Comparison of Retinal Imaging Techniques in Individuals with Pulmonary Artery Hypertension Using Vessel Generation Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Study
2.2. Image Acquisition and Processing
2.3. Vascular Quantification
2.4. Deep Learning
2.5. Statistical Analysis
3. Results
3.1. Subject Characteristics
3.2. Color Fundus Imaging of Retinal Vascular Phenotype in PAH
3.3. Manual Segmentation: CF vs. FA
3.4. CF Manual Segmentation vs. CF Deep Learning Segmentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wagner, S.K.; Fu, D.J.; Faes, L.; Liu, X.; Huemer, J.; Khalid, H.; Ferraz, D.; Korot, E.; Kelly, C.; Balaskas, K.; et al. Insights into Systemic Disease through Retinal Imaging-Based Oculomics. Transl. Vis. Sci. Technol. 2020, 9, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz-Valckenberg, S.; Holz, F.G.; Bird, A.C.; Spaide, R.F. Fundus autofluorescence imaging: Review and perspectives. Retina 2008, 28, 385–409. [Google Scholar] [CrossRef] [PubMed]
- Besenczi, R.; Tóth, J.; Hajdu, A. A review on automatic analysis techniques for color fundus photographs. Comput. Struct. Biotechnol. J. 2016, 14, 371–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salz, D.A.; Witkin, A.J. Imaging in diabetic retinopathy. Middle East Afr. J. Ophthalmol. 2015, 22, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Parsons-Wingerter, P.; Radhakrishnan, K.; Vickerman, M.B.; Kaiser, P.K. Oscillation of angiogenesis with vascular dropout in diabetic retinopathy by VESsel GENeration analysis (VESGEN). Investig. Ophthalmol. Vis. Sci. 2010, 51, 498–507. [Google Scholar] [CrossRef]
- Oluleye, S.T.; Olusanya, B.A.; Adeoye, A.M. Retinal vascular changes in hypertensive patients in Ibadan, Sub-Saharan Africa. Int. J. Gen. Med. 2016, 9, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Modi, P.; Arsiwalla, T. Hypertensive Retinopathy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Kornblau, I.S.; El-Annan, J.F. Adverse reactions to fluorescein angiography: A comprehensive review of the literature. Surv. Ophthalmol. 2019, 64, 679–693. [Google Scholar] [CrossRef]
- Xu, K.; Tzankova, V.; Li, C.; Sharma, S. Intravenous fluorescein angiography-associated adverse reactions. Can. J. Ophthalmol. 2016, 51, 321–325. [Google Scholar] [CrossRef]
- Yannuzzi, L.A.; Rohrer, K.T.; Tindel, L.J.; Sobel, R.S.; Costanza, M.A.; Shields, W.; Zang, E. Fluorescein angiography complication survey. Ophthalmology 1986, 93, 611–617. [Google Scholar] [CrossRef]
- Musa, F.; Muen, W.J.; Hancock, R.; Clark, D. Adverse effects of fluorescein angiography in hypertensive and elderly patients. Acta Ophthalmol. Scand. 2006, 84, 740–742. [Google Scholar] [CrossRef]
- McAllister, R.G. Hypertensive crisis and myocardial infarction after fluorescein angiography. South. Med. J. 1981, 74, 508–509. [Google Scholar] [CrossRef] [PubMed]
- Kalogeromitros, D.C.; Makris, M.P.; Rouvas, A.; Theodossiadis, P.G.; Spanoudaki, N.; Papaioannou, D. Skin testing and adverse reactions in fluorescein: A prospective study. Allergy Asthma Proc. 2007, 28, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Mainster, M.A.; Turner, P.L. Retinal examination and photography are safe...is anyone surprised? Ophthalmology 2010, 117, 197–198. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.N.; Klufas, M.A.; Ryan, M.C.; Jonas, K.E.; Ostmo, S.; Martinez-Castellanos, M.A.; Berrocal, A.M.; Chiang, M.F.; Chan, R.V.P. Color fundus photography versus fluorescein angiography in identification of the macular center and zone in retinopathy of prematurity. Am. J. Ophthalmol. 2015, 159, 950–957.e2. [Google Scholar] [CrossRef] [Green Version]
- Agardh, E.; Cavallin-Sjöberg, U. Peripheral retinal evaluation comparing fundus photographs with fluorescein angiograms in patients with diabetes mellitus. Retina 1998, 18, 420–423. [Google Scholar] [CrossRef]
- Mookiah, M.R.K.; Hogg, S.; MacGillivray, T.J.; Prathiba, V.; Pradeepa, R.; Mohan, V.; Anjana, R.M.; Doney, A.S.; Palmer, C.N.A.; Trucco, E. A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification. Med. Image Anal. 2021, 68, 101905. [Google Scholar] [CrossRef]
- Chen, C.; Chuah, J.H.; Raza, A.; Wang, Y. Retinal Vessel Segmentation Using Deep Learning: A Review. IEEE Access 2021, 9, 111985–112004. [Google Scholar] [CrossRef]
- DuPont, M.; Lambert, S.; Rodriguez-Martin, A.; Hernandez, O.; Lagatuz, M.; Yilmaz, T.; Foderaro, A.; Baird, G.L.; Parsons-Wingerter, P.; Lahm, T.; et al. Retinal vessel changes in pulmonary arterial hypertension. Pulm. Circ. 2022, 12, e12035. [Google Scholar] [CrossRef]
- Vickerman, M.B.; Keith, P.A.; McKay, T.L.; Gedeon, D.J.; Watanabe, M.; Montano, M.; Karunamuni, G.; Kaiser, P.K.; Sears, J.E.; Ebrahem, Q.; et al. VESGEN 2D: Automated, user-interactive software for quantification and mapping of angiogenic and lymphangiogenic trees and networks. Anat. Rec. 2009, 292, 320–332. [Google Scholar] [CrossRef] [Green Version]
- Lagatuz, M.; Vyas, R.J.; Predovic, M.; Lim, S.; Jacobs, N.; Martinho, M.; Valizadegan, H.; Kao, D.; Oza, N.; Theriot, C.A.; et al. Vascular patterning as integrative readout of complex molecular and physiological signaling by vessel generation analysis. J. Vasc. Res. 2021, 58, 207–230. [Google Scholar] [CrossRef]
- Kamran, S.A.; Hossain, K.F.; Tavakkoli, A.; Zuckerbrod, S.L.; Sanders, K.M.; Baker, S.A. RV-GAN: Segmenting Retinal Vascular Structure in Fundus Photographs Using a Novel Multi-scale Generative Adversarial Network. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1 2021; Proceedings, Part VIII. de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C., Eds.; Lecture Notes in Computer Science. Springer International Publishing: Cham, Switzerland, 2021; Volume 12908, pp. 34–44, ISBN 978-3-030-87236-6. [Google Scholar]
- Hoover, A.; Kouznetsova, V.; Goldbaum, M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imag. 2000, 19, 203–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoover, A.; Goldbaum, M. Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans. Med. Imag. 2003, 22, 951–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyas, R.J.; Young, M.; Murray, M.C.; Predovic, M.; Lim, S.; Jacobs, N.M.; Mason, S.S.; Zanello, S.B.; Taibbi, G.; Vizzeri, G.; et al. Decreased Vascular Patterning in the Retinas of Astronaut Crew Members as New Measure of Ocular Damage in Spaceflight-Associated Neuro-ocular Syndrome. Investig. Ophthalmol. Vis. Sci. 2020, 61, 34. [Google Scholar] [CrossRef]
- Taibbi, G.; Young, M.; Vyas, R.J.; Murray, M.C.; Lim, S.; Predovic, M.; Jacobs, N.M.; Askin, K.N.; Mason, S.S.; Zanello, S.B.; et al. Opposite response of blood vessels in the retina to 6° head-down tilt and long-duration microgravity. NPJ Microgravity 2021, 7, 38. [Google Scholar] [CrossRef]
- Sim, D.A.; Keane, P.A.; Tufail, A.; Egan, C.A.; Aiello, L.P.; Silva, P.S. Automated retinal image analysis for diabetic retinopathy in telemedicine. Curr. Diab. Rep. 2015, 15, 14. [Google Scholar] [CrossRef]
- Takayama, K.; Kaneko, H.; Ito, Y.; Kataoka, K.; Iwase, T.; Yasuma, T.; Matsuura, T.; Tsunekawa, T.; Shimizu, H.; Suzumura, A.; et al. Novel Classification of Early-stage Systemic Hypertensive Changes in Human Retina Based on OCTA Measurement of Choriocapillaris. Sci. Rep. 2018, 8, 15163. [Google Scholar] [CrossRef] [Green Version]
- McKay, T.L.; Gedeon, D.J.; Vickerman, M.B.; Hylton, A.G.; Ribita, D.; Olar, H.H.; Kaiser, P.K.; Parsons-Wingerter, P. Selective inhibition of angiogenesis in small blood vessels and decrease in vessel diameter throughout the vascular tree by triamcinolone acetonide. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1184–1190. [Google Scholar] [CrossRef]
- Parsons-Wingerter, P.; Reinecker, H.-C. For Application to Human Spaceflight and ISS Experiments: VESGEN Mapping of Microvascular Network Remodeling during Intestinal Inflammation. Gravit. Space Biol. Bull. 2012, 26, 2–12. [Google Scholar]
- Teng, T.; Lefley, M.; Claremont, D. Progress towards automated diabetic ocular screening: A review of image analysis and intelligent systems for diabetic retinopathy. Med. Biol. Eng. Comput. 2002, 40, 2–13. [Google Scholar] [CrossRef]
- Heneghan, C.; Flynn, J.; O’Keefe, M.; Cahill, M. Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis. Med. Image Anal. 2002, 6, 407–429. [Google Scholar] [CrossRef] [PubMed]
- Khandouzi, A.; Ariafar, A.; Mashayekhpour, Z.; Pazira, M.; Baleghi, Y. Retinal vessel segmentation, a review of classic and deep methods. Ann. Biomed. Eng. 2022, 50, 1292–1314. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DuPont, M.; Hunsicker, J.; Shirley, S.; Warriner, W.; Rowland, A.; Taylor, R.; DuPont, M., Jr.; Lagatuz, M.; Yilmaz, T.; Foderaro, A.; et al. Comparison of Retinal Imaging Techniques in Individuals with Pulmonary Artery Hypertension Using Vessel Generation Analysis. Life 2022, 12, 1985. https://doi.org/10.3390/life12121985
DuPont M, Hunsicker J, Shirley S, Warriner W, Rowland A, Taylor R, DuPont M Jr., Lagatuz M, Yilmaz T, Foderaro A, et al. Comparison of Retinal Imaging Techniques in Individuals with Pulmonary Artery Hypertension Using Vessel Generation Analysis. Life. 2022; 12(12):1985. https://doi.org/10.3390/life12121985
Chicago/Turabian StyleDuPont, Mariana, John Hunsicker, Simona Shirley, William Warriner, Annabelle Rowland, Reddhyia Taylor, Michael DuPont, Jr., Mark Lagatuz, Taygan Yilmaz, Andrew Foderaro, and et al. 2022. "Comparison of Retinal Imaging Techniques in Individuals with Pulmonary Artery Hypertension Using Vessel Generation Analysis" Life 12, no. 12: 1985. https://doi.org/10.3390/life12121985
APA StyleDuPont, M., Hunsicker, J., Shirley, S., Warriner, W., Rowland, A., Taylor, R., DuPont, M., Jr., Lagatuz, M., Yilmaz, T., Foderaro, A., Lahm, T., Ventetuolo, C. E., & Grant, M. B. (2022). Comparison of Retinal Imaging Techniques in Individuals with Pulmonary Artery Hypertension Using Vessel Generation Analysis. Life, 12(12), 1985. https://doi.org/10.3390/life12121985