatory support in children with a new diagonal pump. Eur. J. Cardio-Thorac. Surg. 2013, 44, 828–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodge, A.B.; Yeager, C.J.; Preston, T.J.; Savage, A.J.; Butts, R.J.; Kavarana, M.N. The Thoratec CentriMag for pediatric right ventricular failure. J. Extra-Corpor. Technol. 2013, 45, 133–135. [Google Scholar]
- Trusty, P.M.; Tree, M.; Maher, K.; Slesnick, T.C.; Kanter, K.R.; Yoganathan, A.P.; Deshpande, S.R. An in vitro analysis of the PediMag and CentriMag for right-sided failing Fontan support. J. Thorac. Cardiovasc. Surg. 2019, 158, 1413–1421. [Google Scholar] [CrossRef]
- Conway, J.; Al-Aklabi, M.; Granoski, D.; Islam, S.; Ryerson, L.; Anand, V.; Guerra, G.; Mackie, A.S.; Rebeyka, I.; Buchholz, H. Supporting pediatric patients with short-term continuous-flow devices. J. Heart Lung Transplant. 2016, 35, 603–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Moroi, M.K.; Kunselman, A.R.; Myers, J.L.; Ündar, A. Evaluation of centrifugal blood pumps in term of hemodynamic performance using simulated neonatal and pediatric ECMO circuits. Artif. Organs 2020, 44, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Marey, G.; McHugh, K.M.; Sakhitab-Kerestes, A.M.; Jang, S.; Steiner, M.E.; John, R.; Richtsfeld, M.; Said, S.M.; Ameduri, R.; Griselli, M. HeartMate III as a Bridge to Transplantation in an Adolescent with Failed Fontan Circulation. JACC Case Rep. 2019, 1, 512–515. [Google Scholar] [CrossRef]
- Shugh, S.B.; Riggs, K.W.; Morales, D.L.S. Mechanical circulatory support in children: Past, present and future. Transl. Pediatr. 2019, 8, 269–277. [Google Scholar] [CrossRef]
- O’Connor, M.J.; Lorts, A.; Davies, R.R.; Fynn-Thompson, F.; Joong, A.; Maeda, K.; Mascio, C.E.; McConnell, P.I.; Mongé, M.C.; Nandi, D.; et al. Early experience with the HeartMate 3 continuous-flow ventricular assist device in pediatric patients and patients with congenital heart disease: A multicenter registry analysis. J. Heart Lung Transplant. 2020, 39, 573–579. [Google Scholar] [CrossRef]
- Trezzi, M.; Brancaccio, G.; Filippelli, S.; Galletti, L.; Adorisio, R.; Iacobelli, R.; Giorni, C.; Selvaggio, D.; Amodeo, A. Single Center Experience with the Heartmate 3 Continuous-Flow Ventricular Assist Device in Pediatric Patients. J. Heart Lung Transplant. 2021, 40, S443. [Google Scholar] [CrossRef]
- Glazier, J.J.; Kaki, A. The Impella Device: Historical Background, Clinical Applications and Future Directions. Int. J. Angiol. 2019, 28, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Lorts, A.; Conway, J.; Schweiger, M.; Adachi, I.; Amdani, S.; Auerbach, S.R.; Barr, C.; Bleiweis, M.S.; Blume, E.D.; Burstein, D.S.; et al. ISHLT consensus statement for the selection and management of pediatric and congenital heart disease patients on ventricular assist devices Endorsed by the American Heart Association. J. Heart Lung Transplant. 2021, 40, 709–732. [Google Scholar] [CrossRef] [PubMed]
- Waldenberger, F. Pathophysiological considerations concerning uni-and biventricular mechanical cardiac assist. Int. J. Artif. Organs 1997, 20, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Karl, T.R.; Horton, S.B. Centrifugal pump ventricular assist device in pediatric cardiac surgery. In Mechanical Support for Cardiac and Respiratory Failure in Pediatric Patients; New York’Marcel Dekker: New York, NY, USA, 2001; pp. 21–47. [Google Scholar]
- Raithel, S.; Pennington, D.; Boegner, E.; Fiore, A.; Weber, T. Extracorporeal membrane oxygenation in children after cardiac surgery. Circulation 1992, 86, II305–II310. [Google Scholar] [PubMed]
- Conway, J.; St. Louis, J.; Morales, D.L.; Law, S.; Tjossem, C.; Humpl, T. Delineating survival outcomes in children < 10 kg bridged to transplant or recovery with the Berlin Heart EXCOR ventricular assist device. JACC Heart Fail. 2015, 3, 70–77. [Google Scholar] [PubMed]
- Miera, O.; Morales, D.L.; Thul, J.; Amodeo, A.; Menon, A.K.; Humpl, T. Improvement of survival in low-weight children on the Berlin Heart EXCOR ventricular assist device support. Eur. J. Cardio-Thorac. Surg. 2019, 55, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Law, S.P.; Oron, A.P.; Kemna, M.S.; Albers, E.L.; McMullan, D.M.; Chen, J.M.; Law, Y.M. Comparison of transplant waitlist outcomes for pediatric candidates supported by ventricular assist devices versus medical therapy. Pediatr. Crit. Care Med. 2018, 19, 442–450. [Google Scholar] [CrossRef]
- Peng, D.M.; Koehl, D.A.; Cantor, R.S.; McMillan, K.N.; Barnes, A.P.; McConnell, P.I.; Jordan, J.; Andersen, N.D.; Louis, J.D.S.; Maeda, K. Outcomes of children with congenital heart disease implanted with ventricular assist devices: An analysis of the Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs). J. Heart Lung Transplant. 2019, 38, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Dipchand, A.I.; Kirk, R.; Naftel, D.C.; Pruitt, E.; Blume, E.D.; Morrow, R.; Rosenthal, D.; Auerbach, S.; Richmond, M.E.; Kirklin, J.K. Ventricular assist device support as a bridge to transplantation in pediatric patients. J. Am. Coll. Cardiol. 2018, 72, 402–415. [Google Scholar] [CrossRef]
- Attard, C.; Van Der Straaten, T.; Karlaftis, V.; Monagle, P.; Ignjatovic, V. Developmental hemostasis: Age-specific differences in the levels of hemostatic proteins. J. Thromb. Haemost. 2013, 11, 1850–1854. [Google Scholar] [CrossRef]
- Rossano, J.W.; Lorts, A.; VanderPluym, C.J.; Jeewa, A.; Guleserian, K.J.; Bleiweis, M.S.; Reinhartz, O.; Blume, E.D.; Rosenthal, D.N.; Naftel, D.C. Outcomes of pediatric patients supported with continuous-flow ventricular assist devices: A report from the Pediatric Interagency Registry for Mechanical Circulatory Support (PediMACS). J. Heart Lung Transplant. 2016, 35, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Blume, E.D.; VanderPluym, C.; Lorts, A.; Baldwin, J.T.; Rossano, J.W.; Morales, D.L.; Cantor, R.S.; Miller, M.A.; Louis, J.D.S.; Koehl, D. Second annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) report: Pre-implant characteristics and outcomes. J. Heart Lung Transplant. 2018, 37, 38–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newington, D.F.; De Rita, F.; McCheyne, A.; Barker, C.L. Pediatric Ventricular Assist Device Implantation: An Anesthesia Perspective. In Seminars in Cardiothoracic and Vascular Anesthesia; SAGE Publications Sage CA: Los Angeles, CA, USA, 2021. [Google Scholar]
- Ţarcă, E.; Roșu, S.T.; Cojocaru, E.; Trandafir, L.; Luca, A.C.; Rusu, D.; Ţarcă, V. Socio-epidemiological factors with negative impact on infant morbidity, mortality rates, and the occurrence of birth defects. Healthcare 2021, 9, 384. [Google Scholar] [CrossRef] [PubMed]
- Butto, A.; Teele, S.A.; Sleeper, L.A.; Thrush, P.T.; Philip, J.; Lu, M.; Cantor, R.S.; Rossano, J.W. The impact of pre-implant illness severity on the outcomes of pediatric patients undergoing durable ventricular assist device. J. Heart Lung Transplant. 2020, 39, 666–674. [Google Scholar] [CrossRef]
- Herwig, V.; Severin, M.; Waldenberger, F.; Konertz, W. Medos®/HIA-assist system: First experiences with mechanical circulatory assist in infants and children. Int. J. Artif. Organs 1997, 20, 692–694. [Google Scholar] [CrossRef] [PubMed]
- Hetzer, R.; Kaufmann, F.; Delmo Walter, E.M. Paediatric mechanical circulatory support with Berlin Heart EXCOR: Development and outcome of a 23-year experience. Eur. J. Cardio-Thorac. Surg. 2016, 50, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Eghtesady, P.; Almond, C.S.; Tjossem, C.; Epstein, D.; Imamura, M.; Turrentine, M.; Tweddell, J.; Jaquiss, R.D.; Canter, C. Post-transplant outcomes of children bridged to transplant with the Berlin Heart EXCOR Pediatric ventricular assist device. Circulation 2013, 128 (Suppl. 1), S24–S31. [Google Scholar] [CrossRef] [Green Version]
- Däbritz, S.; Messmer, B.J. Individual Center Experiences in Pediatric Mechanical Circulatory Support for Bridge-to-Transplant and Myocardial Recovery; Steinkopff: Heidelberg, Germany, 1997. [Google Scholar]
- Moisa, S.M.; Miron, I.C.; Tarca, E.; Trandafir, L.; Lupu, V.V.; Lupu, A.; Rusu, T.E. Non-Cardiac Cause of Death in Selected Group Children with Cardiac Pathology: A Retrospective Single Institute Study. Children 2022, 9, 335. [Google Scholar] [CrossRef]
- Kantorovich, A. Centrifugal Flow or Axial Flow Left Ventricular Assist Devices: An Overview. 2018. Available online: https://www.pharmacytimes.com/view/centrifugal-flow-or-axial-flow-left-ventricular-assist-devices-an-overview (accessed on 1 October 2022).
Study | Number of Patients | Survival Rate | Principal Adverse Effects | Cause of Heart Failure (Most Frequent) |
---|---|---|---|---|
Adachi et al. [6] | 39 | 95% | Infection | Cardiomyopathy |
Zafar et al. [7] | 204 | 80% | Major bleeding, infection, neurologic and renal dysfunction | Congenital heart defects, cardiomyopathy |
Rhode et al. | 87 | 61% | Bleeding, neurologic events, infection | Congenital heart defects, cardiomyopathy, after transplant |
Dimas et al. [8] | 160 | 68% | Bleeding, hemolysis | Cardiogenic shock |
Type of VAD | Advantages | Disadvantages | |
---|---|---|---|
1 | Berlin Heart Excor | It constitutes a pulsatile pump implanted outside the chest and attached to the atria, left ventricular apex, and major vessels. It could serve as a bridge-to-transplant therapy for children of all ages. | Several disadvantages should be accounted for, including the risk of bleeding (44%), thrombotic (21%), and infectious events (46%), implantation and explantation issues, the need to exteriorize the cannula, and financial problems [9]. |
2 | Medos HIA | It constitutes a compact, extracorporeal, pneumatically driven system for left, right, or biventricular support. Pumps are available in different dimensions and can be used in children regardless of weight and height. | Risk of bleeding events which could require re-intervention and risk of infections (50%) [11]. |
3 | Thoratec | These pumps are magnetically levitated, have low prime volumes and negligible hemolysis, and are permitted for 30 days by the Food and Drug Administration. | Potential adverse events include infectious bleeding, thromboembolic complications (27%), prolonged ventilation, neurologic events, and system malfunction [15]. Also, these devices require anticoagulation control. |
4 | HeartMate III | It constitutes a compact centrifugal ventricular assist device. It was successfully used as a bridge-to-transplant therapy in adolescents. The device carries a low risk of thrombosis and stroke. | Potential adverse events during follow-up include infectious (11.4%) and bleeding complications (11.4%) and arrhythmias (8.6%) [30]. |
5 | Impella | It constitutes a catheter-based, miniature ventricular assist device, which could be placed by retrograde femoral artery access into the left ventricle across the aortic valve. | The device could be used only for short-term ventricular support. Potential issues should be addressed: vascular access site complications, purge failure, and bleeding events (5.2%) [8]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moisă, Ș.M.; Burlacu, A.; Brinza, C.; Cinteză, E.; Butnariu, L.I.; Țarcă, E.; Oancea, A.F.; Munteanu, I.-A.; Munteanu, V.; Stătescu, L.; et al. An Up-to-Date Literature Review on Ventricular Assist Devices Experience in Pediatric Hearts. Life 2022, 12, 2001. https://doi.org/10.3390/life12122001
Moisă ȘM, Burlacu A, Brinza C, Cinteză E, Butnariu LI, Țarcă E, Oancea AF, Munteanu I-A, Munteanu V, Stătescu L, et al. An Up-to-Date Literature Review on Ventricular Assist Devices Experience in Pediatric Hearts. Life. 2022; 12(12):2001. https://doi.org/10.3390/life12122001
Chicago/Turabian StyleMoisă, Ștefana Maria, Alexandru Burlacu, Crischentian Brinza, Eliza Cinteză, Lăcrămioara Ionela Butnariu, Elena Țarcă, Alexandru Florinel Oancea, Ioana-Alecsandra Munteanu, Valentin Munteanu, Laura Stătescu, and et al. 2022. "An Up-to-Date Literature Review on Ventricular Assist Devices Experience in Pediatric Hearts" Life 12, no. 12: 2001. https://doi.org/10.3390/life12122001
APA StyleMoisă, Ș. M., Burlacu, A., Brinza, C., Cinteză, E., Butnariu, L. I., Țarcă, E., Oancea, A. F., Munteanu, I.-A., Munteanu, V., Stătescu, L., & Trandafir, L. M. (2022). An Up-to-Date Literature Review on Ventricular Assist Devices Experience in Pediatric Hearts. Life, 12(12), 2001. https://doi.org/10.3390/life12122001