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Abstract: (1) Background: Retinal vascular imaging plays an essential role in diagnosing and manag-
ing chronic diseases such as diabetic retinopathy, sickle cell retinopathy, and systemic hypertension.
Previously, we have shown that individuals with pulmonary arterial hypertension (PAH), a rare
disorder, exhibit unique retinal vascular changes as seen using fluorescein angiography (FA) and
that these changes correlate with PAH severity. This study aimed to determine if color fundus (CF)
imaging could garner identical retinal information as previously seen using FA images in individuals
with PAH. (2) Methods: VESGEN, computer software which provides detailed vascular patterns,
was used to compare manual segmentations of FA to CF imaging in PAH subjects (n = 9) followed
by deep learning (DL) processing of CF imaging to increase the speed of analysis and facilitate
a noninvasive clinical translation. (3) Results: When manual segmentation of FA and CF images
were compared using VESGEN analysis, both showed identical tortuosity and vessel area density
measures. This remained true even when separating images based on arterial trees only. However,
this was not observed with microvessels. DL segmentation when compared to manual segmentation
of CF images showed similarities in vascular structure as defined by fractal dimension. Similarities
were lost for tortuosity and vessel area density when comparing manual CF imaging to DL imaging.
(4) Conclusions: Noninvasive imaging such as CF can be used with VESGEN to provide an accurate
and safe assessment of retinal vascular changes in individuals with PAH. In addition to providing
insight into possible future clinical translational use.
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1. Introduction

The human eye offers a window into systemic diseases and disease progression [1–3].
There is, thus, clinical demand for imaging modalities of the retina with the ability to detect
changes in disease progression safely and effectively [1,2,4]. Early detection of alterations
in retinal vessels allows for interpretation of the overall health of systemic blood vessels
and potentially allows for early treatment of retinal diseases to prevent long-term damage,
including blindness. Diabetes and hypertension, for example, can cause alterations in the
retinal arteries, such as vascular narrowing and arteriovenous occlusion, leading to retinal
pathology [5–7].

Fluorescein angiography (FA) is a widely used invasive procedure involving the
injection of sodium fluorescein to visualize retinal vasculature. It has been associated with
an adverse event rate ranging from 1–22% [8]. The most commonly reported are nausea,
vomiting, gastrointestinal upset, and urticaria, with reports of more severe complications
including anaphylaxis, cardiac events, tonic-clonic seizures, and death [8,9]. According to a
recent comprehensive literature review, 11 reported deaths have been associated with FA,
amounting to an estimated 1:220,000 to 1:100,000 death rate [10–12]. Moreover, individuals
with underlying systemic arterial hypertension, pulmonary artery hypertension (PAH),
diabetes, sickle cell disease, or allergy history may be at increased risk of adverse events
due to compromised kidney function. Importantly, retinal pathology has been associated
with these systemic conditions [13].

Given these concerns, there is a need for noninvasive methods to detect retinal vas-
cular changes without sacrificing image quality. Color fundus (CF) imaging is typically
performed before FA, and CF produces a colorized image using a fundus camera under the
illumination of white light. Unlike the adverse events associated with FA imaging, there
have been no known reports of photic injuries from standard fundus photography [14]. CF
is time-efficient and user-friendly, typically completed within minutes during routine clinic
visits. In contrast, FA takes up to an hour to perform at a greater cost.

Previous studies have reported comparisons between the efficacy of FA and CF. Studies
have revealed almost equivalent results between FA and CF with regard to the detection of
a critical retinal zone in infants with retinopathy of prematurity along with the detection
of peripheral diabetic retinal changes, supporting CF as a vital retinal imaging modality.
However, previous reports lack information regarding changes in vessel generation which
can be assessed using a novel program called vessel generation (VESGEN) analysis [15,16].

VESGEN 2D analysis is a NASA-based application with a user-interactive image J
plugin. Previously VESGEN has been used in other studies [5], including studies using
VESGEN 2D to investigate the progression of diabetic retinopathy.

Color fundus vessel segmentation is a notoriously difficult image-processing task.
Numerous studies have been published with varying degrees of success in attempting to
accomplish this [17,18]. The second major purpose of this work was to develop an appro-
priate method for reducing VESGEN image preparation time by comparing deep learning
to standard image processing. Image segmentation is the combination of algorithms that
detect, refine, and extract aspects of interest from CF pictures. Such techniques must be
carefully designed, although only a few CF pictures are required for optimization. This
study intends to demonstrate that in individuals with PAH, CF may identify vascular
abnormalities in a manner equivalent to FA.

2. Materials and Methods
2.1. Clinical Study

The cohort of subjects for this study were individuals who have been confirmed to
carry the diagnosis of the rare World Health Organization (WHO) Group 1 PAH. Informed
consent was obtained from all subjects involved in the study. In a previously published
report, we compared these PAH subjects to controls and the relationship between retinal
parameters obtained by FA and clinical measures of PAH severity [19]. PAH subjects were
recruited from the Rhode Island Hospital Pulmonary Hypertension Center. Each subject
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underwent both FA and CF on the same day. The Institutional Review Boards approved
this study at Rhode Island Hospital (Study #411516).

2.2. Image Acquisition and Processing

CF images of the subjects’ retinas were performed by retinal photographers at Rhode
Island Hospital. Images were acquired with a 55-degree field of view and resolution of
2392 by 2048 pixels, and processed, traced, and analyzed using 2019 and 2020 Photoshop
Adobe Creative Cloud. To ensure uniformity among images, the final analysis of images
was processed by a single individual, masked to the identity of the subjects and disease
severity. Using the physiological vascular branching rules previously described, the CF
image was used to define the difference between arteries and veins [5]. FA images of the
same eye were acquired similarly. All images were reviewed and signed off by our NASA
VESGEN expert before any binarization of the images and input in VESGEN. Three FA
images were excluded from the analysis due to poor image quality.

2.3. Vascular Quantification

The VESGEN software is a JAVA-based interactive vascular analysis platform that
is globally available from NASA (https://software.nasa.gov/search/software/vesgen,
accessed on 15 May 2019) and operates as a complex plug-in to ImageJ software (National
Institutes of Health, Bethesda, MD, USA) [20,21]. VESGEN 2D examines a binary image of
a 2D vascular structure using the User-selected Vascular Morphology.

Some output provided by VESGEN that was also used for this study include fractal
dimension defined as the ratio of statistical index of complexity or the structural changes
occurring as the vasculature changes from large vessels to small vessels, vessel area density
defined as vascular area divided by the region of interest, tortuosity define as the length of
vessel divided by the distance between the endpoints of the vessels, and number of vessels
defined as the number of vessels identified based on each generation.

The quantification of the retinal findings are given in pixel units. Highly sophisticated
algorithms define branch boundaries and assign proper branching generations in order to
study vascular trees. Output measurements are delivered in the form of a one-page sum-
mary document as well as an extensive multi-page measurement confirmation document.

Manuel segmentation was performed for both FA and CF images prior to binariza-
tion. Binary (black/white) images of the blood vessels were obtained in parallel from
manual preparation and deep learning processing. The region of interest (ROI) was ob-
tained by image processing. These images were imported into VESGEN, automatically
mapping and quantifying various vascular parameters. Parameters of interest included
the following: (1) Tortuosity (Tv; length of vessel divided by the distance between the two
endpoints of the vessel), (2) fractal dimension (Df; a ratio for determining the complex-
ity of the given measurement), and (3) vessel area density (Av; density of total vascular
area, Av = vascular area/ROI). VESGEN assigned vessels generations. Macrovessels were
defined as generations 1 to 5 and microvessels were defined as generations 6 and greater.

2.4. Deep Learning

The deep learning approach used was RVGAN, short for retinal vessel generative
adversarial network (GAN), programmed in Python using TensorFlow. More details on
model training and operation are available at https://github.com/SharifAmit/RVGAN,
accessed on 6 January 2020 [22–24]. We used an instance of the RVGAN model pretrained
on the STARE dataset, provided by its creator. This pretrained model was selected over the
DRIVE and CHASE alternatives due to our dataset’s better “to-the-eye” qualitative perfor-
mance. For our dataset, RVGAN models pretrained with CHASE and DRIVE produced
unusable images. Unusable here means most of the vessels were not segmented. We used
the model pretrained with STARE because it did not exhibit this issue.

https://software.nasa.gov/search/software/vesgen
https://github.com/SharifAmit/RVGAN
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Images in the STARE dataset had 18.5 pixels per degree of field of view (FOV), while
the images used in this study had 40.9 pixels per FOV degree. Fundus images were
scaled down using linear interpolation to match the STARE dataset resolution for correct
segmentation. The output binary images were scaled up linearly and thresholder at 50% to
match the original input image sizes, and for comparison with the traditional segmentation.
Arteries were manually separated from the output binary images for analysis.

Custom model evaluation code was written in Python to handle scaling and appli-
cation of the pretrained model using libraries from the SciPy stack. The resulting binary
segmentation images were cleaned in MATLAB R2021a by removing small, connected
components. The fundus photograph region of interest (ROI) masks was eroded by 3 pixels
and applied to the binary images to trim artifacts caused by model edge effects. A border
of 3 pixels around the edge of the binary images was removed to trim the remaining edge
artifacts. Arteries were manually separated from binary images.

2.5. Statistical Analysis

The Bland–Altman plot was used as it compares two measurements of the same
variable. The X-axis represents the mean of two measurements, and the Y-axis represents
the difference between the two measurements [25]. Plotting difference versus mean aids in
discovery of possible relationships between measurement inaccuracy and real value. Left
and right eyes were grouped separately. Agreement between biometrics was examined by
eye (left vs. right) using Bland–Altman plots with 2 (red) and 3 (green) standard deviation
reference bounds using SAS Software 9.4 (Cary, NC, USA). If points are scattered above
and below zero (mean black line) then there is no persistent bias toward one imaging
modality over the other. In contrast, if values generally increase or decrease then there is
evidence that the measures are not concordant. Bland–Altman analyses provide evidence
for agreement and thus cannot be used to determine if one method is better than another
(i.e., because there is no gold standard).

3. Results
3.1. Subject Characteristics

FA and CF images of 15 eyes from 9 individuals were compared. Detailed clinical
characteristics have been previously described [19]. Mean age of subjects was 50, with the
youngest 26 and the oldest 72 years old. Eight of the nine subjects (89%) were females, and
seven were Caucasian (77%).

3.2. Color Fundus Imaging of Retinal Vascular Phenotype in PAH

CF images (Figure 1; first column) with 55-degree field of view were processed,
and binary images for VESGEN input were created to identify regions of interest. CF
images were also used to identify arteries and veins, resulting in an overlapping image
where arteries are red, and veins are blue (Figure 1; second column). The generational
summary was analyzed separately for arteries (Figure 1; third column) and veins (Figure 1;
4th column). Increasing disease severity is shown from row A to row C.

3.3. Manual Segmentation: CF vs. FA

To determine whether CF images could be used as a viable alternative to FA imaging
in individuals with PAH, we compared manual segmentation of total (artery and veins)
vessels, and artery only, in both Tv and Av, using FA and CF images along with the
microvessels of total (arteries and veins) vessels. Tv and Av have previously been shown
to indicate the progression of retinal pathology in diabetic retinopathy [5] and spaceflight
associated neuro-ocular syndrome (SANS) [26,27]. The left eye and right eye were separated
for VESGEN analysis. For manually segmented images, total vessels (both arteries and
veins) and arteries only were each compared.
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veins) and arteries only, the key component of the vasculature affected by PAH were ex-
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Figure 1. Representative output image of VESGEN analysis of the retinal vessels from PAH subjects.
VESGEN imaging maps with a 55-degree imaging resolution of the right retina from a (A): 51-year-old
female PAH subject; (B) 36-year-old female PAH subject; (C) 72-year-old female PAH subject. First
Column: Color fundus (CF) output image. Second column: Overlap of arteries (red) and veins
(blue) generated manually. Third and fourth columns: Branching generation of arteries and veins,
respectively, generated by VESGEN output. Legend (center) identifies branching generations 1–9.

A prepared manually segmentation from the retina of a 45-year-old female with PAH
in shown in Figure 2A,B. The manual processing of FA images (Figure 2A) and manual
processing of CF images (Figure 2B) were compared in all individuals. To better understand
if Tv, a known hypertension characteristic, can be identified using CF similarly to using FA.
Bland–Altman plots were used for comparison. Tv total vessels (arteries and veins) and
arteries only, the key component of the vasculature affected by PAH were examined. Tv
output between CF and FA showed an equal scattering of points both above and below
the red solid line (mean), suggesting both imaging techniques (CF and FA) can produce
similar levels of Tv analysis in both higher and lower ranges (Figure 2C, 0.021 ± 0.28 vs.
0.013 ± 0.024). When comparing FA and CF with respect to arteries only, some points
are scattered below and above the mean line (red solid line), also suggesting that both
imaging methods result in similar Tv (Figure 2D, −0.008 ± 0.016 vs. −0.007 ± 0.028). These
findings showed that manually segmented CF and FA fundus images contain similar levels
of vessel tortuosity.

To identify angiogenesis and proliferation by vascular density via the ROI Vessel area
density (Av) was examined. As with above, the Bland–Altman plots suggest comparable
Av results for total vessels across both imaging modalities (Figure 3A, −0.051 ± 0.006
vs. −0.057 ± 0.024). The same comparable Av results held for artery-only (Figure 3B,
0.012 ± 0.005 vs. 0.002 ± 0.0016). These findings support the idea that manually segmented
CF and FA fundus images contain similar vascular densities.
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artery vessel area density with scattered points suggests no difference between imaging methods 

Figure 2. Fluorescein angiography and color fundus comparisons of vascular tortuosity. Manual seg-
mentations of fluorescein angiography (FA) binary images (A,B) color fundus (CF) prepared manually
from the retina of a 45-year-old female with PAH. Right and left eyes were split on Bland–Altman
plot where FA VESGEN output was compared to CF VESGEN output for total tortuosity, showing a
scatter of points suggesting similar results between imaging methods (C), and total artery tortuosity
showing scatter of points suggesting similar results between image methods (D). The mean of the
measures (x axis) and the difference of the measures (y axis). The reference line of no difference at
0 (solid black), a reference line at the mean of the difference in solid red (observed actual mean), a
reference line at +/−2SD of the mean of the difference in dashed red, and a reference line at +/−3SD
of the mean of the differences in dashed green (C,D).
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Figure 3. Fluorescein angiography and color fundus comparisons in vessel area density. (A) Left and
right eyes were split on Bland–Altman plot where fluorescein angiography (FA) VESGEN output was
compared to color fundus (CF) VESGEN output for total vessel area density. Scattered points for both
left and right eye data suggests no difference between imaging methods. (B) Total artery vessel area
density with scattered points suggests no difference between imaging methods with points gather
near mean. Plots show similarities between FA and CF imaging among total Av and total artery Av
suggesting that CF can be used as a safer method for vascular change monitoring. The mean of the
measures (x axis) by the difference of the measures (y axis). The reference line of no difference at 0 is
the solid black, a reference line at the mean of the difference in solid red (observed actual mean), a
reference line at +/−2SD of the mean of the difference in dashed red, and a reference line at +/−3SD
of the mean of the differences in dashed green.
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Microvessels are commonly affected in many systemic vascular diseases, so we exam-
ined and compared the number of microvessels (G ≥ 6). For both total microvessels and
arteries only, a trend is apparent in the Bland–Altman plots for left eyes, suggesting FA and
CF imaging are not comparable. With right eyes, there is a more scattered distribution of
points about the mean indicating better possible concordance across imaging modalities.
Further, the right eye means (red lines) are closer to zero (black lines) in total microvessels
(Figure 4A, −193.42 ± 234.85 vs. 98.22 ± 214.29), and in artery microvessels (Figure 4B,
−62.57 ± 77.71 vs. 46.56 ± 77.69).
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Figure 4. Fluorescein angiography and color fundus comparisons in microvessel number. Left and
right eyes were split on Bland–Altman plot where fluorescein angiography (FA) VESGEN output
was compared color fundus (CF) VESGEN output for total number of microvessels (A) and total
number of microvessel of the arteries (B). Plots show differences between FA and CF imaging in
microvessels of total vessels due to the linear scattering of the points. The mean of the measures
(x axis) and the difference of the measures (y axis). The reference line of no difference at 0 (solid
black), a reference line at the mean of the difference in solid red (observed actual mean), a reference
line at +/−2SD of the mean of the difference in dashed red, and a reference line at +/−3SD of the
mean of the differences in dashed green.

3.4. CF Manual Segmentation vs. CF Deep Learning Segmentation

Manual (Figure 5A) and deep learning segmented (Figure 5B) images were compared.
The model is only trained for use with CF images, so FA images were not compared. Due
to the inability of our deep learning’s approach to separate arterial and venous structures,
total vasculature was first segmented using deep learning (Figure 5C). Following total
vessel segmentation our NASA trained VESGEN expert manually separated arterials from
total vessels for comparison of arterials only (Figure 5D).



Life 2022, 12, 1985 8 of 13Life 2022, 12, x FOR PEER REVIEW 8 of 13 
 

 

 

Figure 5. Binary images of manual and deep learning. CF binary images prepared (A) manually and 

by (B) deep processing using the retina of a 45-year-old female with PAH. CF binary images of the 

artery prepared (C) manually and by (D) deep processing using the retina of a 45-year-old female 

with PAH. 

Tv of manual and deep learning segmented images was compared. Both eyes showed 

more points below the mean in the Bland–Altman plot suggesting one had lower Tv (Fig-

ure 6A, −0.008 ± 0.025 vs. 0.0008 ± 0.019). The artery only Bland–Altman plots showed a 

greater number of points above the mean, suggesting one image method had greater Tv 

(Figure 6B, 0.007 ± 0.032 vs. 0.013 ± 0.034). Comparison of Tv between manual CF and CF 

deep learning segmentation using Bland–Altman plots showed a downward trend sug-

gesting manual and deep learning segmentation are not comparable for Tv. 

Fractal dimension (Df) proved more comparable between manual and deep learning 

images. The Bland–Altman plots for total vessels showed a scattered distribution of 

points, with most points near the mean (solid red line) in the left and right eye. This sug-

gests both imaging methods can detect Df changes among the entire image (Figure 6C, 

−0.0063 ± 0.021 vs. −0.0089 ± 0.036). Similarly for arteries, points were scattered about the 

mean, suggesting similarity between manually CF and deep learning. However, the left 

eye has an apparent linear relationship, suggesting poor concordance of the left eye man-

ual and deep learning segmentation in the right eye for arteries (Figure 6D, −0.0098 ± 0.023 

vs. −0.00084 ± 0.025). 

Figure 5. Binary images of manual and deep learning. CF binary images prepared (A) manually and
by (B) deep processing using the retina of a 45-year-old female with PAH. CF binary images of the
artery prepared (C) manually and by (D) deep processing using the retina of a 45-year-old female
with PAH.

Tv of manual and deep learning segmented images was compared. Both eyes showed
more points below the mean in the Bland–Altman plot suggesting one had lower Tv
(Figure 6A, −0.008 ± 0.025 vs. 0.0008 ± 0.019). The artery only Bland–Altman plots
showed a greater number of points above the mean, suggesting one image method had
greater Tv (Figure 6B, 0.007 ± 0.032 vs. 0.013 ± 0.034). Comparison of Tv between manual
CF and CF deep learning segmentation using Bland–Altman plots showed a downward
trend suggesting manual and deep learning segmentation are not comparable for Tv.

Fractal dimension (Df) proved more comparable between manual and deep learning
images. The Bland–Altman plots for total vessels showed a scattered distribution of
points, with most points near the mean (solid red line) in the left and right eye. This
suggests both imaging methods can detect Df changes among the entire image (Figure 6C,
−0.0063 ± 0.021 vs. −0.0089 ± 0.036). Similarly for arteries, points were scattered about
the mean, suggesting similarity between manually CF and deep learning. However, the left
eye has an apparent linear relationship, suggesting poor concordance of the left eye manual
and deep learning segmentation in the right eye for arteries (Figure 6D, −0.0098 ± 0.023
vs. −0.00084 ± 0.025).
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Figure 6. Manuel and deep learning comparisons. Right and left eyes were split on Bland–Altman
plot where color fundus (CF) VESGEN output was compared deep learning VESGEN output for total
tortuosity (A), arterial tortuosity (B), total fractal dimension (C), arterial fractal dimension (D), total
vessel area density (E), arterial vessel area density (F), total number of vessels (G) and arterial number
of vessels (H). Plots show difference between FA and CF imaging among total vessels (Tv) (A), total
tortuosity (C), and total number of vessels due to the liner scattering of the points. Plots show
similarities between FA and CF imaging among total Df. This suggesting CF can be used as a safer
method for vascular change monitoring. The mean of the measures (x axis) by the difference of the
measures (y axis). The reference line of no difference at 0 is the solid black, a reference line at the
mean of the difference in solid red (observed actual mean), a reference line at +/−2SD of the mean
of the difference in dashed red, and a reference line at +/−3SD of the mean of the differences in
dashed green.
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Manual and deep learning segmentation were compared for vessel area (Av). Av
showed an unfavorable comparison, with most points falling above the mean, suggesting
poor concordance, with one method resulting in higher Av (Figure 6E, −0.0108 ± 0.017 vs.
−0.014 ± 0.031). The same results were observed for Av of artery only images (Figure 6F,
−0.0052 ± 0.0096 vs. −0.0021 ± 0.011).

Last we compared deep learning’s ability to identify the same number of vessels as
manual preparation. Most points are gathered above the mean (red line), suggesting that
one image method results in a higher number of vessels than the other image method. Thus,
the imaging methods did not result in similar output data (Figure 6G, −769.4 ± 581.91 vs.
−674.66 ± 453.41). Arterials showed a poor similarity between manual and deep learning
process using CF (Figure 6H, −359.7 ± 225.6 vs. −352.9 ± 169.5). In the comparison of Av
and number between manual CF and CF deep learning segmentation using Bland–Altman
plots showed a trend suggesting the failure of the two image methods to provide similar
density and number of vessels.

4. Discussion

In this study, we provide further validation that a non-invasive technique may be
useful for early detection or serial monitoring in PAH individuals. This study aimed to
compare two imaging techniques, FA and CF imaging, and determine whether CF provided
comparable clinically relevant results. VESGEN, compared to other vasculature tracing
program, has increased sensitivity to detect smaller changes and allows examination of
arteries and veins separately. Unlike other vasculature tracing programs, VESGEN can
examine both large and small vessels independently. To our knowledge our study is the
first to use VESGEN to compare FA and CF images as until now VESGEN has only been
used with FA images.

Using VESGEN to analyze the images, CF images detect retinal vascular changes
similar to FA in PAH subjects. We show that CF is able to detect retinal Tv and changes
in total vascular area (Av = vascular area/ROI), two parameters that are associated with
disease severity in PAH subjects [19].

Our results suggest that similar clinical information can be obtained from CF and FA.
However, CF has the added advantage of being safer for patients. While FA and CF were
not concordant in identifying microvessels numbers, FA and CF resulted in similar Tv and
Av. Due to the inability in CF to substitute for FA in monitoring microvascular diseases,
using CF for diseases such as diabetic retinopathy may not be feasible. The second main
finding of this study is that we identify deep learning as an approach to reduce image
preparation time. Image processing segmentation combines algorithms that identify, refine,
and extract features of interest from CF images. These findings may provide insight into
using retinal vascular changes as evaluated by VESGEN to diagnosis retinal diseases earlier
and may be adapted for use in telemedicine [28].

The difference between left and right eyes was an unexpected discovery. The left eye
often resulted in poor concordance in various vascular patterns between image methods,
whereas the right eye had stronger concordance. Notably, a 2018 [29] investigation in
early-stage systemic hypertension alterations in the retina intended to investigate chori-
ocapillaris vasculature ocular/systemic variables. The eyes of 361 healthy people and
206 people with systemic hypertension were investigated in this study. They discovered
that the right eye’s choriocapillaris vascular density was substantially higher than the left
eye’s. One theory proposed to explain the difference is the difference in origin of the left and
right ophthalmic arteries. While both ophthalmic arteries originate from their respective
internal carotids, the left common carotid originates from the aorta while the right common
carotid artery comes from the brachiocephalic trunk. An alternative explanation for these
changes between the left and right eye may simply be due to the imaging protocol. While
both eyes were dilated, our protocol did not specify which eye should be examined first.
Thus, there may be a bias towards better images in the eye that is first examined as the
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experimental subject may be less tired and more cooperative with the procedure allowing
for better visualization.

In addition, the Bland-Alman analysis could only tell if the two methods (CF and FA)
were similar but not which method performed better. To address this question, ideally
there must first be a standard or “ground truth” data to compare results.

The VESGEN analysis produces colorized image maps with over 30 different quan-
titative data points. VESGEN is a user-friendly software already studied with FA and
colonic vasculature imaging studies [5,20,21,30,31]. It has been through several revisions
and upgrades, and the latest version released in 2021 (version 1.11) offers the most reliable
and accurate output parameters. VESGEN generates parameters based on retinal vessel
segmentation algorithms and physiological branching rules [32,33].

A drawback of VESGEN is that it requires hours of manual preparation preimage
for analysis by the software. This meticulous process includes manually tracing retinal
vessels, identifying arterial and venous characteristics, formatting images to appropriate
input settings, along with implementing several checkpoints to ensure quality during
the process. This time-consuming effort essentially precludes VESGEN as a feasible tool
for clinical practice and is currently limited to research. This has resulted in the need
for automated software to perform accurate vessel segmentation, avoiding the laborious
manual preparation process. Moreover, color fundus vessel segmentation is a notoriously
challenging image processing problem. Numerous papers have been published over four
decades attempting to solve the problem with varying degrees of success [17,34].

We use a deep learning model to reduce processing time. Deep learning models are
implicitly programmed, requiring a one-time training of around 100 h. Training examples
consisting of pairs of CF images and their manually segmented vessels. During training,
the model learns what combination of features are needed to result in correct segmentation.
This shifts the bulk of image segmentation time to the training phase of the deep learning
model, which would be done well prior to use in clinical practice. As a result, deep learning
programming is expected to be more viable for clinical practice.

Our use of the deep learning model provides evidence of potential use in combination
with VESGEN to become a feasible and highly sensitive tool for the visualization of the
retina and could potentially be incorporated into clinical practice. While deep learning
will speed up the process of image preparation, the ability to separate both arteries and
veins was not available at the time of our study. Recently, as of July 2022, new insight into
the possibility of separation is now available (https://github.com/rmaphoh/AutoMorph,
accessed on 6 January 2020).

Binary images produced by deep learning are not comparable to manually segmented
images for vessel tortuosity and area density of both total and artery-only. This is likely
due to the lack of ability of deep learning to identify fine vessels, despite RVGAN being
state-of-the-art for detecting fine vessels. It is probably that downscaling the images to
STARE resolution made the finest vessels undetectable. Training RVGAN on a dataset
with higher resolution than STARE might help with this issue. Regardless, deep learning
showed the ability to identify similar structural changes in large vessels seen as fractal
dimension (Df) across the retina compared to manual segmentation of CF images.

While this proof-of-concept study provides insight into the potential use of CF imaging
in future studies of pulmonary vascular diseases, our study has the limitations of including
a small number of subjects. VESGEN in conjunction with deep learning processing, has
great potential for speeding the preparation of images and potentially making this approach
feasible for future clinical use, specifically aiding in earlier disease detection while providing
clinicians the ability for easy longitudinal monitoring of retinal vascular changes that are
both objective and comparable for each subject. This combination may also improve patient
safety by eliminating invasive imaging techniques, improving diagnostic power, and faster
and cost-efficient examinations.

https://github.com/rmaphoh/AutoMorph
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5. Conclusions

We identified several key advantages of utilizing CF paired with VESGEN analysis
as a retinal imaging modality over FA with manual input of images. CF is a non-invasive
imaging modality. It possesses the ability, alongside image processing segmentation, to
provide valuable insight into vascular patterns of vessel generations 1–5 to understand
systemic manifestations of PAH in the eye repeatedly and rapidly. One limitation of
this study was the use of VESGEN manual preparation prior to program analysis. This
time-consuming technique basically removes VESGEN as a viable clinical practice tool,
relegating it to research use only. As a result, there is a growing demand for automated
software that can execute exact vessel segmentation without the time-consuming human
preparation step. Additional validation is needed before this can be introduced in a
clinical setting.
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